Research Article
BibTex RIS Cite
Year 2024, Volume: 9 Issue: 2, 164 - 183, 30.10.2024
https://doi.org/10.28978/nesciences.1569280

Abstract

References

  • Asif, S., Zhao, M., Li, Y., Tang, F., & Zhu, Y. (2024). CGO-ensemble: Chaos game optimization algorithm-based fusion of deep neural networks for accurate Mpox detection. Neural Networks, 173, 106183. https://doi.org/10.1016/j.neunet.2024.106183
  • Carine Menezes Rebello & Idelfonso B.R. Nogueira.(2024).Optimizing [formula omitted] capture in pressure swing adsorption units: A deep neural network approach with optimality evaluation and operating maps for decision-making.Separation and Purification Technology, 126811.
  • Cheng, H., Bi, Q., Chen, X., Zheng, H., Du, Y., & Jiang, Z. (2024). Improvement of lithium battery corner detection accuracy based on image restoration method. Physica Scripta, 99(3), 036003. https://doi.org/10.1088/1402-4896/ad203c
  • Cui, X., Zhou, P., Xu, Z., Liu, Q., Nuli, Y., Wang, J., & Yang, J. (2024). High-voltage Li metal batteries enabled by a nonflammable amphiphilic electrolyte. Energy Storage Materials, 66, 103235. https://doi.org/10.1016/j.ensm.2024.103235
  • Ewees, A. A., Thanh, H. V., Al-qaness, M. A., Abd Elaziz, M., & Samak, A. H. (2024). Smart predictive viscosity mixing of CO2–N2 using optimized dendritic neural networks to implicate for carbon capture utilization and storage. Journal of Environmental Chemical Engineering, 12(2), 112210. https://doi.org/10.1016/j.jece.2024.112210
  • Guo, J., Ren, G., Gao, T., Yao, S., Sun, Z., Yang, F., & Zhang, B. (2024). Bed density prediction of gas–solid separation fluidized bed based on genetic algorithm-back propagation neural network. Minerals Engineering, 209, 108607. https://doi.org/10.1016/j.mineng.2024.108607
  • Haleem, A., Javaid, M., Singh, R. P., Suman, R., & Rab, S. (2021). Biosensors applications in the medical field: A brief review. Sensors International, p. 2, 100100. https://doi.org/10.1016/j.sintl.2021.100100
  • Helal, H., Firoz, J., Bilbrey, J. A., Sprueill, H., Herman, K. M., Krell, M. M., & Choudhury, S. (2024). Acceleration of Graph Neural Network-Based Prediction Models in Chemistry via Co-Design Optimization on Intelligence Processing Units. Journal of Chemical Information and Modeling, 64(5), 1568-1580.
  • Ji, Z., Tao, W., & Zhang, L. (2024). A boiler oxygen content and furnace temperature prediction model based on honey badger algorithm optimized neural network. Engineering Research Express, 6(1), 015083. DOI 10.1088/2631-8695/ad22be
  • Jiang, Y., Duan, Y., Li, J., Chen, M., & Zhang, X. (2024). Optimization of mooring systems for a 10MW semisubmersible offshore wind turbines based on neural network. Ocean Engineering, 296, 117020. https://doi.org/10.1016/j.oceaneng.2024.117020
  • Jin, W., Zhang, X., Liu, M., Zhao, Y., & Zhang, P. (2024). High-Performance Li-S Batteries Boosted by Redox Mediators: A Review and Prospects. Energy Storage Materials, 103223. https://doi.org/10.1016/j.ensm.2024.103223
  • Karthick S & Gomathi N.(2024).IoT-based COVID-19 detection using recalling-enhanced recurrent neural network optimized with the golden eagle optimization algorithm. Medical biological engineering computing (3), 925–940.
  • Katırcı, G., Civan, F. E., Jung, S., Lee, C. B., & Ülgüt, B. (2024). Electrochemical Impedance Spectroscopy (EIS) and non-linear harmonic analysis (NHA) of Li-SOCl2/SO2Cl2 batteries. Electrochimica Acta, 481, 143984. https://doi.org/10.1016/j.electacta.2024.143984
  • Kazi, M. K., & Mahdi, E. (2024). Crashworthiness optimization of composite hexagonal ring system using random forest classification and artificial neural network. Composites Part C: Open Access, 13, 100440. https://doi.org/10.1016/j.jcomc.2024.100440
  • Liu, J. J., Huang, Y. H., Zhang, X. J., Ding, Y. X., Liu, H., & Gui, X. F. (2024). MOF-silsesquioxane synergistic modified hybrid porous membrane for high-performance and high-safety lithium battery. Materials Letters, 361, 136162. https://doi.org/10.1016/j.matlet.2024.136162
  • Ma, J., Ma, C., Li, T., Yan, W., Faradonbeh, R. S., Long, H., & Dai, K. (2024). Real-time classification model for tunnel surrounding rocks based on high-resolution neural network and structure–optimizer hyperparameter optimization. Computers and Geotechnics, 168, 106155. https://doi.org/10.1016/j.compgeo.2024.106155
  • Meng, J., Liu, L., Zhao, Z., & Su, C. (2024). Stages assessment of state of health in a lifetime based on the capacity variance of lithium batteries. Measurement Science and Technology, 35(4), 045019. DOI 10.1088/1361-6501/ad1cc6
  • Meng, S., Shi, Z., Peng, M., Li, G., Zheng, H., Liu, L., & Zhang, L. (2024). Landslide displacement prediction with step-like curve based on convolutional neural network coupled with bi-directional gated recurrent unit optimized by attention mechanism. Engineering Applications of Artificial Intelligence, 133, 108078. https://doi.org/10.1016/j.engappai.2024.108078
  • Mohan, G., Raja, M. S., Swathi, S., & Ganesh, E. N. (2024). A novel breast cancer diagnostic using convolutional squared deviation neural network classifier with Al-Biruni Earth Radius optimization in medical IoT system. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 7, 100440. https://doi.org/10.1016/j.prime.2024.100440
  • Naresh, V., & Lee, N. (2021). A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors, 21(4), 1109. https://doi.org/10.3390/s21041109
  • Nawafleh, N., & Al-Oqla, F. M. (2024). An effective hybrid particle swarm—artificial neural network optimization for predicting green bio-fiber mechanical characteristics and optimizing biomaterial performance. Functional Composites and Structures, 6(1), 015001. DOI 10.1088/2631-6331/ad1b28
  • Shen, J., Liu, S., Han, X., Chen, Z., Tian, W., Yang, C., & Zhu, S. (2024). Regulating the Li-O coordination in polymer electrolytes via semi-ionic CF bonds for high-voltage solid lithium metal batteries. Chemical Engineering Journal, 484, 149497. https://doi.org/10.1016/j.cej.2024.149497
  • Shou, B., Yang, M., Song, Z., Li, J., Tang, K., Gao, W., & Yu, J. (2024). Radial basis function neural network optimization algorithm based on dynamic inertial weight particle swarm optimization for separating overlapping peaks in ion mobility spectrometry. Rapid Communications in Mass Spectrometry, 38(6), e9700. https://doi.org/10.1002/rcm.9700
  • Sikirica, A., Lučin, I., Alvir, M., Kranjčević, L., & Čarija, Z. (2024). Computationally efficient optimisation of elbow-type draft tube using neural network surrogates. Alexandria Engineering Journal, 90, 129-152.
  • Soman, A., & Sarath, R. (2024). Optimization-enabled deep convolutional neural network with multiple features for cardiac arrhythmia classification using ECG signals. Biomedical Signal Processing and Control, 92, 105964. https://doi.org/10.1016/j.bspc.2024.105964
  • Tan, I. J. Y., Loy, A. C. M., Chin, B. L. F., Cheah, K. W., Teng, S. Y., How, B. S., & Lam, S. S. (2024). Co-pyrolysis of Chlorella vulgaris with plastic wastes: Thermal degradation, kinetics and Progressive Depth Swarm-Evolution (PDSE) neural network-based optimization. Green Technologies and Sustainability, 2(2), 100077. https://doi.org/10.1016/j.grets.2024.100077
  • Wang, H., & Zhang, Z. (2024). Dragonfly visual evolutionary neural network: A novel bionic optimizer with related LSGO and engineering design optimization. Iscience, 27(3), 109040. https://doi.org/10.1016/j.isci.2024.109040
  • Wang, K., Tieu, A. J. K., Wei, Z., Zhou, Y., Zhang, L., Li, S., & Han, X. (2024). Stabilizing LiNi0. 8Co0. 1Mn0. 1O2 cathode by combined moisture and HF digestion/adsorption for high-performance lithium metal batteries. Energy Storage Materials, 67, 103275. https://doi.org/10.1016/j.ensm.2024.103275
  • Wang, T., Chen, B., Liu, C., Li, T., & Liu, X. (2024). Build a High‐Performance All‐Solid‐State Lithium Battery through Introducing Competitive Coordination Induction Effect in Polymer‐Based Electrolyte. Angewandte Chemie International Edition, 63(16), e202400960. https://doi.org/10.1002/anie.202400960
  • Wu, J. C., Gao, S., Li, X., Zhou, H., Gao, H., Hu, J., & Liu, Y. (2024). Rigid-flexible coupling network solid polymer electrolytes for all-solid-state lithium metal batteries. Journal of Colloid and Interface Science, 661, 1025-1032.
  • Wu, X., Zuo, Z., Ma, L., & Zhang, W. (2024). Multi-fidelity neural network-based aerodynamic optimization framework for propeller design in electric aircraft. Aerospace Science and Technology, 146, 108963. https://doi.org/10.1016/j.ast.2024.108963
  • Zhang, R., Liu, D., Bai, Q., Fu, L., Hu, J., & Song, J. (2024). Research on X-ray weld seam defect detection and size measurement method based on neural network self-optimization. Engineering Applications of Artificial Intelligence, 133, 108045. https://doi.org/10.1016/j.engappai.2024.108045

Exploring the Performance Impact of Neural Network Optimization on Energy Analysis of Biosensor

Year 2024, Volume: 9 Issue: 2, 164 - 183, 30.10.2024
https://doi.org/10.28978/nesciences.1569280

Abstract

With the popularization of new energy vehicles, lithium battery systems, as the main components of new energy vehicles, have the characteristics of short life cycles and harmful substances inside. The green treatment of lithium battery systems has become a research hotspot. Disassembly and recycling are essential means of reusing waste in lithium battery systems. Due to the wide variety of lithium battery systems, the lack of unified design standards, and the high flexibility requirements for disassembly, manual disassembly is currently the primary method used. However, this method can cause health hazards to oneself when dismantling some harmful components. The optimization of the dismantling process route for lithium batteries is a crucial step before dismantling, which directly determines the economic benefits of dismantling. However, unlike general electromechanical products, lithium batteries have prominent safety issues during the dismantling process, so the safety requirements for their dismantling process route are relatively high. Given the substantial absence of parametric evaluation and modification in prior research, this work investigates the influence of the most significant factors on the power density of biosensors. A conduction-based framework was employed to ascertain these variables, and the calculations were performed utilizing a neural network. The neural network was developed with Particle Swarm Optimization (PSO). Based on this, this article considers studying the optimization method of the lithium battery safety disassembly process to maximize safety and economic benefits comprehensively. Based on the essential characteristics of lithium-ion battery systems, an analysis is conducted on the allocation method of difficulty level for human-machine cooperation tasks and the impact indicators of task allocation. Then, a product disassembly hybrid diagram is established, and on this basis, multiple sets of human-machine cooperation disassembly sequences are generated. Finally, a multi-objective optimization model for disassembly cost, difficulty, and time is established. Finally, taking the Tesla Model 1sPBS waste lithium battery as an example, the safety prediction model for dismantling the waste lithium battery and the optimization model for the safety dismantling process route were solved to verify the effectiveness of the above optimization method.

References

  • Asif, S., Zhao, M., Li, Y., Tang, F., & Zhu, Y. (2024). CGO-ensemble: Chaos game optimization algorithm-based fusion of deep neural networks for accurate Mpox detection. Neural Networks, 173, 106183. https://doi.org/10.1016/j.neunet.2024.106183
  • Carine Menezes Rebello & Idelfonso B.R. Nogueira.(2024).Optimizing [formula omitted] capture in pressure swing adsorption units: A deep neural network approach with optimality evaluation and operating maps for decision-making.Separation and Purification Technology, 126811.
  • Cheng, H., Bi, Q., Chen, X., Zheng, H., Du, Y., & Jiang, Z. (2024). Improvement of lithium battery corner detection accuracy based on image restoration method. Physica Scripta, 99(3), 036003. https://doi.org/10.1088/1402-4896/ad203c
  • Cui, X., Zhou, P., Xu, Z., Liu, Q., Nuli, Y., Wang, J., & Yang, J. (2024). High-voltage Li metal batteries enabled by a nonflammable amphiphilic electrolyte. Energy Storage Materials, 66, 103235. https://doi.org/10.1016/j.ensm.2024.103235
  • Ewees, A. A., Thanh, H. V., Al-qaness, M. A., Abd Elaziz, M., & Samak, A. H. (2024). Smart predictive viscosity mixing of CO2–N2 using optimized dendritic neural networks to implicate for carbon capture utilization and storage. Journal of Environmental Chemical Engineering, 12(2), 112210. https://doi.org/10.1016/j.jece.2024.112210
  • Guo, J., Ren, G., Gao, T., Yao, S., Sun, Z., Yang, F., & Zhang, B. (2024). Bed density prediction of gas–solid separation fluidized bed based on genetic algorithm-back propagation neural network. Minerals Engineering, 209, 108607. https://doi.org/10.1016/j.mineng.2024.108607
  • Haleem, A., Javaid, M., Singh, R. P., Suman, R., & Rab, S. (2021). Biosensors applications in the medical field: A brief review. Sensors International, p. 2, 100100. https://doi.org/10.1016/j.sintl.2021.100100
  • Helal, H., Firoz, J., Bilbrey, J. A., Sprueill, H., Herman, K. M., Krell, M. M., & Choudhury, S. (2024). Acceleration of Graph Neural Network-Based Prediction Models in Chemistry via Co-Design Optimization on Intelligence Processing Units. Journal of Chemical Information and Modeling, 64(5), 1568-1580.
  • Ji, Z., Tao, W., & Zhang, L. (2024). A boiler oxygen content and furnace temperature prediction model based on honey badger algorithm optimized neural network. Engineering Research Express, 6(1), 015083. DOI 10.1088/2631-8695/ad22be
  • Jiang, Y., Duan, Y., Li, J., Chen, M., & Zhang, X. (2024). Optimization of mooring systems for a 10MW semisubmersible offshore wind turbines based on neural network. Ocean Engineering, 296, 117020. https://doi.org/10.1016/j.oceaneng.2024.117020
  • Jin, W., Zhang, X., Liu, M., Zhao, Y., & Zhang, P. (2024). High-Performance Li-S Batteries Boosted by Redox Mediators: A Review and Prospects. Energy Storage Materials, 103223. https://doi.org/10.1016/j.ensm.2024.103223
  • Karthick S & Gomathi N.(2024).IoT-based COVID-19 detection using recalling-enhanced recurrent neural network optimized with the golden eagle optimization algorithm. Medical biological engineering computing (3), 925–940.
  • Katırcı, G., Civan, F. E., Jung, S., Lee, C. B., & Ülgüt, B. (2024). Electrochemical Impedance Spectroscopy (EIS) and non-linear harmonic analysis (NHA) of Li-SOCl2/SO2Cl2 batteries. Electrochimica Acta, 481, 143984. https://doi.org/10.1016/j.electacta.2024.143984
  • Kazi, M. K., & Mahdi, E. (2024). Crashworthiness optimization of composite hexagonal ring system using random forest classification and artificial neural network. Composites Part C: Open Access, 13, 100440. https://doi.org/10.1016/j.jcomc.2024.100440
  • Liu, J. J., Huang, Y. H., Zhang, X. J., Ding, Y. X., Liu, H., & Gui, X. F. (2024). MOF-silsesquioxane synergistic modified hybrid porous membrane for high-performance and high-safety lithium battery. Materials Letters, 361, 136162. https://doi.org/10.1016/j.matlet.2024.136162
  • Ma, J., Ma, C., Li, T., Yan, W., Faradonbeh, R. S., Long, H., & Dai, K. (2024). Real-time classification model for tunnel surrounding rocks based on high-resolution neural network and structure–optimizer hyperparameter optimization. Computers and Geotechnics, 168, 106155. https://doi.org/10.1016/j.compgeo.2024.106155
  • Meng, J., Liu, L., Zhao, Z., & Su, C. (2024). Stages assessment of state of health in a lifetime based on the capacity variance of lithium batteries. Measurement Science and Technology, 35(4), 045019. DOI 10.1088/1361-6501/ad1cc6
  • Meng, S., Shi, Z., Peng, M., Li, G., Zheng, H., Liu, L., & Zhang, L. (2024). Landslide displacement prediction with step-like curve based on convolutional neural network coupled with bi-directional gated recurrent unit optimized by attention mechanism. Engineering Applications of Artificial Intelligence, 133, 108078. https://doi.org/10.1016/j.engappai.2024.108078
  • Mohan, G., Raja, M. S., Swathi, S., & Ganesh, E. N. (2024). A novel breast cancer diagnostic using convolutional squared deviation neural network classifier with Al-Biruni Earth Radius optimization in medical IoT system. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 7, 100440. https://doi.org/10.1016/j.prime.2024.100440
  • Naresh, V., & Lee, N. (2021). A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors, 21(4), 1109. https://doi.org/10.3390/s21041109
  • Nawafleh, N., & Al-Oqla, F. M. (2024). An effective hybrid particle swarm—artificial neural network optimization for predicting green bio-fiber mechanical characteristics and optimizing biomaterial performance. Functional Composites and Structures, 6(1), 015001. DOI 10.1088/2631-6331/ad1b28
  • Shen, J., Liu, S., Han, X., Chen, Z., Tian, W., Yang, C., & Zhu, S. (2024). Regulating the Li-O coordination in polymer electrolytes via semi-ionic CF bonds for high-voltage solid lithium metal batteries. Chemical Engineering Journal, 484, 149497. https://doi.org/10.1016/j.cej.2024.149497
  • Shou, B., Yang, M., Song, Z., Li, J., Tang, K., Gao, W., & Yu, J. (2024). Radial basis function neural network optimization algorithm based on dynamic inertial weight particle swarm optimization for separating overlapping peaks in ion mobility spectrometry. Rapid Communications in Mass Spectrometry, 38(6), e9700. https://doi.org/10.1002/rcm.9700
  • Sikirica, A., Lučin, I., Alvir, M., Kranjčević, L., & Čarija, Z. (2024). Computationally efficient optimisation of elbow-type draft tube using neural network surrogates. Alexandria Engineering Journal, 90, 129-152.
  • Soman, A., & Sarath, R. (2024). Optimization-enabled deep convolutional neural network with multiple features for cardiac arrhythmia classification using ECG signals. Biomedical Signal Processing and Control, 92, 105964. https://doi.org/10.1016/j.bspc.2024.105964
  • Tan, I. J. Y., Loy, A. C. M., Chin, B. L. F., Cheah, K. W., Teng, S. Y., How, B. S., & Lam, S. S. (2024). Co-pyrolysis of Chlorella vulgaris with plastic wastes: Thermal degradation, kinetics and Progressive Depth Swarm-Evolution (PDSE) neural network-based optimization. Green Technologies and Sustainability, 2(2), 100077. https://doi.org/10.1016/j.grets.2024.100077
  • Wang, H., & Zhang, Z. (2024). Dragonfly visual evolutionary neural network: A novel bionic optimizer with related LSGO and engineering design optimization. Iscience, 27(3), 109040. https://doi.org/10.1016/j.isci.2024.109040
  • Wang, K., Tieu, A. J. K., Wei, Z., Zhou, Y., Zhang, L., Li, S., & Han, X. (2024). Stabilizing LiNi0. 8Co0. 1Mn0. 1O2 cathode by combined moisture and HF digestion/adsorption for high-performance lithium metal batteries. Energy Storage Materials, 67, 103275. https://doi.org/10.1016/j.ensm.2024.103275
  • Wang, T., Chen, B., Liu, C., Li, T., & Liu, X. (2024). Build a High‐Performance All‐Solid‐State Lithium Battery through Introducing Competitive Coordination Induction Effect in Polymer‐Based Electrolyte. Angewandte Chemie International Edition, 63(16), e202400960. https://doi.org/10.1002/anie.202400960
  • Wu, J. C., Gao, S., Li, X., Zhou, H., Gao, H., Hu, J., & Liu, Y. (2024). Rigid-flexible coupling network solid polymer electrolytes for all-solid-state lithium metal batteries. Journal of Colloid and Interface Science, 661, 1025-1032.
  • Wu, X., Zuo, Z., Ma, L., & Zhang, W. (2024). Multi-fidelity neural network-based aerodynamic optimization framework for propeller design in electric aircraft. Aerospace Science and Technology, 146, 108963. https://doi.org/10.1016/j.ast.2024.108963
  • Zhang, R., Liu, D., Bai, Q., Fu, L., Hu, J., & Song, J. (2024). Research on X-ray weld seam defect detection and size measurement method based on neural network self-optimization. Engineering Applications of Artificial Intelligence, 133, 108045. https://doi.org/10.1016/j.engappai.2024.108045
There are 32 citations in total.

Details

Primary Language English
Subjects Agricultural Biotechnology (Other)
Journal Section Articles
Authors

Weichao Tan This is me 0009-0008-0938-668X

Celso Bation Co 0009-0009-0272-8701

Rowell M.hernandez This is me 0000-0002-8748-6271

Jeffrey Sarmiento This is me 0000-0002-7551-7181

Cristina Amor Rosales This is me 0000-0001-6339-8229

Publication Date October 30, 2024
Submission Date October 17, 2024
Acceptance Date October 17, 2024
Published in Issue Year 2024 Volume: 9 Issue: 2

Cite

APA Tan, W., Co, C. B., M.hernandez, R., Sarmiento, J., et al. (2024). Exploring the Performance Impact of Neural Network Optimization on Energy Analysis of Biosensor. Natural and Engineering Sciences, 9(2), 164-183. https://doi.org/10.28978/nesciences.1569280

                                                                                               We welcome all your submissions

                                                                                                             Warm regards,
                                                                                                      


All published work is licensed under a Creative Commons Attribution 4.0 International License Link . Creative Commons License
                                                                                         NESciences.com © 2015