Araştırma Makalesi
BibTex RIS Kaynak Göster

Balya Pb/Zn flotasyon atığının BCR sıralı ekstraksiyon tekniği ile metal türleşmesinin belirlenmesi

Yıl 2023, , 1409 - 1416, 15.10.2023
https://doi.org/10.28948/ngumuh.1314247

Öz

Madencilik atıklarının potansiyel metal kirliliğinin fraksiyonel olarak belirlenmesinde metal türleşmelerinin bilinmesinin atığın jeokimyasal davranışının anlaşılması ve yönetiminde avantajlar sağlayacağı düşünülmektedir. Bu doğrultuda, Balya Pb/Zn flotasyon atığındaki metallerin fraksiyonlarının belirlenmesi amacıyla modifiye BCR yöntemi ile üç adımlı bir sıralı çözme gerçekleştirilmiştir. Sırasıyla asetik asit, hidroksilamin hidroklorik + nitrik asit, hidrojen peroksit + asit amonyum asetat ve mikrodalga ortofosforik + nitrik asit özütleme yapılarak metallerin iyon değiştirebilir (F1), indirgenebilir (F2), oksitlenebilir (F3) ve kalıntı (F4) fraksiyonları belirlenmiştir. Bunun sonucunda, en yüksek kolayca çözünebilen fazlar sırasıyla Ca, Cd, Zn, Pb, Mn ve Cu için elde edilirken; indirgenebilir fazlar Pb, Cu, Ag, Zn, Mg ve Mn olarak belirlenmiştir. K, Ti ve Al metallerinin ise neredeyse tamamı kalıntı fazda saptanmıştır. Çok değişkenli analizler yürütülerek metallerin fraksiyonel dağılım benzerliği istatistiksel olarak üç farklı kümede tespit edilmiştir.

Teşekkür

Yazar, araştırma altyapı imkânı sağladığı için Prof. Dr. M. Salim Öncel'e ve örnekleme sürecindeki yardımlarını esirgemeyen ESAN Eczacıbaşı personellerine en içten teşekkürlerini sunar.

Kaynakça

  • E. E. Çelebi, M. S. Öncel, and M. Kobya, Acid production potentials of massive sulfide minerals and lead–zinc mine tailings: a medium-term study. Water Science and Technology, vol. 77, no. 1, pp. 260–268, Jan. 2018. doi: 10.2166/wst.2017.541.
  • E. E. Çelebi and M. S. Öncel, Determination of acid forming potential of massive sulfide minerals and the tailings situated in lead/zinc mining district of Balya (NW Turkey). Journal of African Earth Sciences, vol. 124, 2016. doi: 10.1016/j.jafrearsci.2016.09.014.
  • I. Kursun, S. Ozkan, K. Baztmaz, M. Terzi, and T. D. Tombal, Silver leaching from lead-zinc process tailings in Balya mines. in 16th International Symposium on Environmental Issues and Waste Management in Energy and Mineral Production (SWEMP2016), pp. 1–6, 2016.
  • C. Şimşek, O. Gündüz, and A. Elçi, Terkedilmiş Balya (Balikesir) Pb-Zn maden atıklarının ağır metal ve doğal radyoaktivite içeriği ve çevre kalitesi açısından değerlendirilmesi. Mühendislik Bilimleri ve Tasarım Dergisi, vol. 2, no. 1, p. 0, 2012.
  • G. Gürtekin and E. Aydar, Quantitative mineralogy in characterization of historical tailings: A case from the abandoned Balya Pb–Zn mine, Western Turkey. Natural Resources Research, vol. 32, no. 1, pp. 195–212, 2023. doi: 10.1007/s11053-022-10128-6.
  • N. Agdemir, M. S. Kirikoglu, B. Lehmann, and J. Tietze, Petrology and alteration geochemistry of the epithermal Balya Pb-Zn-Ag deposit, NW Turkey. Miner Depos, vol. 29, no. 4, pp. 366–371, 1994. doi:10.1007 /bf00191043.
  • A. Aykol, M. Budakoğlu, M. Kumral, A. H. Gültekin, M. Turhan, V. Esenli, F. Yavuz, and Y. Orgun, Heavy metal pollution and acid drainage from the abandoned Balya Pb-Zn sulfide mine, NW Anatolia, Turkey. Environmental Geology, vol. 45, no. 2, pp. 198–208, 2003. doi:10.10 07/s00254-003-0866-2.
  • I. Kursun, O. Ozdemir, F. Eskibalcı, H. Hacifazlioglu, and M. Terzi, Dissolution of lead from lead-zinc tailings with nitric acid. XVII. Balkan Mineral Processing Congress, pp. 493–499, 2017.
  • T. D. Tombul and İ. Kurşun Ünver, Characterization of Balikesir Balya lead-zinc ore and determination of its particle shape factor. MT Bilimsel, no. 22, pp. 67–81, 2022.
  • A. Baştürk and S. Aydoğan, Balya (Balıkesir, KB Türkiye) bölgesindeki flotasyon ve izabe atıklarında jeoistatistiksel parametreler kullanarak modelleme ve kaynak hesabına örnek bir çalışma. Türkiye Jeoloji Bülteni, vol. 65, no. 1, pp. 53–78, 2022.
  • N. Çelik Balcı, S. Gül, M. M. Kılıç, N. G. Karagüler, E. Sarı, and M. Ş. Sönmez, Balya (Balıkesir) Pb-Zn madeni atık sahasının biyojeokimyası ve asidik maden drenajı oluşumuna etkileri. Türkiye Jeoloji Bülteni, vol. 57, no. 3, pp. 1–24, 2014.
  • E. E. Çelebi and M. S. Öncel, Boron recovery from montmorillonite clay waste using sequential leaching followed by cooling crystallization techniques. Arabian Journal of Geosciences, vol. 14, no. 9, p. 817, 2021. doi: 10.1007/s12517-021-07188-y.
  • A. Hass and P. Fine, Sequential selective extraction procedures for the study of heavy metals in soils, sediments, and waste materials—a critical review. Crit Rev Environ Sci Technol, vol. 40, no. 5, pp. 365–399, 2010. doi: 10.1080/10 643380802377992.
  • A. Tessier, P. G. C. Campbell, and M. Bisson, Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem, vol. 51, no. 7, pp. 844–851, 1979. doi: 10.1021/ac50043a017.
  • M. Pueyo, J. Mateu, A. Rigol, M. Vidal, J. F. López-Sánchez, and G. Rauret, Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environmental Pollution, vol. 152, no. 2, pp. 330–341, 2008. doi: 10.1016/j.envpol .2007.06.020.
  • B. Dold, Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. J Geochem Explor, vol. 80, no. 1, pp. 55–68, 2003. doi: 10.1016/s0375-6742 (03)00182-1.
  • M. Alan and D. Kara, Comparison of a new sequential extraction method and the BCR sequential extraction method for mobility assessment of elements around boron mines in Turkey. Talanta, vol. 194, pp. 189–198, 2019. doi: 10.1016 /j.talanta.2018.10.030.
  • V. Cappuyns, R. Swennen, and M. Niclaes, Application of the BCR sequential extraction scheme to dredged pond sediments contaminated by Pb-Zn mining: A combined geochemical and mineralogical approach. J Geochem Explor, vol. 93, no. 2, pp. 78–90, 2007. doi: 10.1016/ j.gexplo.2006.10.001.
  • E. Fernández-Ondoño, G. Bacchetta, A. M. Lallena, F. B. Navarro, I. Ortiz, and M. N. Jiménez, Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia. J Geochem Explor, vol. 172, pp. 133–141, 2017. doi: 10.1016/j.gexplo.2016.09.013.
  • R. Larios, R. Fernández-Martínez, V. Silva, and I. Rucandio, Chemical availability of arsenic and heavy metals in sediments from abandoned cinnabar mine tailings. Environ Earth Sci, vol. 68, no. 2, pp. 535–546, 2013. doi: 10.1007/s12665-012-1757-1.
  • K. F. Mossop and C. M. Davidson, “Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments,” Analytica Chimica Acta, vol. 478, no. 1, pp 111-118, 2003.
  • A. A. Qureshi, T. G. Kazi, J. A. Baig, M. B. Arain, and H. I. Afridi, Exposure of heavy metals in coal gangue soil, in and outside the mining area using BCR conventional and vortex assisted and single step extraction methods. Impact on orchard grass. Chemosphere, vol. 255, p. 126960, 2020. doi: 10.1016 /j.chemosphere.2020.126960.
  • L. Tong et al., Evaluation of the BCR sequential extraction scheme for trace metal fractionation of alkaline municipal solid waste incineration fly ash. Chemosphere, vol. 249, p. 126115, 2020. doi: 10.1016 /j.chemosphere.2020.126115.
  • N. Doebelin and R. Kleeberg, “Profex: a graphical user interface for the Rietveld refinement program BGMN,” J Appl Crystallogr, vol. 48, no. 5, pp. 1573–1580, 2015. doi: 10.1107/s1600576715014685.
  • R. Devesa-Rey, F. Díaz-Fierros, M.T. Barral, “Trace metals in river bed sediments: An assessment of their partitioning and bioavailability by using multivariate exploratory analysis,” Journal of Environmental Management, vol. 91, no 12, pp. 2471-2477, 2010. https://doi.org/10.1016/j.jenvman.2010.06.024.
  • X. Zhou, D. Liu, H. Bu, L. Deng, H. Liu, P. Yuan, P. Du, H. Song, XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review. Solid Earth Sciences, vol. 3, no. 1, pp. 16–29, 2018. doi: https://doi.org/10.101 6/j.sesci.2017.12.002.
  • M. Bissengaliyeva, L. Ogorodova, M. Vigasina, L. Mel’chakova, D. Kosova, I. Bryzgalov, D. Ksenofontov, Enthalpy of formation of natural hydrous copper sulfate: Chalcanthite. J Chem Thermodyn, vol. 95, pp. 142–148, 2016. doi: 10.1016 /j.jct.2015.12.010.
  • E. C. Creaser, M. Steele-MacInnis, and B. M. Tutolo, A model for the solubility of anhydrite in H2O-NaCl fluids from 25 to 800 °C, 0.1 to 1400 MPa, and 0 to 60 wt% NaCl: Applications to hydrothermal ore-forming systems. Chem Geol, vol. 587, p. 120609, 2022. doi: 10.1016/j.chemgeo .2021.120609.
  • Y. C. Kim and H. Yoon, Exploitation of acetic acid for calcite dissolution in small-capacity desalination plants. Desalination, vol. 516, p. 115227, 2021. doi: 10.1016/j.desal .2021.115227.
  • Yu. A. Vershkova, O. A. Tareeva, K. G. Ivlev, and E. P. Lokshin, Solubility of calcium sulfate dihydrate in nitric acid at 20°C. Russian Journal of Applied Chemistry, vol. 76, no. 1, pp. 156–157, 2003. doi: 10.1023/a:10233 80925093.
  • B. Lottermoser, Mine wastes: Characterization, treatment and environmental impacts. Springer, 2010.
  • Y. Wu, Preparation of ultrafine powders by reaction–precipitation in impinging streams III: nano titania. Impinging Streams, pp. 301–315, 2007. doi: 10.1016/b978-044453037-0/50045-8.

Determination of metal fractionation of Balya Pb/Zn tailings by BCR sequential extraction technique

Yıl 2023, , 1409 - 1416, 15.10.2023
https://doi.org/10.28948/ngumuh.1314247

Öz

It is believed that knowing the speciation of metals is advantageous in understanding and managing the geochemical behavior of mine tailings with respect to potential metal pollution. Accordingly, a three-step sequential extraction was carried out by modified European Community Bureau of Reference (BCR) approach for fractionation of metals in Balya Pb/Zn tailing. Acetic acid leaching, hydroxylamine hydrochloride + nitric acid leaching, hydrogen peroxide + acid ammonium acetate leaching, and orthophosphoric + nitric acid digestion in microwave were performed to determine ion exchangeable (F1), reducible (F2), oxidizable (F3), and residual (F4) fractions of metals, respectively. As a result, the highest readily soluble fractions were obtained for Ca, Cd, Zn, Pb, Mn and Cu, respectively; while reducible fraction were determined as Pb, Cu, Ag, Zn, Mg and Mn. Almost all K, Ti, and Al metals were detected in the residual fraction. Multivariate analyses were carried out and the fractional distribution similarity of metals was statistically determined as three different clusters.

Kaynakça

  • E. E. Çelebi, M. S. Öncel, and M. Kobya, Acid production potentials of massive sulfide minerals and lead–zinc mine tailings: a medium-term study. Water Science and Technology, vol. 77, no. 1, pp. 260–268, Jan. 2018. doi: 10.2166/wst.2017.541.
  • E. E. Çelebi and M. S. Öncel, Determination of acid forming potential of massive sulfide minerals and the tailings situated in lead/zinc mining district of Balya (NW Turkey). Journal of African Earth Sciences, vol. 124, 2016. doi: 10.1016/j.jafrearsci.2016.09.014.
  • I. Kursun, S. Ozkan, K. Baztmaz, M. Terzi, and T. D. Tombal, Silver leaching from lead-zinc process tailings in Balya mines. in 16th International Symposium on Environmental Issues and Waste Management in Energy and Mineral Production (SWEMP2016), pp. 1–6, 2016.
  • C. Şimşek, O. Gündüz, and A. Elçi, Terkedilmiş Balya (Balikesir) Pb-Zn maden atıklarının ağır metal ve doğal radyoaktivite içeriği ve çevre kalitesi açısından değerlendirilmesi. Mühendislik Bilimleri ve Tasarım Dergisi, vol. 2, no. 1, p. 0, 2012.
  • G. Gürtekin and E. Aydar, Quantitative mineralogy in characterization of historical tailings: A case from the abandoned Balya Pb–Zn mine, Western Turkey. Natural Resources Research, vol. 32, no. 1, pp. 195–212, 2023. doi: 10.1007/s11053-022-10128-6.
  • N. Agdemir, M. S. Kirikoglu, B. Lehmann, and J. Tietze, Petrology and alteration geochemistry of the epithermal Balya Pb-Zn-Ag deposit, NW Turkey. Miner Depos, vol. 29, no. 4, pp. 366–371, 1994. doi:10.1007 /bf00191043.
  • A. Aykol, M. Budakoğlu, M. Kumral, A. H. Gültekin, M. Turhan, V. Esenli, F. Yavuz, and Y. Orgun, Heavy metal pollution and acid drainage from the abandoned Balya Pb-Zn sulfide mine, NW Anatolia, Turkey. Environmental Geology, vol. 45, no. 2, pp. 198–208, 2003. doi:10.10 07/s00254-003-0866-2.
  • I. Kursun, O. Ozdemir, F. Eskibalcı, H. Hacifazlioglu, and M. Terzi, Dissolution of lead from lead-zinc tailings with nitric acid. XVII. Balkan Mineral Processing Congress, pp. 493–499, 2017.
  • T. D. Tombul and İ. Kurşun Ünver, Characterization of Balikesir Balya lead-zinc ore and determination of its particle shape factor. MT Bilimsel, no. 22, pp. 67–81, 2022.
  • A. Baştürk and S. Aydoğan, Balya (Balıkesir, KB Türkiye) bölgesindeki flotasyon ve izabe atıklarında jeoistatistiksel parametreler kullanarak modelleme ve kaynak hesabına örnek bir çalışma. Türkiye Jeoloji Bülteni, vol. 65, no. 1, pp. 53–78, 2022.
  • N. Çelik Balcı, S. Gül, M. M. Kılıç, N. G. Karagüler, E. Sarı, and M. Ş. Sönmez, Balya (Balıkesir) Pb-Zn madeni atık sahasının biyojeokimyası ve asidik maden drenajı oluşumuna etkileri. Türkiye Jeoloji Bülteni, vol. 57, no. 3, pp. 1–24, 2014.
  • E. E. Çelebi and M. S. Öncel, Boron recovery from montmorillonite clay waste using sequential leaching followed by cooling crystallization techniques. Arabian Journal of Geosciences, vol. 14, no. 9, p. 817, 2021. doi: 10.1007/s12517-021-07188-y.
  • A. Hass and P. Fine, Sequential selective extraction procedures for the study of heavy metals in soils, sediments, and waste materials—a critical review. Crit Rev Environ Sci Technol, vol. 40, no. 5, pp. 365–399, 2010. doi: 10.1080/10 643380802377992.
  • A. Tessier, P. G. C. Campbell, and M. Bisson, Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem, vol. 51, no. 7, pp. 844–851, 1979. doi: 10.1021/ac50043a017.
  • M. Pueyo, J. Mateu, A. Rigol, M. Vidal, J. F. López-Sánchez, and G. Rauret, Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environmental Pollution, vol. 152, no. 2, pp. 330–341, 2008. doi: 10.1016/j.envpol .2007.06.020.
  • B. Dold, Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. J Geochem Explor, vol. 80, no. 1, pp. 55–68, 2003. doi: 10.1016/s0375-6742 (03)00182-1.
  • M. Alan and D. Kara, Comparison of a new sequential extraction method and the BCR sequential extraction method for mobility assessment of elements around boron mines in Turkey. Talanta, vol. 194, pp. 189–198, 2019. doi: 10.1016 /j.talanta.2018.10.030.
  • V. Cappuyns, R. Swennen, and M. Niclaes, Application of the BCR sequential extraction scheme to dredged pond sediments contaminated by Pb-Zn mining: A combined geochemical and mineralogical approach. J Geochem Explor, vol. 93, no. 2, pp. 78–90, 2007. doi: 10.1016/ j.gexplo.2006.10.001.
  • E. Fernández-Ondoño, G. Bacchetta, A. M. Lallena, F. B. Navarro, I. Ortiz, and M. N. Jiménez, Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia. J Geochem Explor, vol. 172, pp. 133–141, 2017. doi: 10.1016/j.gexplo.2016.09.013.
  • R. Larios, R. Fernández-Martínez, V. Silva, and I. Rucandio, Chemical availability of arsenic and heavy metals in sediments from abandoned cinnabar mine tailings. Environ Earth Sci, vol. 68, no. 2, pp. 535–546, 2013. doi: 10.1007/s12665-012-1757-1.
  • K. F. Mossop and C. M. Davidson, “Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments,” Analytica Chimica Acta, vol. 478, no. 1, pp 111-118, 2003.
  • A. A. Qureshi, T. G. Kazi, J. A. Baig, M. B. Arain, and H. I. Afridi, Exposure of heavy metals in coal gangue soil, in and outside the mining area using BCR conventional and vortex assisted and single step extraction methods. Impact on orchard grass. Chemosphere, vol. 255, p. 126960, 2020. doi: 10.1016 /j.chemosphere.2020.126960.
  • L. Tong et al., Evaluation of the BCR sequential extraction scheme for trace metal fractionation of alkaline municipal solid waste incineration fly ash. Chemosphere, vol. 249, p. 126115, 2020. doi: 10.1016 /j.chemosphere.2020.126115.
  • N. Doebelin and R. Kleeberg, “Profex: a graphical user interface for the Rietveld refinement program BGMN,” J Appl Crystallogr, vol. 48, no. 5, pp. 1573–1580, 2015. doi: 10.1107/s1600576715014685.
  • R. Devesa-Rey, F. Díaz-Fierros, M.T. Barral, “Trace metals in river bed sediments: An assessment of their partitioning and bioavailability by using multivariate exploratory analysis,” Journal of Environmental Management, vol. 91, no 12, pp. 2471-2477, 2010. https://doi.org/10.1016/j.jenvman.2010.06.024.
  • X. Zhou, D. Liu, H. Bu, L. Deng, H. Liu, P. Yuan, P. Du, H. Song, XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review. Solid Earth Sciences, vol. 3, no. 1, pp. 16–29, 2018. doi: https://doi.org/10.101 6/j.sesci.2017.12.002.
  • M. Bissengaliyeva, L. Ogorodova, M. Vigasina, L. Mel’chakova, D. Kosova, I. Bryzgalov, D. Ksenofontov, Enthalpy of formation of natural hydrous copper sulfate: Chalcanthite. J Chem Thermodyn, vol. 95, pp. 142–148, 2016. doi: 10.1016 /j.jct.2015.12.010.
  • E. C. Creaser, M. Steele-MacInnis, and B. M. Tutolo, A model for the solubility of anhydrite in H2O-NaCl fluids from 25 to 800 °C, 0.1 to 1400 MPa, and 0 to 60 wt% NaCl: Applications to hydrothermal ore-forming systems. Chem Geol, vol. 587, p. 120609, 2022. doi: 10.1016/j.chemgeo .2021.120609.
  • Y. C. Kim and H. Yoon, Exploitation of acetic acid for calcite dissolution in small-capacity desalination plants. Desalination, vol. 516, p. 115227, 2021. doi: 10.1016/j.desal .2021.115227.
  • Yu. A. Vershkova, O. A. Tareeva, K. G. Ivlev, and E. P. Lokshin, Solubility of calcium sulfate dihydrate in nitric acid at 20°C. Russian Journal of Applied Chemistry, vol. 76, no. 1, pp. 156–157, 2003. doi: 10.1023/a:10233 80925093.
  • B. Lottermoser, Mine wastes: Characterization, treatment and environmental impacts. Springer, 2010.
  • Y. Wu, Preparation of ultrafine powders by reaction–precipitation in impinging streams III: nano titania. Impinging Streams, pp. 301–315, 2007. doi: 10.1016/b978-044453037-0/50045-8.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Katı ve Tehlikeli Atıklar, Çevre Mühendisliği (Diğer), Madencilik Yöntemleri ve Maden Sistem Analizi, Maden Yatakları ve Jeokimya, Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Emin Ender Çelebi 0000-0002-5399-610X

Erken Görünüm Tarihi 19 Eylül 2023
Yayımlanma Tarihi 15 Ekim 2023
Gönderilme Tarihi 13 Haziran 2023
Kabul Tarihi 8 Eylül 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Çelebi, E. E. (2023). Balya Pb/Zn flotasyon atığının BCR sıralı ekstraksiyon tekniği ile metal türleşmesinin belirlenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(4), 1409-1416. https://doi.org/10.28948/ngumuh.1314247
AMA Çelebi EE. Balya Pb/Zn flotasyon atığının BCR sıralı ekstraksiyon tekniği ile metal türleşmesinin belirlenmesi. NÖHÜ Müh. Bilim. Derg. Ekim 2023;12(4):1409-1416. doi:10.28948/ngumuh.1314247
Chicago Çelebi, Emin Ender. “Balya Pb/Zn Flotasyon atığının BCR sıralı Ekstraksiyon tekniği Ile Metal türleşmesinin Belirlenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, sy. 4 (Ekim 2023): 1409-16. https://doi.org/10.28948/ngumuh.1314247.
EndNote Çelebi EE (01 Ekim 2023) Balya Pb/Zn flotasyon atığının BCR sıralı ekstraksiyon tekniği ile metal türleşmesinin belirlenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 4 1409–1416.
IEEE E. E. Çelebi, “Balya Pb/Zn flotasyon atığının BCR sıralı ekstraksiyon tekniği ile metal türleşmesinin belirlenmesi”, NÖHÜ Müh. Bilim. Derg., c. 12, sy. 4, ss. 1409–1416, 2023, doi: 10.28948/ngumuh.1314247.
ISNAD Çelebi, Emin Ender. “Balya Pb/Zn Flotasyon atığının BCR sıralı Ekstraksiyon tekniği Ile Metal türleşmesinin Belirlenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/4 (Ekim 2023), 1409-1416. https://doi.org/10.28948/ngumuh.1314247.
JAMA Çelebi EE. Balya Pb/Zn flotasyon atığının BCR sıralı ekstraksiyon tekniği ile metal türleşmesinin belirlenmesi. NÖHÜ Müh. Bilim. Derg. 2023;12:1409–1416.
MLA Çelebi, Emin Ender. “Balya Pb/Zn Flotasyon atığının BCR sıralı Ekstraksiyon tekniği Ile Metal türleşmesinin Belirlenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 12, sy. 4, 2023, ss. 1409-16, doi:10.28948/ngumuh.1314247.
Vancouver Çelebi EE. Balya Pb/Zn flotasyon atığının BCR sıralı ekstraksiyon tekniği ile metal türleşmesinin belirlenmesi. NÖHÜ Müh. Bilim. Derg. 2023;12(4):1409-16.

download