Research Article
BibTex RIS Cite

Effect of nitrogen doping amount on the activity of commercial electrocatalyst used in PEM fuel cells

Year 2022, Volume: Volume 2 Issue: Issue 1, 5 - 9, 09.06.2022

Abstract

The amount of nitrogen doping has attracted attention recently because it provides additional catalytically active sites in catalysts. In this study, nitrogen-doped (N-doped) catalysts were synthesized by mixing melamine as a nitrogen source and commercial Tanaka catalyst with 67% Pt loading in different amounts of melamine. After nitrogen doping, N-doped catalysts were characterized by FTIR, XRD, elemental analysis, contact angle measurement, and PEM fuel cell performance tests. Change in the nitrogen amount in the catalyst resulted in an increase in the PEM fuel cell performance which can be attributed to the significant change in contact angle and so in the hydrophobicity of the catalysts.

References

  • 1. Deng, H.; Li, Q.; Liu, J.; Wang, F. Active sites for oxygen reduction reaction on nitrogen-doped carbon nanotubes derived from polyaniline. Carbon N. Y. 2017, 112, 219–229, doi:10.1016/j.carbon.2016.11.014.
  • 2. Wang, Y.-J.; Zhao, N.; Fang, B.; Li, H.; Bi, X.T.; Wang, H. Carbon-Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity. Chem. Rev. 2015, 115, 3433–3467, doi:10.1021/cr500519c.
  • 3. Sui, S.; Wang, X.; Zhou, X.; Su, Y.; Riffat, S.; Liu, C. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 2017, 5, 1808–1825, doi:10.1039/C6TA08580F.
  • 4. Shao, M.; Chang, Q.; Dodelet, J.-P.; Chenitz, R. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem. Rev. 2016, 116, 3594–3657, doi:10.1021/acs.chemrev.5b00462.
  • 5. Esmaeilifar, A.; Rowshanzamir, S.; Eikani, M.H.; Ghazanfari, E. Synthesis methods of low-Pt-loading electrocatalysts for proton exchange membrane fuel cell systems. Energy 2010, 35, 3941–3957, doi:10.1016/j.energy.2010.06.006.
  • 6. Martínez-Huerta, M.V.; Lázaro, M.J. Electrocatalysts for low temperature fuel cells. Catal. Today 2017, 285, 3–12, doi:10.1016/j.cattod.2017.02.015.
  • 7. Du, L.; Shao, Y.; Sun, J.; Yin, G.; Liu, J.; Wang, Y. Advanced catalyst supports for PEM fuel cell cathodes. Nano Energy 2016, 29, 314–322, doi:10.1016/j.nanoen.2016.03.016.
  • 8. Vinayan, B.P.; Ramaprabhu, S. Platinum–TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications. Nanoscale 2013, 5, 5109, doi:10.1039/c3nr00585b.
  • 9. Imran Jafri, R.; Rajalakshmi, N.; Ramaprabhu, S. Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J. Mater. Chem. 2010, 20, 7114, doi:10.1039/c0jm00467g.
  • 10. Oh, E.-J.; Hempelmann, R.; Nica, V.; Radev, I.; Natter, H. New catalyst supports prepared by surface modification of graphene- and carbon nanotube structures with nitrogen containing carbon coatings. J. Power Sources 2017, 341, 240–249, doi:10.1016/j.jpowsour.2016.11.116.
  • 11. Kim, H.S.; Lee, Y.; Lee, J.G.; Hwang, H.J.; Jang, J.; Juon, S.M.; Dorjgotov, A.; Shul, Y.G. Platinum catalysts protected by N-doped carbon for highly efficient and durable polymer-electrolyte membrane fuel cells. Electrochim. Acta 2016, 193, 191–198, doi:10.1016/j.electacta.2016.02.057.
  • 12. Chen, S.; Wei, Z.; Qi, X.; Dong, L.; Guo, Y.-G.; Wan, L.; Shao, Z.; Li, L. Nanostructured Polyaniline-Decorated Pt/C@PANI Core–Shell Catalyst with Enhanced Durability and Activity. J. Am. Chem. Soc. 2012, 134, 13252–13255, doi:10.1021/ja306501x.
  • 13. Lee, H.; Sung, Y.-E.; Choi, I.; Lim, T.; Kwon, O.J. Novel synthesis of highly durable and active Pt catalyst encapsulated in nitrogen containing carbon for polymer electrolyte membrane fuel cell. J. Power Sources 2017, 362, 228–235, doi:10.1016/j.jpowsour.2017.07.040.
  • 14. Higgins, D.C.; Meza, D.; Chen, Z. Nitrogen-Doped Carbon Nanotubes as Platinum Catalyst Supports for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. J. Phys. Chem. C 2010, 114, 21982–21988, doi:10.1021/jp106814j.
  • 15. Zhang, Q.; Yu, X.; Ling, Y.; Cai, W.; Yang, Z. Ultrathin nitrogen doped carbon layer stabilized Pt electrocatalyst supported on N-doped carbon nanotubes. Int. J. Hydrogen Energy 2017, 42, 10354–10362, doi:10.1016/j.ijhydene.2017.02.156.
  • 16. Jung, W.S.; Popov, B.N. Hybrid cathode catalyst with synergistic effect between carbon composite catalyst and Pt for ultra-low Pt loading in PEMFCs. Catal. Today 2017, 295, 65–74, doi:10.1016/j.cattod.2017.06.019.
  • 17. Jung, W.S.; Popov, B.N. Improved durability of Pt catalyst supported on N-doped mesoporous graphitized carbon for oxygen reduction reaction in polymer electrolyte membrane fuel cells. Carbon N. Y. 2017, 122, 746–755, doi:10.1016/j.carbon.2017.07.028.
  • 18. Jung, W.S.; Popov, B.N. New Method to Synthesize Highly Active and Durable Chemically Ordered fct-PtCo Cathode Catalyst for PEMFCs. ACS Appl. Mater. Interfaces 2017, 9, 23679–23686, doi:10.1021/acsami.7b04750.
  • 19. Fraga, T.J.M.; da Silva, L.F.F.; de Lima Ferreira, L.E.M.; da Silva, M.P.; Marques Fraga, D.M. dos S.; de Araújo, C.M.B.; Carvalho, M.N.; de Lima Cavalcanti, J.V.F.; Ghislandi, M.G.; da Motta Sobrinho, M.A. Amino-Fe3O4-functionalized multi-layered graphene oxide as an ecofriendly and highly effective nanoscavenger of the reactive drimaren red. Environ. Sci. Pollut. Res. 2020, 27, 9718–9732, doi:10.1007/s11356-019-07539-z.
  • 20. Groppo, E.; Bonino, F.; Cesano, F.; Damin, A.; Manzoli, M. CHAPTER 4. Raman, IR and INS Characterization of Functionalized Carbon Materials. In Metal-free Functionalized Carbons in Catalysis; Royal Society of Chemistry, 2018; pp. 103–137 ISBN 1757-6733.
  • 21. Öztürk, A.; Fıçıcılar, B.; Eroğlu, İ.; Bayrakçeken Yurtcan, A. Facilitation of water management in low Pt loaded PEM fuel cell by creating hydrophobic microporous layer with PTFE, FEP and PDMS polymers: Effect of polymer and carbon amounts. Int. J. Hydrogen Energy 2017, 42, 21226–21249, doi:10.1016/j.ijhydene.2017.06.202.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Niyazi Özcelık This is me

Ayse Bayrakceken Yurtcan This is me

Publication Date June 9, 2022
Submission Date April 8, 2021
Published in Issue Year 2022 Volume: Volume 2 Issue: Issue 1

Cite