Review
BibTex RIS Cite

Investigation of the parameters affecting the total efficiency of solar energy panels designed with half and full photovoltaic cells

Year 2022, , 592 - 600, 18.07.2022
https://doi.org/10.28948/ngumuh.1073976

Abstract

Solar power (SP) has been one of the most promising renewable energy sources to alleviate global environmental concerns and meet growing energy demand. Solar energy is used in different ways. One of them is photovoltaic (PV) cells. Photovoltaic cells are semiconductor materials that convert solar energy directly into electrical energy. Conventional photovoltaic modules are modeled with full PV cells. Today, the use of half-cell modules, which is a new technology, is increasing rapidly. Although half PV cells have several advantages over full PV cells, there are also some manufacturing disadvantages. In this study, as a result of a comprehensive literature review, the parameters affecting the total efficiency of half and full cell PV modules are compared. With this comparison, it is aimed to show the advantages of half-cell PV modules over full-cells, such as low power loss, reduced shade sensitivity, high price-performance ratio, less hot spot effect and improved heat dissipation. In addition to these, information is given about the efficiency, production processes and some other disadvantages of half and full PV cells.

References

  • L. E. Chaar L.A. lamont, and N. E. Zein, Review of Photovoltaic Technologies. Renewable and Sustainable Energy Reviews, 15(5), 2165-2175, 2011. https://doi.org/10.1016/j.rser.2011.01.004
  • https://www.nrel.gov/pv/cell-efficiency.html, Erişim Tarihi: 21.01.2022
  • J. Schneider, S. Schoenfelder, S. Dietrich, and M. Turek, Solar module with half size solar cells. 29th European Photovoltaic Solar Energy Conference and Exhibition, pp. 185-189, Amsterdam, Niederlande, 2014.
  • I. M. Peters, Y. S. Khoo, and T. M. Walsh, Detailed current loss analysis for a PV module made with textured multicrystalline silicon wafer solar cells. IEEE Journal of Photovoltaics, 4(2), 585–593,2014. https://doi.org/10.1109/JPHOTOV.2013.2295736
  • https://www.solarpowerworldonline.com/2018/10/what-is-a-half-cell-solar-panel/, Erişim Tarihi: 07.01.2022
  • S. Guo, J. P. Singh, I. M. Peters, A. G. Aberle, and T. M. Walsh, A quantitative analysis of photovoltaic modules using halved cells. International Journal of Photoenergy, 2013, 0-8, 2013. https://doi.org/ 10.1155/2013/739374
  • International technology roadmap for photovoltaic http://www.itrpv.net/.cm4all/, Erişim Tarihi: 07.10.2021
  • A. Joshi, A. Khan, and A. Sp, Comparison of half cut solar cells with standard solar cells. Advances in Science and Engineering Technology International Conferences, pp. 10-12, Dubai, United Arab Emirates, 2019.
  • S. Guo, J. Schneider, F. Lu, H. Hanifi, M. Turek, M. Dyrba, and I.M. Peters, Investigation of the short-circuit current increase for PV modules using halved silicon wafer solar cells. Solar Energy Material & Solar Cells, 133, 240–247, 2015. https://doi.org /10.1016/j.solmat.2014.11.012
  • T. Tang, C. Gan, Z. Hu, H. Niu, J. Si, and X. Luo, A Quantitative Comparison Between Double Glass Photovoltaic Modules Using Half-Size Cells and Quarter-Size Cells. IEEE Journal of Photovoltaics, 7(5), 1298 – 1303, 2017. 10.1109/JPHOTOV.2017. 2730358
  • H. Hanifi, M. Pander, U. Zeller, K. Ilse, D. Dassler, M. Mirza, M.A. Bahattab, B. Jaeckel, C. Hagendorf, and M. Ebert, Loss analysis and optimization of PV module components and design to achieve higher energy yield and longer service life in desert regions. Applied Energy, 280, 116028,2020. https://doi.org/ 10.1016/j.apenergy.2020.116028
  • H. Hanifi, D. Dassler, J. Schneider, M. Turek, S. Schindler, and J. Bagdahn, Optimized Tab Width in Half-cell Modules. Energy Procedia, 92, 52–59,2016. https://doi.org/10.1016/j.egypro.2016.07.009
  • J. Muller, D. Hinken, S. Blankemeyer, H. Kohlenberg, U. Sonntag, K. Bothe, T. Dullweber, M. Kontges, and R. Brendel, Resistive Power Loss Analysis of PV Modules Made from Halved 15.6 × 15.6 cm2 Silicon PERC Solar Cells with Efficiencies up to 20.0%. IEEE Journal of Photovoltaics,5,189–194, 2015. 10.1109/JPHOTOV.2014.2367868
  • V. Tyagi, N.A. Rahim, N. Rahim, and L. Selvaraj, Progress in solar PV technology: research and achievement, Renewable and Sustainable Energy Reviews, 20, 443-461, 2013. https://doi.org/ 10.1016/j.rser.2012.09.028
  • E. E. van Dyk and E. L. Meyer, Analysis of the effect of parasitic resistances on the performance of photovoltaic modules. Renewable Energy, 29(3), 333–344, 2004. https://doi.org/10.1016/S0960-1481(03) 00250-7
  • L. J. Caballero, P. Sanchez-Friera, B. Lalaguna, J. Alonso, and M. A. Vazquez, Series resistance modelling of industrial screen printed monocrystalline silicon solar cells and modules including the effect of spot soldering. Proceedings of the 4th World Conference on Photovoltaic Energy Conversion, pp. 1388–1391, Waikolo, Hawaii, USA, 2006.
  • N. D. Kumar, C. Mounika, T. Sailaja, and D. Mounika, Design and reduction of wattage losses in solar module using AR coating, cell-to-cell gap and thickness. Proceedings of the 3rd International Conference on Electronics Computer Technology, pp. 42–47, Hyderabad, India, 2011.
  • W. S. Su, Y. C. Chen, W. H. Liao, C. H. Huang, D. C. Liu, M. Y. Huang, Z. C. Wu, and S. J. Ho, Optimization of the output power by effect of backsheet reflectance and spacing between cell strings. Proceedings of the 37th IEEE Photovoltaic Specialists Conference, pp. 3218–3220, Seattle, Wash, USA, 2011.
  • S. Roberts, K. C. Heasman, and T. M. Bruton, The reduction of module power losses by optimisation of the tabbing ribbon. 16th European Photovoltaic Solar Energy Conference, pp. 2378–2382, Glasgow, United Kingdom, 2020.
  • A. Thomson, M. Ernst, I. Haedrich, and J. Qian, Impact of PV module configuration on energy yield under realistic conditions. Optical and Quantum Electronics, 49(2), 1-15, 2017. https://doi.org/ 10.1007/s11082-017-0903-0
  • I. Haedrich, U. Eitner, M. Wiese, and H. Wirth, Unified methodology for determining CTM ratios: Systematic prediction of module power. Solar Energy Material Solar Cells, 131, 14–23, 2014. https://doi.org/10.1016/j.solmat.2014.06.025
  • K. R. McIntosh, R. M. Swanson, and J. E. Cotter, A simple ray tracer to compute the optical concentration of photovoltaic modules. Progress in Photovoltaics, 14(2), pp. 167–177, 2006. https://doi.org/ 10.1002/pip.647
  • H. Yousuf, M.A. Zahid, M.Q. Khokhar, J. Park, M. Ju, D. Lim, Y. Kim, E.C. Cho, and J. Yi, Cell-to-Module Simulation Analysis for Optimizing the Efficiency and Power of the Photovoltaic Module. Energies, 15, 1176, 2022. https://doi.org/10.3390/ en15031176
  • M. Mittag, A. Pfreundt, J. Shahid, N. Wöhrle, and D. H. Neuhaus, Techno-economic analysis of half cell modules: The impact of half cells on module power and costs. 36th European Photovoltaic Solar Energy Conference and Exhibition, pp. 9-13, Marseille, France, 2019.
  • J. Jiang, J. Ni, Y. Zhang, D. Rong, Y. Li, T. Feng, Y. Geng, J. Zheng, F. Bo, and Y. He, Optimizing ribbons structure for power gain in half-cell modules. IEEE 46th Photovoltaic Specialists Conference, pp. 3442-3445, Chicago, USA, 2019.
  • A. Luque, and S. Hegedus, Handbook of Photovoltaic Science and Engineering. John Wiley & Sons, Chichester, UK, 2010.
  • M. Alçı ve S. Duman, Investigation of the effect of hot spot behavior and ribbon optimization on energy efficiency in half PV cells. 9th International Advanced Technologies Symposium, pp. 156-161, Türkiye, 2021.
  • K. Brecl and M. Topic, Self-shading losses of fixed free-standing PV arrays. Renewable Energy, 36(11), 3211–3216, 2011. https://doi.org/10.1016/j.renene. 2011.03.011
  • K. Brecl, M. Bokalic, and M.Topic, Annual energy losses due to partial shading in PV modules with cut wafer-based Si solar cells. Renewable Energy, 168, 195-203, 2021. https://doi.org/10.1016/j.renene. 2020.12.059
  • T. Tang, C. Gan, Z. Hu, H. Niu, J. Si, and X. Luo, A Quantitative Comparison Between Double Glass Photovoltaic Modules Using Half-Size Cells and Quarter-Size Cells. IEEE Journal of Photovoltaics, 7(5), 1298 – 1303, 2017. 10.1109/JPHOTOV. 2017.2730358
  • H. Hanifi, J. Schneider, J. Bagdahn, H. Anhalt, and J. Bagdahn, Reduced shading effect on half-cell modules-measurement and simulation. 31st European Photovoltaic Solar Energy Conference, pp. 2529-2533, Hamburg, Germany, 2015.
  • https://www.ise.fraunhofer.de/, Erişim Tarihi: 24.12.2021
  • M. Sayed, and L. Partain, Effect of shading on CdS CuxS solar cells and optimal solar array design. Energy Conversion, 14(2), 61-71, 1975. https://doi.org/10.1016/0013-7480(75)90083-2
  • D. C. Jordan, T. J. Silverman, J. H. Wohlgemuth, S. R. Kurtz, and K. T. VanSant, Photovoltaic failure and degradation modes. Progress in Photovoltaics, 25(4), 18–326, 2017. https://doi.org/10.1002/pip.2866
  • M. C. Alonso Garcia, W. Herrmann, W. Bohmer, and B. Proisy, Thermal and electrical effects caused by outdoor hot-spot testing in associations of photovoltaic cells. Progress in Photovoltaics, 11(5), 293-07, 2003. https://doi.org/10.1002/pip.490
  • M. Waqar Akram, G. Li, Y. Jin, C. Zhu, A. Javaid, M. Zuhaib Akram, and M. Usman Khan, Study of manufacturing and hotspot formation in cut cell and full cell PV modules. Solar Energy, 230, 247-259, 2020. https://doi.org/10.1016/j.solener.2020.04.052
  • J. Qian, A. Thomson, A. Blakers, and M. Ernst, Comparison of half-cell and full-cell module hotspot-induced temperature by simulation. IEEE Journal of Photovoltaics, 8(3), 834–839, 2018. https://doi.org/10.1109/JPHOTOV.2018.2817692
  • J. Qian, C.E. Clement, M. Ernst, Y.S. Khoo, A. Thomson, and A. Blakers, Analysis of hotspots in half cell modules undetected by current test standards, IEEE Journal of Photovoltaics 9(3), 842–848,2019. 10.1109/JPHOTOV.2019.2898209
  • T. Jung, H. Song, H. Ahn, G. Kang, A mathematical model for cell-to-module conversion considering mismatching solar cells and the resistance of the interconnection ribbon. Solar Energy, 103, 253–262, 2014. https://doi.org/10.1016/j.solener.2014.01.032
  • https://www.pveasy.com.au/blog/2018/7/panels-with-half-cut-cells, Erişim Tarihi: 2.02.2022
  • F. Gerenton, J. Eymard, S. Harrison, R. Clerc, and D. Munoz, Analysis of edge losses on silicon heterojunction half solar cells. Solar Energy Materials and Solar Cells, 204, 110213, 2020. https://doi.org/10.1016/j.solmat.2019.110213
  • S. Braun, G. Hahn, R. Nissler, C. Pönisch, and D. Habermann, Multi-busbar solar cells and modules: high efficiencies and low silver consumption. Energy Procedia, 38, 334–339, 2013. https://doi.org/10.1016/j.egypro.2013.07.286
  • https://www.recgroup.com/sites/default/files/documents/whitepaper_twinpeak_technology.pdf, Erişim Tarihi: 20.01.2022
  • S. Eiternick, F. Kaule, H.U. Zühlke, T. Kießling, M. Grimm, S. Schoenfelder, and M. Turek, High Quality Half-cell Processing Using Thermal Laser Separation. Energy Procedia 77, 340–345, 2015. https://doi.org/10.1016/j.egypro.2015.07.048
  • L. Xia, J. Chen, K. Liao, L. Huang, Q. Li, and X. Luo, Influence of laser cutting conditions on electrical characteristics of half-size bifacial silicon solar cells. Materials Science Semiconductor Processing, 105, 104747 2019. https://doi.org/10.1016/j.mssp.2019.104747
  • M.T. Sarniak, Modeling the Functioning of the Half-Cells Photovoltaic Module under Partial Shading in the Matlab Package. Applied Sciences, 10(7), 2575, 2020. https://doi.org/10.3390/app10072575
  • M. Chiodetti, J. Dupuis, D. Boublil, K. Radouane, and P. Dupeyrat, Half-cell module behaviour and its impact on the yield of a pv plant. 36th European Photovoltaic Solar Energy Conference and Exhibition, pp. 1444-1448, Marseille, France, 2019
  • S. Eiternick, K. Kaufmann, J. Schneider, and M. Turek, Loss analysis for laser separated solar cells. Energy Procedia, 55, 326–330, 2014. https://doi.org/10.1016/j.egypro.2014.08.094
  • A. Fell, J. Schön, M. Müller, N. Wöhrle, M. C. Schubert, and S. W. Glunz, Modeling of edge recombination losses in half-cells. 33rd European Photovoltaic Solar Energy Conference and Exhibition, 8(2), 853–856, 2017.
  • D. Roche, H. Outhred, and R.J. Kaye, Analysis and control of mismatch power loss in photovoltaic arrays. Progress in Photovoltaics, 3(2), 115-127, 1995. https://doi.org/10.1002/pip.4670030204
  • Z. Yang, K. Liao, J. Chen, L. Xia, and X. Luo, Output performance analysis and power optimization of different configurations half-cell modules under partial shading. Optik, 232, 166499, 2021. https://doi.org/10.1016/j.ijleo.2021.166499
  • S. Malik, D. Dassler, J. Fröbel, J. Schneider and M. Ebert, Outdoor data evaluation of half/Full-Cell modules with regard to measurement uncertainties and the application of statistical methods. 29th European Photovoltaic Solar Energy Conference and Exhibition, pp. 3269-3273, Amsterdam, Niederlande, 2014.

Yarım ve tam fotovoltaik hücreleri ile tasarlanan güneş enerjisi panellerinin toplam verimliliğini etkileyen parametrelerinin incelenmesi

Year 2022, , 592 - 600, 18.07.2022
https://doi.org/10.28948/ngumuh.1073976

Abstract

Güneş enerjisi (GE), küresel çevre endişelerini azaltmak ve artan enerji talebini karşılamak için en umut verici yenilenebilir enerji kaynaklarından biri olmuştur. Güneş enerjisinden farklı şekillerde yararlanılmaktadır. Bunlardan biride fotovoltaik (PV) hücrelerdir. Fotovoltaik hücreler güneş enerjisini doğrudan elektrik enerjisine dönüştüren yarıiletken malzemelerdir. Geleneksel fotovoltaik modüller tam PV hücreler ile modellenmektedir. Günümüzde ise yeni bir teknoloji olan yarım hücreli modül kullanımı hızla artmaktadır. Yarım PV hücrelerin tam PV hücrelere göre çeşitli avantajları olmasına rağmen, bazı üretim dezavantajları da vardır. Bu çalışmada kapsamlı bir literatür incelemesi sonucu yarım ve tam hücreli PV modüllerin toplam verimliliğini etkileyen parametreler karşılaştırılarak yarım hücreli PV modüllerin, düşük güç kaybı, azaltılmış gölge duyarlılığı, fiyat performans oranının yüksek olması, daha az sıcak nokta etkisi ve iyileştirilmiş ısı dağılımı gibi tam hücrelere göre üstünlüklerinin gösterilmesi amaçlanmaktadır. Bunlara ek olarak yarım ve tam PV hücrelerinin verimlilikleri, üretim süreçleri ve diğer bazı dezavantajları hakkında da bilgiler verilmektedir.

References

  • L. E. Chaar L.A. lamont, and N. E. Zein, Review of Photovoltaic Technologies. Renewable and Sustainable Energy Reviews, 15(5), 2165-2175, 2011. https://doi.org/10.1016/j.rser.2011.01.004
  • https://www.nrel.gov/pv/cell-efficiency.html, Erişim Tarihi: 21.01.2022
  • J. Schneider, S. Schoenfelder, S. Dietrich, and M. Turek, Solar module with half size solar cells. 29th European Photovoltaic Solar Energy Conference and Exhibition, pp. 185-189, Amsterdam, Niederlande, 2014.
  • I. M. Peters, Y. S. Khoo, and T. M. Walsh, Detailed current loss analysis for a PV module made with textured multicrystalline silicon wafer solar cells. IEEE Journal of Photovoltaics, 4(2), 585–593,2014. https://doi.org/10.1109/JPHOTOV.2013.2295736
  • https://www.solarpowerworldonline.com/2018/10/what-is-a-half-cell-solar-panel/, Erişim Tarihi: 07.01.2022
  • S. Guo, J. P. Singh, I. M. Peters, A. G. Aberle, and T. M. Walsh, A quantitative analysis of photovoltaic modules using halved cells. International Journal of Photoenergy, 2013, 0-8, 2013. https://doi.org/ 10.1155/2013/739374
  • International technology roadmap for photovoltaic http://www.itrpv.net/.cm4all/, Erişim Tarihi: 07.10.2021
  • A. Joshi, A. Khan, and A. Sp, Comparison of half cut solar cells with standard solar cells. Advances in Science and Engineering Technology International Conferences, pp. 10-12, Dubai, United Arab Emirates, 2019.
  • S. Guo, J. Schneider, F. Lu, H. Hanifi, M. Turek, M. Dyrba, and I.M. Peters, Investigation of the short-circuit current increase for PV modules using halved silicon wafer solar cells. Solar Energy Material & Solar Cells, 133, 240–247, 2015. https://doi.org /10.1016/j.solmat.2014.11.012
  • T. Tang, C. Gan, Z. Hu, H. Niu, J. Si, and X. Luo, A Quantitative Comparison Between Double Glass Photovoltaic Modules Using Half-Size Cells and Quarter-Size Cells. IEEE Journal of Photovoltaics, 7(5), 1298 – 1303, 2017. 10.1109/JPHOTOV.2017. 2730358
  • H. Hanifi, M. Pander, U. Zeller, K. Ilse, D. Dassler, M. Mirza, M.A. Bahattab, B. Jaeckel, C. Hagendorf, and M. Ebert, Loss analysis and optimization of PV module components and design to achieve higher energy yield and longer service life in desert regions. Applied Energy, 280, 116028,2020. https://doi.org/ 10.1016/j.apenergy.2020.116028
  • H. Hanifi, D. Dassler, J. Schneider, M. Turek, S. Schindler, and J. Bagdahn, Optimized Tab Width in Half-cell Modules. Energy Procedia, 92, 52–59,2016. https://doi.org/10.1016/j.egypro.2016.07.009
  • J. Muller, D. Hinken, S. Blankemeyer, H. Kohlenberg, U. Sonntag, K. Bothe, T. Dullweber, M. Kontges, and R. Brendel, Resistive Power Loss Analysis of PV Modules Made from Halved 15.6 × 15.6 cm2 Silicon PERC Solar Cells with Efficiencies up to 20.0%. IEEE Journal of Photovoltaics,5,189–194, 2015. 10.1109/JPHOTOV.2014.2367868
  • V. Tyagi, N.A. Rahim, N. Rahim, and L. Selvaraj, Progress in solar PV technology: research and achievement, Renewable and Sustainable Energy Reviews, 20, 443-461, 2013. https://doi.org/ 10.1016/j.rser.2012.09.028
  • E. E. van Dyk and E. L. Meyer, Analysis of the effect of parasitic resistances on the performance of photovoltaic modules. Renewable Energy, 29(3), 333–344, 2004. https://doi.org/10.1016/S0960-1481(03) 00250-7
  • L. J. Caballero, P. Sanchez-Friera, B. Lalaguna, J. Alonso, and M. A. Vazquez, Series resistance modelling of industrial screen printed monocrystalline silicon solar cells and modules including the effect of spot soldering. Proceedings of the 4th World Conference on Photovoltaic Energy Conversion, pp. 1388–1391, Waikolo, Hawaii, USA, 2006.
  • N. D. Kumar, C. Mounika, T. Sailaja, and D. Mounika, Design and reduction of wattage losses in solar module using AR coating, cell-to-cell gap and thickness. Proceedings of the 3rd International Conference on Electronics Computer Technology, pp. 42–47, Hyderabad, India, 2011.
  • W. S. Su, Y. C. Chen, W. H. Liao, C. H. Huang, D. C. Liu, M. Y. Huang, Z. C. Wu, and S. J. Ho, Optimization of the output power by effect of backsheet reflectance and spacing between cell strings. Proceedings of the 37th IEEE Photovoltaic Specialists Conference, pp. 3218–3220, Seattle, Wash, USA, 2011.
  • S. Roberts, K. C. Heasman, and T. M. Bruton, The reduction of module power losses by optimisation of the tabbing ribbon. 16th European Photovoltaic Solar Energy Conference, pp. 2378–2382, Glasgow, United Kingdom, 2020.
  • A. Thomson, M. Ernst, I. Haedrich, and J. Qian, Impact of PV module configuration on energy yield under realistic conditions. Optical and Quantum Electronics, 49(2), 1-15, 2017. https://doi.org/ 10.1007/s11082-017-0903-0
  • I. Haedrich, U. Eitner, M. Wiese, and H. Wirth, Unified methodology for determining CTM ratios: Systematic prediction of module power. Solar Energy Material Solar Cells, 131, 14–23, 2014. https://doi.org/10.1016/j.solmat.2014.06.025
  • K. R. McIntosh, R. M. Swanson, and J. E. Cotter, A simple ray tracer to compute the optical concentration of photovoltaic modules. Progress in Photovoltaics, 14(2), pp. 167–177, 2006. https://doi.org/ 10.1002/pip.647
  • H. Yousuf, M.A. Zahid, M.Q. Khokhar, J. Park, M. Ju, D. Lim, Y. Kim, E.C. Cho, and J. Yi, Cell-to-Module Simulation Analysis for Optimizing the Efficiency and Power of the Photovoltaic Module. Energies, 15, 1176, 2022. https://doi.org/10.3390/ en15031176
  • M. Mittag, A. Pfreundt, J. Shahid, N. Wöhrle, and D. H. Neuhaus, Techno-economic analysis of half cell modules: The impact of half cells on module power and costs. 36th European Photovoltaic Solar Energy Conference and Exhibition, pp. 9-13, Marseille, France, 2019.
  • J. Jiang, J. Ni, Y. Zhang, D. Rong, Y. Li, T. Feng, Y. Geng, J. Zheng, F. Bo, and Y. He, Optimizing ribbons structure for power gain in half-cell modules. IEEE 46th Photovoltaic Specialists Conference, pp. 3442-3445, Chicago, USA, 2019.
  • A. Luque, and S. Hegedus, Handbook of Photovoltaic Science and Engineering. John Wiley & Sons, Chichester, UK, 2010.
  • M. Alçı ve S. Duman, Investigation of the effect of hot spot behavior and ribbon optimization on energy efficiency in half PV cells. 9th International Advanced Technologies Symposium, pp. 156-161, Türkiye, 2021.
  • K. Brecl and M. Topic, Self-shading losses of fixed free-standing PV arrays. Renewable Energy, 36(11), 3211–3216, 2011. https://doi.org/10.1016/j.renene. 2011.03.011
  • K. Brecl, M. Bokalic, and M.Topic, Annual energy losses due to partial shading in PV modules with cut wafer-based Si solar cells. Renewable Energy, 168, 195-203, 2021. https://doi.org/10.1016/j.renene. 2020.12.059
  • T. Tang, C. Gan, Z. Hu, H. Niu, J. Si, and X. Luo, A Quantitative Comparison Between Double Glass Photovoltaic Modules Using Half-Size Cells and Quarter-Size Cells. IEEE Journal of Photovoltaics, 7(5), 1298 – 1303, 2017. 10.1109/JPHOTOV. 2017.2730358
  • H. Hanifi, J. Schneider, J. Bagdahn, H. Anhalt, and J. Bagdahn, Reduced shading effect on half-cell modules-measurement and simulation. 31st European Photovoltaic Solar Energy Conference, pp. 2529-2533, Hamburg, Germany, 2015.
  • https://www.ise.fraunhofer.de/, Erişim Tarihi: 24.12.2021
  • M. Sayed, and L. Partain, Effect of shading on CdS CuxS solar cells and optimal solar array design. Energy Conversion, 14(2), 61-71, 1975. https://doi.org/10.1016/0013-7480(75)90083-2
  • D. C. Jordan, T. J. Silverman, J. H. Wohlgemuth, S. R. Kurtz, and K. T. VanSant, Photovoltaic failure and degradation modes. Progress in Photovoltaics, 25(4), 18–326, 2017. https://doi.org/10.1002/pip.2866
  • M. C. Alonso Garcia, W. Herrmann, W. Bohmer, and B. Proisy, Thermal and electrical effects caused by outdoor hot-spot testing in associations of photovoltaic cells. Progress in Photovoltaics, 11(5), 293-07, 2003. https://doi.org/10.1002/pip.490
  • M. Waqar Akram, G. Li, Y. Jin, C. Zhu, A. Javaid, M. Zuhaib Akram, and M. Usman Khan, Study of manufacturing and hotspot formation in cut cell and full cell PV modules. Solar Energy, 230, 247-259, 2020. https://doi.org/10.1016/j.solener.2020.04.052
  • J. Qian, A. Thomson, A. Blakers, and M. Ernst, Comparison of half-cell and full-cell module hotspot-induced temperature by simulation. IEEE Journal of Photovoltaics, 8(3), 834–839, 2018. https://doi.org/10.1109/JPHOTOV.2018.2817692
  • J. Qian, C.E. Clement, M. Ernst, Y.S. Khoo, A. Thomson, and A. Blakers, Analysis of hotspots in half cell modules undetected by current test standards, IEEE Journal of Photovoltaics 9(3), 842–848,2019. 10.1109/JPHOTOV.2019.2898209
  • T. Jung, H. Song, H. Ahn, G. Kang, A mathematical model for cell-to-module conversion considering mismatching solar cells and the resistance of the interconnection ribbon. Solar Energy, 103, 253–262, 2014. https://doi.org/10.1016/j.solener.2014.01.032
  • https://www.pveasy.com.au/blog/2018/7/panels-with-half-cut-cells, Erişim Tarihi: 2.02.2022
  • F. Gerenton, J. Eymard, S. Harrison, R. Clerc, and D. Munoz, Analysis of edge losses on silicon heterojunction half solar cells. Solar Energy Materials and Solar Cells, 204, 110213, 2020. https://doi.org/10.1016/j.solmat.2019.110213
  • S. Braun, G. Hahn, R. Nissler, C. Pönisch, and D. Habermann, Multi-busbar solar cells and modules: high efficiencies and low silver consumption. Energy Procedia, 38, 334–339, 2013. https://doi.org/10.1016/j.egypro.2013.07.286
  • https://www.recgroup.com/sites/default/files/documents/whitepaper_twinpeak_technology.pdf, Erişim Tarihi: 20.01.2022
  • S. Eiternick, F. Kaule, H.U. Zühlke, T. Kießling, M. Grimm, S. Schoenfelder, and M. Turek, High Quality Half-cell Processing Using Thermal Laser Separation. Energy Procedia 77, 340–345, 2015. https://doi.org/10.1016/j.egypro.2015.07.048
  • L. Xia, J. Chen, K. Liao, L. Huang, Q. Li, and X. Luo, Influence of laser cutting conditions on electrical characteristics of half-size bifacial silicon solar cells. Materials Science Semiconductor Processing, 105, 104747 2019. https://doi.org/10.1016/j.mssp.2019.104747
  • M.T. Sarniak, Modeling the Functioning of the Half-Cells Photovoltaic Module under Partial Shading in the Matlab Package. Applied Sciences, 10(7), 2575, 2020. https://doi.org/10.3390/app10072575
  • M. Chiodetti, J. Dupuis, D. Boublil, K. Radouane, and P. Dupeyrat, Half-cell module behaviour and its impact on the yield of a pv plant. 36th European Photovoltaic Solar Energy Conference and Exhibition, pp. 1444-1448, Marseille, France, 2019
  • S. Eiternick, K. Kaufmann, J. Schneider, and M. Turek, Loss analysis for laser separated solar cells. Energy Procedia, 55, 326–330, 2014. https://doi.org/10.1016/j.egypro.2014.08.094
  • A. Fell, J. Schön, M. Müller, N. Wöhrle, M. C. Schubert, and S. W. Glunz, Modeling of edge recombination losses in half-cells. 33rd European Photovoltaic Solar Energy Conference and Exhibition, 8(2), 853–856, 2017.
  • D. Roche, H. Outhred, and R.J. Kaye, Analysis and control of mismatch power loss in photovoltaic arrays. Progress in Photovoltaics, 3(2), 115-127, 1995. https://doi.org/10.1002/pip.4670030204
  • Z. Yang, K. Liao, J. Chen, L. Xia, and X. Luo, Output performance analysis and power optimization of different configurations half-cell modules under partial shading. Optik, 232, 166499, 2021. https://doi.org/10.1016/j.ijleo.2021.166499
  • S. Malik, D. Dassler, J. Fröbel, J. Schneider and M. Ebert, Outdoor data evaluation of half/Full-Cell modules with regard to measurement uncertainties and the application of statistical methods. 29th European Photovoltaic Solar Energy Conference and Exhibition, pp. 3269-3273, Amsterdam, Niederlande, 2014.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Electrical and Electronics Engineering
Authors

Sevgi Duman 0000-0002-2904-5515

Mustafa Alçı 0000-0001-5478-6908

Publication Date July 18, 2022
Submission Date February 15, 2022
Acceptance Date May 27, 2022
Published in Issue Year 2022

Cite

APA Duman, S., & Alçı, M. (2022). Yarım ve tam fotovoltaik hücreleri ile tasarlanan güneş enerjisi panellerinin toplam verimliliğini etkileyen parametrelerinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(3), 592-600. https://doi.org/10.28948/ngumuh.1073976
AMA Duman S, Alçı M. Yarım ve tam fotovoltaik hücreleri ile tasarlanan güneş enerjisi panellerinin toplam verimliliğini etkileyen parametrelerinin incelenmesi. NÖHÜ Müh. Bilim. Derg. July 2022;11(3):592-600. doi:10.28948/ngumuh.1073976
Chicago Duman, Sevgi, and Mustafa Alçı. “Yarım Ve Tam Fotovoltaik hücreleri Ile Tasarlanan güneş Enerjisi Panellerinin Toplam verimliliğini Etkileyen Parametrelerinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 3 (July 2022): 592-600. https://doi.org/10.28948/ngumuh.1073976.
EndNote Duman S, Alçı M (July 1, 2022) Yarım ve tam fotovoltaik hücreleri ile tasarlanan güneş enerjisi panellerinin toplam verimliliğini etkileyen parametrelerinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 3 592–600.
IEEE S. Duman and M. Alçı, “Yarım ve tam fotovoltaik hücreleri ile tasarlanan güneş enerjisi panellerinin toplam verimliliğini etkileyen parametrelerinin incelenmesi”, NÖHÜ Müh. Bilim. Derg., vol. 11, no. 3, pp. 592–600, 2022, doi: 10.28948/ngumuh.1073976.
ISNAD Duman, Sevgi - Alçı, Mustafa. “Yarım Ve Tam Fotovoltaik hücreleri Ile Tasarlanan güneş Enerjisi Panellerinin Toplam verimliliğini Etkileyen Parametrelerinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/3 (July 2022), 592-600. https://doi.org/10.28948/ngumuh.1073976.
JAMA Duman S, Alçı M. Yarım ve tam fotovoltaik hücreleri ile tasarlanan güneş enerjisi panellerinin toplam verimliliğini etkileyen parametrelerinin incelenmesi. NÖHÜ Müh. Bilim. Derg. 2022;11:592–600.
MLA Duman, Sevgi and Mustafa Alçı. “Yarım Ve Tam Fotovoltaik hücreleri Ile Tasarlanan güneş Enerjisi Panellerinin Toplam verimliliğini Etkileyen Parametrelerinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 3, 2022, pp. 592-00, doi:10.28948/ngumuh.1073976.
Vancouver Duman S, Alçı M. Yarım ve tam fotovoltaik hücreleri ile tasarlanan güneş enerjisi panellerinin toplam verimliliğini etkileyen parametrelerinin incelenmesi. NÖHÜ Müh. Bilim. Derg. 2022;11(3):592-600.

download