Research Article
BibTex RIS Cite

Mechanical compatibility analysis of single and double-layer artificial vessel configurations based on the Holzapfel-Gasser-Ogden hyperelastic model

Year 2022, , 1196 - 1205, 14.10.2022
https://doi.org/10.28948/ngumuh.1105507

Abstract

Widespread cardiovascular diseases have increased the importance of artificial blood vessels. These vessels, which require different designs due to production conditions, should mimic the natural mechanical behavior of native ones. Many studies model vascular mechanics, which show a complex and hyperelastic feature. Among these, the well-known Holzapfel-Gasser-Ogden (HGO) hyperelastic model was used in this study. A simulation environment was created with the HGO model, and the experimental data from the literature confirmed its accuracy. The first sample was formed in a typical two-layer structure. In the following samples, layer configurations based on different methods encountered in production were tried. The case where the outer layer is designed in a very thin structure was examined for the second sample. Although there was a slight mismatch, it was observed that the outer layer, whose thickness decreased, did not have a substantial effect on the mechanical properties of the vessel. In the third type of sample, the outer layer is designed as the inner layer in terms of geometric and material properties is tested. It has been observed that the mechanical properties are complex and incompatible. As the final sample, a single-layer structure was designed. Although it shows some inconsistency, it was found to be advantageous in terms of simplicity. In addition, compatibility analysis was performed by changing the material parameters of the second and third samples. In contrast to the third sample, it has been shown that for the second sample, the properties of the reference sample can be easily captured by adjusting the material properties of the fibers in the outer layer.

References

  • D. Mozaffarian, E.J. Benjamin, A.S. Go, D.K. Arnett, M.J. Blaha, M. Cushman, S.R. Das, S. de Ferranti, J.-P. Després and H.J. Fullerton, Executive summary: heart disease and stroke statistics—2016 update. Circulation, 133, 447–454, 2016. https://doi.org/ 10.1161/CIR 0000000000000366
  • A. Timmis, P. Vardas, N. Townsend, A. Torbica, H. Katus, D. de Smedt, C.P. Gale, A.P. Maggioni, S. E. Petersen and R. Huculeci, Cardiovascular disease statistics 2021. European Heart Journal, 43, 716–799, 2022. https://doi.org/10.1093/eurheartj/ehab892
  • OECD Health at a Glance 2021. Health at a Glance, OECD, 2021. ISBN 9789264961012.
  • J. Chlupáč, E. Filová and L. Bačáková, Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiological Research, 58, 119–140, 2009. https://doi.org/10.33549/physiolres.931918
  • D. Wang, Y. Xu, L. Wang, X. Wang, S. Yan, G. Yilmaz, Q. Li and L.S. Turng, Long-term nitric oxide release for rapid endothelialization in expanded polytetrafluoroethylene small-diameter artificial blood vessel grafts. Applied Surface Science, 507, 145028, 2020. https://doi.org/10.1016/j.apsusc.2019.145028
  • A. Lichota, E.M. Szewczyk and K. Gwozdzinski, Factors affecting the formation and treatment of thrombosis by natural and synthetic compounds. International Journal of Molecular Sciences 21, 7975, 2020. https://doi.org/10.3390/ijms21217975
  • D. Wang, Y. Xu, Q. Li, and L.S Turng, Artificial small-diameter blood vessels: materials, fabrication, surface modification, mechanical properties, and bioactive functionalities. Journal of Materials Chemistry B, 8, 1801–1822, 2020. https://doi.org/10.1039/ C9TB01849B
  • H.Y. Mi, Y. Jiang, X. Jing, E. Enriquez, H. Li, Q. Li, and L.S. Turng, fabrication of triple-layered vascular grafts composed of silk fibers, polyacrylamide hydrogel, and polyurethane nanofibers with biomimetic mechanical properties. Materials Science and Engineering: C, 98, 241–249, 2019. https://doi.org/ 10.1016/j.msec.2018.12.126
  • M. Loukas, C. Groat, R. Khangura, D.G. Owens and R.H Anderson, The normal and abnormal anatomy of the coronary arteries. Clinical Anatomy, 22, 114–128, 2009. https://doi.org/10.1002/ca.20761
  • G.A. Holzapfel, T.C. Gasser and R.W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity, 61, 1–48, 2000. https://doi.org/ 10.1023/A:1010835316564
  • G.A. Holzapfel, T.C. Gasser and R.W. Ogden, Comparison of a multi-layer structural model for arterial walls with a fung-type model, and ıssues of material stability. Journal of Biomechanical Engineering, 126, 264–275, 2004. https://doi.org/ 10.1115/1.1695572
  • B. Kim, S.B. Lee, J. Lee, S. Cho, H. Park, S. Yeom and S.H. Park, A comparison among neo-hookean model, mooney-rivlin model, and ogden model for chloroprene rubber. International Journal of Precision Engineering and Manufacturing, 13, 759–764, 2012. https://doi.org/ 10.1007/s12541-012-0099-y.
  • M.R. Mansouri, P.F. Fuchs, J.C. Criscione, B. Schrittesser and J. Beter, The contribution of mechanical ınteractions to the constitutive modeling of fiber-reinforced elastomers. European Journal of Mechanics - A/Solids, 85, 104081, 2021. https://doi.org/10.1016/j.euromechsol.2020.104081
  • E. Yu, H.Y. Mi, J. Zhang, J.A. Thomson and L.S. Turng, Development of biomimetic thermoplastic polyurethane/fibroin small-diameter vascular grafts via a novel electrospinning approach. Journal of Biomedical Materials Research Part A, 106, 985–996, 2018. https://doi.org/10.1002/jbm.a.36297
  • J.L. Gade, J. Stålhand and C.J. Thore, An in vivo parameter ıdentification method for arteries: numerical validation for the human abdominal aorta. Computer methods in biomechanics and biomedical engineering, 22, 426–441, 2019. https://doi.org/ 10.1080/10255842.2018.1561878
  • C.J. Chuong and Y.C. Fung, Three-dimensional stress distribution in arteries. Journal of Biomechanical Engineering, 105, 268–274, 1983 https://doi.org/ 10.1115/1. 3138417
  • Y.C. Fung, K. Fronek and P. Patitucci, Pseudoelasticity of arteries and the choice of ıts mathematical expression. American Journal of Physiology-Heart and Circulatory Physiology, 237, H620–H631, 1979. https://doi.org/10.1152/ajpheart.1979.237.5.H620
  • Y. Z. Wang, W. A. Luo, J. W. Huang, C. H. Peng, H. C. Wang, C. H. Yuan, G. R. Chen, B. R. Zeng, L. Z. Dai, Simplification of Hyperelastic Constitutive Model and Finite Element Analysis of Thermoplastic Polyurethane Elastomers. Macromol. Theory Simul. 29, 2000009, 2020. https://doi.org/10.1002/ mats.202000009.
  • COMSOL Arterial Wall Mechanics Available online: https://www.comsol.com/model/arterial-wall-mechanics-14499 (accessed on 25 March 2022).
  • J. E. Wagenseil and R. P. Mecham, Vascular extracellular matrix and arterial mechanics. Physiological Reviews, 89 (3), 957–989, 2009. https://doi.org/10.1152/physrev.00041.2008
  • M. de Lucio et al., On the importance of tunica intima in the aging aorta: a three-layered in silico model for computing wall stresses in abdominal aortic aneurysms. Computer Methods in Biomechanics and Biomedical Engineering, 24 (5), 467–484, 2021. https://doi.org/10.1080/10255842.2020.1836167
  • D. Wang, Y. Xu, Y.J. Lin, G. Yilmaz, J. Zhang, G. Schmidt, Q. Li, J. A. Thomson, and L-S. Turng, Biologically Functionalized Expanded Polytetrafluoroethylene Blood Vessel Grafts. Biomacromolecules, 21(9), 3807-3816, 2020. https://doi.org/10.1021/acs.biomac.0c00897
  • M. Amabili, P. Balasubramanian, G. Ferrari, G. Franchini, F. Giovanniello, and E. Tubaldi, Identification of viscoelastic properties of Dacron aortic grafts subjected to physiological pulsatile flow. Journal of the Mechanical Behavior of Biomedical Materials, 110, 103804, 2020. https://doi.org/ 10.1016/j.jmbbm.2020.103804
  • A. T. İnan ve M. M. Şeker, Elektrospinning yöntemiyle üretilmiş farklı çaplardaki yapay damarların mekanik özelliklerinin incelenmesi. International Journal of Advances in Engineering and Pure Sciences, 33 (4), 687-693, 2021. https://doi.org/10.7240/jeps.993582

Tek ve çift katmanlı yapay damar konfigürasyonlarının Holzapfel-Gasser-Ogden hiperelastik modeli ile mekanik uyumluluk analizi

Year 2022, , 1196 - 1205, 14.10.2022
https://doi.org/10.28948/ngumuh.1105507

Abstract

Yaygınlaşan kalp-damar hastalıkları, yapay damarların önemini artırmıştır. Üretim şartları gereği farklı tasarımlar içeren bu damarların, doğal bir mekanik davranış göstermesi gerekmektedir. Üretim öncesi ihtiyaç duyulan analizlerin yapılması için karmaşık ve hiperelastik bir özellik gösteren damar mekaniğini modelleyen birçok çalışma bulunmaktadır. Bunlar arasından yaygın kullanımı olan Holzapfel-Gasser-Ogden (HGO) hiperelastik modeli bu çalışmada kullanılmıştır. Bu çalışma kapsamında bir simülasyon ortamı HGO modeliyle hazırlanmış ve literatürdeki verilerle doğruluğu teyit edilmiştir. İlk numune iki katmanlı tipik bir yapıda oluşturulmuştur. Sonraki numunelerde üretimde karşılaşılan farklı yöntemlere dayanan katman konfigürasyonları denenmiştir. İkinci numune için dış katmanın normalden çok ince bir yapıda tasarlandığı durum incelenmiştir. Az bir uyumsuzluk olmasına rağmen kalınlığı azalan dış katmanın damarın mekanik özellikleri üzerinde güçlü bir etkisinin olmadığı gözlemlenmiştir. Üçüncü tip numunede ise dış katmanın geometrik ve malzeme özellikleri bakımından iç katman olarak tasarlandığı bir durum denenmiştir. Mekanik özelliklerinin karmaşık ve uyumsuz olduğu gözlemlenmiştir. Son numune olarak, tek katmanlı bir yapı tasarlanmıştır. Bir miktar uyumsuzluk gösterse de bu numune sadelik açısından avantajlı bulunmuştur. Ayrıca ikinci ve üçüncü numunelerin malzeme parametreleri değişimiyle uyum analizi yapılmıştır. Üçüncü numunenin aksine ikinci numune için dış katman içindeki liflerin malzeme özelliklerinin ayarlanmasıyla kolayca referans numunesinin özelliklerinin yakalanabileceği gösterilmiştir.

References

  • D. Mozaffarian, E.J. Benjamin, A.S. Go, D.K. Arnett, M.J. Blaha, M. Cushman, S.R. Das, S. de Ferranti, J.-P. Després and H.J. Fullerton, Executive summary: heart disease and stroke statistics—2016 update. Circulation, 133, 447–454, 2016. https://doi.org/ 10.1161/CIR 0000000000000366
  • A. Timmis, P. Vardas, N. Townsend, A. Torbica, H. Katus, D. de Smedt, C.P. Gale, A.P. Maggioni, S. E. Petersen and R. Huculeci, Cardiovascular disease statistics 2021. European Heart Journal, 43, 716–799, 2022. https://doi.org/10.1093/eurheartj/ehab892
  • OECD Health at a Glance 2021. Health at a Glance, OECD, 2021. ISBN 9789264961012.
  • J. Chlupáč, E. Filová and L. Bačáková, Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiological Research, 58, 119–140, 2009. https://doi.org/10.33549/physiolres.931918
  • D. Wang, Y. Xu, L. Wang, X. Wang, S. Yan, G. Yilmaz, Q. Li and L.S. Turng, Long-term nitric oxide release for rapid endothelialization in expanded polytetrafluoroethylene small-diameter artificial blood vessel grafts. Applied Surface Science, 507, 145028, 2020. https://doi.org/10.1016/j.apsusc.2019.145028
  • A. Lichota, E.M. Szewczyk and K. Gwozdzinski, Factors affecting the formation and treatment of thrombosis by natural and synthetic compounds. International Journal of Molecular Sciences 21, 7975, 2020. https://doi.org/10.3390/ijms21217975
  • D. Wang, Y. Xu, Q. Li, and L.S Turng, Artificial small-diameter blood vessels: materials, fabrication, surface modification, mechanical properties, and bioactive functionalities. Journal of Materials Chemistry B, 8, 1801–1822, 2020. https://doi.org/10.1039/ C9TB01849B
  • H.Y. Mi, Y. Jiang, X. Jing, E. Enriquez, H. Li, Q. Li, and L.S. Turng, fabrication of triple-layered vascular grafts composed of silk fibers, polyacrylamide hydrogel, and polyurethane nanofibers with biomimetic mechanical properties. Materials Science and Engineering: C, 98, 241–249, 2019. https://doi.org/ 10.1016/j.msec.2018.12.126
  • M. Loukas, C. Groat, R. Khangura, D.G. Owens and R.H Anderson, The normal and abnormal anatomy of the coronary arteries. Clinical Anatomy, 22, 114–128, 2009. https://doi.org/10.1002/ca.20761
  • G.A. Holzapfel, T.C. Gasser and R.W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity, 61, 1–48, 2000. https://doi.org/ 10.1023/A:1010835316564
  • G.A. Holzapfel, T.C. Gasser and R.W. Ogden, Comparison of a multi-layer structural model for arterial walls with a fung-type model, and ıssues of material stability. Journal of Biomechanical Engineering, 126, 264–275, 2004. https://doi.org/ 10.1115/1.1695572
  • B. Kim, S.B. Lee, J. Lee, S. Cho, H. Park, S. Yeom and S.H. Park, A comparison among neo-hookean model, mooney-rivlin model, and ogden model for chloroprene rubber. International Journal of Precision Engineering and Manufacturing, 13, 759–764, 2012. https://doi.org/ 10.1007/s12541-012-0099-y.
  • M.R. Mansouri, P.F. Fuchs, J.C. Criscione, B. Schrittesser and J. Beter, The contribution of mechanical ınteractions to the constitutive modeling of fiber-reinforced elastomers. European Journal of Mechanics - A/Solids, 85, 104081, 2021. https://doi.org/10.1016/j.euromechsol.2020.104081
  • E. Yu, H.Y. Mi, J. Zhang, J.A. Thomson and L.S. Turng, Development of biomimetic thermoplastic polyurethane/fibroin small-diameter vascular grafts via a novel electrospinning approach. Journal of Biomedical Materials Research Part A, 106, 985–996, 2018. https://doi.org/10.1002/jbm.a.36297
  • J.L. Gade, J. Stålhand and C.J. Thore, An in vivo parameter ıdentification method for arteries: numerical validation for the human abdominal aorta. Computer methods in biomechanics and biomedical engineering, 22, 426–441, 2019. https://doi.org/ 10.1080/10255842.2018.1561878
  • C.J. Chuong and Y.C. Fung, Three-dimensional stress distribution in arteries. Journal of Biomechanical Engineering, 105, 268–274, 1983 https://doi.org/ 10.1115/1. 3138417
  • Y.C. Fung, K. Fronek and P. Patitucci, Pseudoelasticity of arteries and the choice of ıts mathematical expression. American Journal of Physiology-Heart and Circulatory Physiology, 237, H620–H631, 1979. https://doi.org/10.1152/ajpheart.1979.237.5.H620
  • Y. Z. Wang, W. A. Luo, J. W. Huang, C. H. Peng, H. C. Wang, C. H. Yuan, G. R. Chen, B. R. Zeng, L. Z. Dai, Simplification of Hyperelastic Constitutive Model and Finite Element Analysis of Thermoplastic Polyurethane Elastomers. Macromol. Theory Simul. 29, 2000009, 2020. https://doi.org/10.1002/ mats.202000009.
  • COMSOL Arterial Wall Mechanics Available online: https://www.comsol.com/model/arterial-wall-mechanics-14499 (accessed on 25 March 2022).
  • J. E. Wagenseil and R. P. Mecham, Vascular extracellular matrix and arterial mechanics. Physiological Reviews, 89 (3), 957–989, 2009. https://doi.org/10.1152/physrev.00041.2008
  • M. de Lucio et al., On the importance of tunica intima in the aging aorta: a three-layered in silico model for computing wall stresses in abdominal aortic aneurysms. Computer Methods in Biomechanics and Biomedical Engineering, 24 (5), 467–484, 2021. https://doi.org/10.1080/10255842.2020.1836167
  • D. Wang, Y. Xu, Y.J. Lin, G. Yilmaz, J. Zhang, G. Schmidt, Q. Li, J. A. Thomson, and L-S. Turng, Biologically Functionalized Expanded Polytetrafluoroethylene Blood Vessel Grafts. Biomacromolecules, 21(9), 3807-3816, 2020. https://doi.org/10.1021/acs.biomac.0c00897
  • M. Amabili, P. Balasubramanian, G. Ferrari, G. Franchini, F. Giovanniello, and E. Tubaldi, Identification of viscoelastic properties of Dacron aortic grafts subjected to physiological pulsatile flow. Journal of the Mechanical Behavior of Biomedical Materials, 110, 103804, 2020. https://doi.org/ 10.1016/j.jmbbm.2020.103804
  • A. T. İnan ve M. M. Şeker, Elektrospinning yöntemiyle üretilmiş farklı çaplardaki yapay damarların mekanik özelliklerinin incelenmesi. International Journal of Advances in Engineering and Pure Sciences, 33 (4), 687-693, 2021. https://doi.org/10.7240/jeps.993582
There are 24 citations in total.

Details

Primary Language Turkish
Journal Section Others
Authors

Galip Yılmaz 0000-0001-8128-3193

Emin Uslu 0000-0003-3538-6022

Publication Date October 14, 2022
Submission Date April 18, 2022
Acceptance Date September 22, 2022
Published in Issue Year 2022

Cite

APA Yılmaz, G., & Uslu, E. (2022). Tek ve çift katmanlı yapay damar konfigürasyonlarının Holzapfel-Gasser-Ogden hiperelastik modeli ile mekanik uyumluluk analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(4), 1196-1205. https://doi.org/10.28948/ngumuh.1105507
AMA Yılmaz G, Uslu E. Tek ve çift katmanlı yapay damar konfigürasyonlarının Holzapfel-Gasser-Ogden hiperelastik modeli ile mekanik uyumluluk analizi. NÖHÜ Müh. Bilim. Derg. October 2022;11(4):1196-1205. doi:10.28948/ngumuh.1105507
Chicago Yılmaz, Galip, and Emin Uslu. “Tek Ve çift Katmanlı Yapay Damar konfigürasyonlarının Holzapfel-Gasser-Ogden Hiperelastik Modeli Ile Mekanik Uyumluluk Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 4 (October 2022): 1196-1205. https://doi.org/10.28948/ngumuh.1105507.
EndNote Yılmaz G, Uslu E (October 1, 2022) Tek ve çift katmanlı yapay damar konfigürasyonlarının Holzapfel-Gasser-Ogden hiperelastik modeli ile mekanik uyumluluk analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 4 1196–1205.
IEEE G. Yılmaz and E. Uslu, “Tek ve çift katmanlı yapay damar konfigürasyonlarının Holzapfel-Gasser-Ogden hiperelastik modeli ile mekanik uyumluluk analizi”, NÖHÜ Müh. Bilim. Derg., vol. 11, no. 4, pp. 1196–1205, 2022, doi: 10.28948/ngumuh.1105507.
ISNAD Yılmaz, Galip - Uslu, Emin. “Tek Ve çift Katmanlı Yapay Damar konfigürasyonlarının Holzapfel-Gasser-Ogden Hiperelastik Modeli Ile Mekanik Uyumluluk Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/4 (October 2022), 1196-1205. https://doi.org/10.28948/ngumuh.1105507.
JAMA Yılmaz G, Uslu E. Tek ve çift katmanlı yapay damar konfigürasyonlarının Holzapfel-Gasser-Ogden hiperelastik modeli ile mekanik uyumluluk analizi. NÖHÜ Müh. Bilim. Derg. 2022;11:1196–1205.
MLA Yılmaz, Galip and Emin Uslu. “Tek Ve çift Katmanlı Yapay Damar konfigürasyonlarının Holzapfel-Gasser-Ogden Hiperelastik Modeli Ile Mekanik Uyumluluk Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 4, 2022, pp. 1196-05, doi:10.28948/ngumuh.1105507.
Vancouver Yılmaz G, Uslu E. Tek ve çift katmanlı yapay damar konfigürasyonlarının Holzapfel-Gasser-Ogden hiperelastik modeli ile mekanik uyumluluk analizi. NÖHÜ Müh. Bilim. Derg. 2022;11(4):1196-205.

download