Research Article
BibTex RIS Cite

Ağır Aromatik Atık ve Polistirenin Eş-pirolizi: Sıvı Ürünün GC-MS ile Analizi

Year 2021, Volume: 10 Issue: 2, 92 - 100, 16.12.2021
https://doi.org/10.17100/nevbiltek.1005599

Abstract

Plastik atıklar dünya çapında 2018 yılındaki toplam kentsel katı atıkların %18,46’sını oluşturur. Ağır hidrokarbonlar rafineri proseslerinin atığı olarak meydana gelir. Bu çalışmada, literatürde ilk defa atık polistiren köpük (PS) ve ağır aromatik atığın (HAW) eş-pirolizi yürütülmüştür. Sıcaklık (420, 450, 480 ⁰C) ve karıştırma oranının (1/5, 3/5, 1/1) sıvı ürün verimi ve pirolitik sıvıların bileşik dağılımı üzerindeki etkisini incelemek amaçlanmıştır. Tüm deneyler yarı-kesikli reaktör konfigürasyonunda azot atmosferi altında yapılmıştır. Gaz kromatografi-Kütle spektrometresi (GC-MS) pirolitik sıvıları analiz etmek için kullanılmıştır.480 ⁰C’de 1/5 HAW/PS besleme oranında maksimum sıvı verimi %87.24 olarak elde edilmiştir. Saf PS pirolizi ile karşılaştırıldığında, nispeten düşük stiren ve toluene verimi edinilmiştir. Bununla birlikte, etilbenzen ve kümen verimleri beslemeye HAW katılmasıyla artmıştır. Naftalin PS pirolizinin sıvısında tespit edilmemiştir. Maksimum naftalin verimi 480 ⁰C’de 1/5 HAW/PS besleme oranında % 12,71 olarak alınmıştır.

References

  • [1] Nanda, S., Berruti, F., “Municipal solid waste management and landfilling technologies: a review” Environmental Chemistry Letters, 19(2), 1433-1456, 2021.
  • [2] The World Bank. https://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html. Date accessed October, 6 2021.
  • [3] United States Environmental Protection Agency. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials. Date accessed October 6, 2021.
  • [4] Siddique, R., Khatib, J., Kaur, I., “Use of recycled plastic in concrete: A review” Waste management, 28(10), 1835-1852, 2008.
  • [5] Özçakır, G., Karaduman, A., “Chemical recovery from polystyrene waste and low density polyethylene via conventional pyrolysis” Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 28(2), 155-163, 2020.
  • [6] Nanda, S., Berruti, F., “Thermochemical conversion of plastic waste to fuels: a review” Environmental Chemistry Letters, 19(1), 123-148, 2021.
  • [7] Karaduman, A., Şimşek, E. H., Cicek, B., Bilgesü, A. Y., “Flash pyrolysis of polystyrene wastes in a free-fall reactor under vacuum” Journal of Analytical and Applied Pyrolysis, 60(2), 179-186, 2001.
  • [8] Nisar, J., Ali, G., Shah, A., Iqbal, M., Khan, R. A., Anwar, F., Akhter, M. S., “Fuel production from waste polystyrene via pyrolysis: Kinetics and products distribution” Waste management, 88, 236-247, 2019.
  • [9] Park, K. B., Jeong, Y. S., Guzelciftci, B., Kim, J. S., “Two-stage pyrolysis of polystyrene: Pyrolysis oil as a source of fuels or benzene, toluene, ethylbenzene, and xylenes” Applied Energy, 259, 114240, 2020.
  • [10] Wu, Y., Zhu, J., Zhao, S., Wang, D., Jin, L., Hu, H., “Co-pyrolysis behaviors of low-rank coal and polystyrene with in-situ pyrolysis time-of-flight mass spectrometry” Fuel, 286, 119461, 2021.
  • [11] Burra, K. R. G., Liu, X., Wang, Z., Li, J., Che, D., Gupta, A. K., “Quantifying the sources of synergistic effects in co-pyrolysis of pinewood and polystyrene” Applied Energy, 302, 117562, 2021.
  • [12] Stančin, H., Šafář, M., Růžičková, J., Mikulčić, H., Raclavská, H., Wang, X., Duić, N., “Co-pyrolysis and synergistic effect analysis of biomass sawdust and polystyrene mixtures for production of high-quality bio-oils” Process Safety and Environmental Protection, 145, 1-11, 2021.
  • [13] Sanahuja-Parejo, O., Veses, A., Navarro, M. V., López, J. M., Murillo, R., Callén, M. S., García, T., “Drop-in biofuels from the co-pyrolysis of grape seeds and polystyrene” Chemical Engineering Journal, 377, 120246, 2019.
  • [14] Kositkanawuth, K., Bhatt, A., Sattler, M., Dennis, B., “Renewable energy from waste: investigation of co-pyrolysis between sargassum macroalgae and polystyrene” Energy & Fuels, 31(5), 5088-5096, 2017.
  • [15] Reshad, A. S., Tiwari, P., & Goud, V. V., “Thermal and co-pyrolysis of rubber seed cake with waste polystyrene for bio-oil production” Journal of Analytical and Applied Pyrolysis, 139, 333-343, 2019.
  • [16] Van Nguyen, Q., Choi, Y. S., Choi, S. K., Jeong, Y. W., Han, S. Y., “Co-pyrolysis of coffee-grounds and waste polystyrene foam: Synergistic effect and product characteristics analysis” Fuel, 292, 120375, 2021.
  • [17] Odejobi, O. J., Oladunni, A. A., Sonibare, J. A., Abegunrin, I. O., “Oil yield optimization from co-pyrolysis of low-density polyethylene (LDPE), polystyrene (PS) and polyethylene terephthalate (PET) using simplex lattice mixture design” Fuel Communications, 2, 100006, 2020.
  • [18] Hui, K., Tang, J., Lu, H., Xi, B., Qu, C., Li, J., “Status and prospect of oil recovery from oily sludge: A review” Arabian Journal of Chemistry, 13(8), 6523-6543, 2020.
  • [19] Hu, G., Li, J., Zeng, G., “Recent development in the treatment of oily sludge from petroleum industry: a review” Journal of hazardous materials, 261, 470-490, 2013.
  • [20] Li, J., Lin, F., Li, K., Zheng, F., Yan, B., Che, L., Yoshikawa, K., “A critical review on energy recovery and non-hazardous disposal of oily sludge from petroleum industry by pyrolysis” Journal of Hazardous Materials, 406, 124706, 2021.
  • [21] Senneca, O., Chirone, R., Cortese, L., Salatino, P., “Pyrolysis and combustion of a solid refinery waste” Fuel, 267, 117258, 2020.
  • [22] Güleç, F., Sher, F., Karaduman, A., “Catalytic performance of Cu-and Zr-modified beta zeolite catalysts in the methylation of 2-methylnaphthalene” Petroleum Science, 16(1), 161-172, 2019.
  • [23] Suelves, I., Moliner, R., Lazaro, M. J., “Synergetic effects in the co-pyrolysis of coal and petroleum residues: influences of coal mineral matter and petroleum residue mass ratio” Journal of Analytical and Applied Pyrolysis, 55(1), 29-41, 2000.
  • [24] Ma, Z., Xie, J., Gao, N., Quan, C., “Pyrolysis behaviors of oilfield sludge based on Py-GC/MS and DAEM kinetics analysis” Journal of the Energy Institute, 92(4), 1053-1063, 2019.

Co-pyrolysis of Heavy Aromatic Waste and Polystyrene: Analysis of Liquid Product via GC-MS

Year 2021, Volume: 10 Issue: 2, 92 - 100, 16.12.2021
https://doi.org/10.17100/nevbiltek.1005599

Abstract

Plastic wastes forms 18.46 % of total municipal solid wastes in 2018 around the world. Heavy hydrocarbons occur as the waste of refinery processes. In this study co-pyrolysis of waste polystyrene foam (PS) and heavy aromatic waste (HAW) was carried out for the first time in literature. It was aimed to investigate the effect of temperature (420, 450, 480 ⁰C) and mixing ratio (1/5, 3/5, 1/1) on liquid product yield and compound distribution in the pyrolytic liquids. Whole experiments were done in semi-batch reactor configuration under nitrogen atmosphere. Gas chromatography-Mass spectrometry (GC-MS) was utilized to analyze the pyrolytic liquids. At 480 ⁰C it was obtained maximum liquid yield as 87.24 % in 1/5 HAW/PS feedstock ratio. Compared to the pure PS pyrolysis, it was achieved relatively low styrene, toluene yield. However yields of ethyl benzene and cumene increased with HAW adding to the feed. Naphthalene was not detected in liquid of PS pyrolysis. Maximum naphthalene yield was taken as 12.71% at 480 ⁰C with 1/5 HAW/PS feedstock ratio.

References

  • [1] Nanda, S., Berruti, F., “Municipal solid waste management and landfilling technologies: a review” Environmental Chemistry Letters, 19(2), 1433-1456, 2021.
  • [2] The World Bank. https://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html. Date accessed October, 6 2021.
  • [3] United States Environmental Protection Agency. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials. Date accessed October 6, 2021.
  • [4] Siddique, R., Khatib, J., Kaur, I., “Use of recycled plastic in concrete: A review” Waste management, 28(10), 1835-1852, 2008.
  • [5] Özçakır, G., Karaduman, A., “Chemical recovery from polystyrene waste and low density polyethylene via conventional pyrolysis” Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 28(2), 155-163, 2020.
  • [6] Nanda, S., Berruti, F., “Thermochemical conversion of plastic waste to fuels: a review” Environmental Chemistry Letters, 19(1), 123-148, 2021.
  • [7] Karaduman, A., Şimşek, E. H., Cicek, B., Bilgesü, A. Y., “Flash pyrolysis of polystyrene wastes in a free-fall reactor under vacuum” Journal of Analytical and Applied Pyrolysis, 60(2), 179-186, 2001.
  • [8] Nisar, J., Ali, G., Shah, A., Iqbal, M., Khan, R. A., Anwar, F., Akhter, M. S., “Fuel production from waste polystyrene via pyrolysis: Kinetics and products distribution” Waste management, 88, 236-247, 2019.
  • [9] Park, K. B., Jeong, Y. S., Guzelciftci, B., Kim, J. S., “Two-stage pyrolysis of polystyrene: Pyrolysis oil as a source of fuels or benzene, toluene, ethylbenzene, and xylenes” Applied Energy, 259, 114240, 2020.
  • [10] Wu, Y., Zhu, J., Zhao, S., Wang, D., Jin, L., Hu, H., “Co-pyrolysis behaviors of low-rank coal and polystyrene with in-situ pyrolysis time-of-flight mass spectrometry” Fuel, 286, 119461, 2021.
  • [11] Burra, K. R. G., Liu, X., Wang, Z., Li, J., Che, D., Gupta, A. K., “Quantifying the sources of synergistic effects in co-pyrolysis of pinewood and polystyrene” Applied Energy, 302, 117562, 2021.
  • [12] Stančin, H., Šafář, M., Růžičková, J., Mikulčić, H., Raclavská, H., Wang, X., Duić, N., “Co-pyrolysis and synergistic effect analysis of biomass sawdust and polystyrene mixtures for production of high-quality bio-oils” Process Safety and Environmental Protection, 145, 1-11, 2021.
  • [13] Sanahuja-Parejo, O., Veses, A., Navarro, M. V., López, J. M., Murillo, R., Callén, M. S., García, T., “Drop-in biofuels from the co-pyrolysis of grape seeds and polystyrene” Chemical Engineering Journal, 377, 120246, 2019.
  • [14] Kositkanawuth, K., Bhatt, A., Sattler, M., Dennis, B., “Renewable energy from waste: investigation of co-pyrolysis between sargassum macroalgae and polystyrene” Energy & Fuels, 31(5), 5088-5096, 2017.
  • [15] Reshad, A. S., Tiwari, P., & Goud, V. V., “Thermal and co-pyrolysis of rubber seed cake with waste polystyrene for bio-oil production” Journal of Analytical and Applied Pyrolysis, 139, 333-343, 2019.
  • [16] Van Nguyen, Q., Choi, Y. S., Choi, S. K., Jeong, Y. W., Han, S. Y., “Co-pyrolysis of coffee-grounds and waste polystyrene foam: Synergistic effect and product characteristics analysis” Fuel, 292, 120375, 2021.
  • [17] Odejobi, O. J., Oladunni, A. A., Sonibare, J. A., Abegunrin, I. O., “Oil yield optimization from co-pyrolysis of low-density polyethylene (LDPE), polystyrene (PS) and polyethylene terephthalate (PET) using simplex lattice mixture design” Fuel Communications, 2, 100006, 2020.
  • [18] Hui, K., Tang, J., Lu, H., Xi, B., Qu, C., Li, J., “Status and prospect of oil recovery from oily sludge: A review” Arabian Journal of Chemistry, 13(8), 6523-6543, 2020.
  • [19] Hu, G., Li, J., Zeng, G., “Recent development in the treatment of oily sludge from petroleum industry: a review” Journal of hazardous materials, 261, 470-490, 2013.
  • [20] Li, J., Lin, F., Li, K., Zheng, F., Yan, B., Che, L., Yoshikawa, K., “A critical review on energy recovery and non-hazardous disposal of oily sludge from petroleum industry by pyrolysis” Journal of Hazardous Materials, 406, 124706, 2021.
  • [21] Senneca, O., Chirone, R., Cortese, L., Salatino, P., “Pyrolysis and combustion of a solid refinery waste” Fuel, 267, 117258, 2020.
  • [22] Güleç, F., Sher, F., Karaduman, A., “Catalytic performance of Cu-and Zr-modified beta zeolite catalysts in the methylation of 2-methylnaphthalene” Petroleum Science, 16(1), 161-172, 2019.
  • [23] Suelves, I., Moliner, R., Lazaro, M. J., “Synergetic effects in the co-pyrolysis of coal and petroleum residues: influences of coal mineral matter and petroleum residue mass ratio” Journal of Analytical and Applied Pyrolysis, 55(1), 29-41, 2000.
  • [24] Ma, Z., Xie, J., Gao, N., Quan, C., “Pyrolysis behaviors of oilfield sludge based on Py-GC/MS and DAEM kinetics analysis” Journal of the Energy Institute, 92(4), 1053-1063, 2019.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Mesut Ardıç This is me 0000-0001-8252-9511

Gamze Özçakır 0000-0003-0357-4176

Ali Karaduman 0000-0003-1061-8288

Publication Date December 16, 2021
Acceptance Date December 6, 2021
Published in Issue Year 2021 Volume: 10 Issue: 2

Cite

APA Ardıç, M., Özçakır, G., & Karaduman, A. (2021). Co-pyrolysis of Heavy Aromatic Waste and Polystyrene: Analysis of Liquid Product via GC-MS. Nevşehir Bilim Ve Teknoloji Dergisi, 10(2), 92-100. https://doi.org/10.17100/nevbiltek.1005599
AMA Ardıç M, Özçakır G, Karaduman A. Co-pyrolysis of Heavy Aromatic Waste and Polystyrene: Analysis of Liquid Product via GC-MS. Nevşehir Bilim ve Teknoloji Dergisi. December 2021;10(2):92-100. doi:10.17100/nevbiltek.1005599
Chicago Ardıç, Mesut, Gamze Özçakır, and Ali Karaduman. “Co-Pyrolysis of Heavy Aromatic Waste and Polystyrene: Analysis of Liquid Product via GC-MS”. Nevşehir Bilim Ve Teknoloji Dergisi 10, no. 2 (December 2021): 92-100. https://doi.org/10.17100/nevbiltek.1005599.
EndNote Ardıç M, Özçakır G, Karaduman A (December 1, 2021) Co-pyrolysis of Heavy Aromatic Waste and Polystyrene: Analysis of Liquid Product via GC-MS. Nevşehir Bilim ve Teknoloji Dergisi 10 2 92–100.
IEEE M. Ardıç, G. Özçakır, and A. Karaduman, “Co-pyrolysis of Heavy Aromatic Waste and Polystyrene: Analysis of Liquid Product via GC-MS”, Nevşehir Bilim ve Teknoloji Dergisi, vol. 10, no. 2, pp. 92–100, 2021, doi: 10.17100/nevbiltek.1005599.
ISNAD Ardıç, Mesut et al. “Co-Pyrolysis of Heavy Aromatic Waste and Polystyrene: Analysis of Liquid Product via GC-MS”. Nevşehir Bilim ve Teknoloji Dergisi 10/2 (December 2021), 92-100. https://doi.org/10.17100/nevbiltek.1005599.
JAMA Ardıç M, Özçakır G, Karaduman A. Co-pyrolysis of Heavy Aromatic Waste and Polystyrene: Analysis of Liquid Product via GC-MS. Nevşehir Bilim ve Teknoloji Dergisi. 2021;10:92–100.
MLA Ardıç, Mesut et al. “Co-Pyrolysis of Heavy Aromatic Waste and Polystyrene: Analysis of Liquid Product via GC-MS”. Nevşehir Bilim Ve Teknoloji Dergisi, vol. 10, no. 2, 2021, pp. 92-100, doi:10.17100/nevbiltek.1005599.
Vancouver Ardıç M, Özçakır G, Karaduman A. Co-pyrolysis of Heavy Aromatic Waste and Polystyrene: Analysis of Liquid Product via GC-MS. Nevşehir Bilim ve Teknoloji Dergisi. 2021;10(2):92-100.

Dergimizin tarandığı indeksler


12300          20980     2097822081