Research Article
BibTex RIS Cite

TERMAL OLARAK İYİLEŞTİRİLMİŞ FARKLI ERİME SICAKLIKLARINA SAHİP FAZ DEĞİŞKEN MALZEMELERİN ISIL CEVAPLARININ ARAŞTIRILMASI

Year 2020, Volume: 9 Issue: 1, 504 - 517, 30.01.2020
https://doi.org/10.28948/ngumuh.605135

Abstract

Bu
çalışmada, farklı erime sıcaklıklarına sahip parafin esaslı faz değişken malzeme
(FDM) içerisine katkılanan aynı tip Grafen nanoparçacıkların (GNP) termal
özellikler üzerindeki etkileri incelenmiştir.
Bu kapsamda öncelikle 42oC,
 62 oC ve 82 oC
erime sıcaklığına sahip FDM’ler içerisine kütlece %1, %3 ve %5 GNP katkılanarak
elde edilen GNP/FDM kompozitleri termal olarak karakterize edilmiştir. Termal
karakterizasyon;  ısıl iletkenlik, erime/katılaşma
sıcaklıkları ve enerji depolama kapasiteleri gibi özellikler ölçülerek
gerçekleştirilmiştir. Termal özellikleri belirlenen GNP/FDM kompozitlerinin bir
enerji depolama birimindeki termal cevapları ve görselleştirmesi de ayrıca
araştırılmıştır. Elde edilen sonuçlar GNP kütle bölüntülerinin tüm FDM’lerde
yaklaşık olarak aynı büyüklükte ısıl iletkenlik artışına, fakat farklı yüzdelik
iyileştirmeye neden olduğunu göstermiştir. Buna karşın GNP katkısının erime/katılaşma
enerji kapasitelerinde %13’e varan azalmaya neden olduğu belirlenmiştir.

References

  • [1] SARIER N., ONDER E., “Organic phase change materials and their textile applications: An overview,” Thermochim. Acta, 540, 7–60, 2012.
  • [2] LIU L., SU D., TANG Y., FANG G., “Thermal conductivity enhancement of phase change materials for thermal energy storage: A review,” Renew. Sustain. Energy Rev., 62, 305–317, 2016.
  • [3] HADIYA J.P., SHUKLA A.K.N., “Experimental thermal behavior response of paraffin wax as storage unit,” J. Therm. Anal. Calorim.,124, 1511–1518, 2016.
  • [4] LORWANISHPAISARN N., KASEMSIRI P., POSI P., CHINDAPRASIRT P.,“Characterization of paraffin/ultrasonic-treated diatomite for use as phase change material in thermal energy storage of buildings,” J. Therm. Anal. Calorim.,128, 1293–1303, 2017.
  • [5] ORO E., DE GRACIA A., CASTELL A., FARID M.M., CABEZA L.F., “Review on phase change materials (PCMs) for cold thermal energy storage applications,” Applied Energy, 99, 513-533, 2012.
  • [6] YUAN Y., LI T., ZHANG N., CAO X., YANG X., “Investigation on thermal properties of capric–palmitic–stearic acid/activated carbon composite phase change materials for high-temperature cooling application,” J. Therm. Anal. Calorim., 124, 881-888, 2016.
  • [7] AL HALLAJ S., SELMAN J.R., “A Novel Thermal Management System for Electric Vehicle Batteries Using Phase-Change Material,” J. Electrochem. Soc.,147, 3231-3236, 2000.
  • [8] KHATEEB S.A., FARID M.M., SELMAN J.R., AL-HALLAJ S., “Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter,” J. Power Sources,128, PP. 292-307, 2004.
  • [9] HEMERY C.V., PRA F., ROBIN J.F., MARTY P., “Experimental performances of a battery thermal management system using a phase change material,” J. Power Sources,270,PP.349-358, 2014.
  • [10] SHARMA A., TYAGI V.V., CHEN C.R., BUDDHI D., “Review on thermal energy storage with phase change materials and applications,” Renewable and Sustainable Energy Reviews, 13, PP. 318-345, 2009.
  • [11] STRITIH U., “An experimental study of enhanced heat transfer in rectangular PCM thermal storage,” Int. J. Heat Mass Transf.,47, 2841-2847, 2004.
  • [12] AGYENIM F., EAMES P., SMYTH M., “A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins,” Sol. Energy,83, 1509-1520, 2009.
  • [13] XIAO M., FENG B., GONG K., “Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity,” Energy Convers. Manag.,43, 103-108, 2002.
  • [14] YANG J., YANG L., XU C., DU X.,“Experimental study on enhancement of thermal energy storage with phase-change material,” Appl. Energy,169, 164-176, 2016.
  • [15] WANG Z., ZHANGH., XIA X., “Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure,” Int. J. Heat Mass Transf., 109, 958–970, 2017.
  • [16] JIANG G., HUANG J., LIU M., CAO M., “Experiment and simulation of thermal management for a tube-shell Li-ion battery pack with composite phase change material,” Appl. Therm. Eng., 120, 1-9, 2017.
  • [17] WANG J.F., XIE H.Q., LI Y., XIN Z., “PW based phase change nanocomposites containing gamma-Al(2)O(3),” J. Therm. Anal. Calorim.,102, 709-713, 2010.
  • [18] HO C.J., GAO J.Y., “Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material,” Int. Commun. Heat Mass Transf.,36, 467-470, 2009.
  • [19] TEMEL U.N., CIFTCI B.Y., "Determination of thermal properties of A82 organic phase change material embedded with different type nanoparticles " Isi Bilimi ve Teknigi Dergisi/Journal of Thermal Science & Technology, 38, 75-85, 2018.
  • [20] WANG J., XIE H., XIN Z., LI Y., “Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes,” Carbon, 48, 3979-3986, 2010.
  • [21] YU Z.T., FANG X., FAN L.W., WANG X., XIAO Y.Q., ZENG Y., XU X., HU Y.C., CEN K.F., “Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes,” Carbon, 53, 277-285, 2013.
  • [22] FAN L.W., FANG X., WANG X., ZENG Y., XIAO Y.Q., YU Z.T., XU X., HU Y.C., CEN K.F., “Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials,” Appl. Energy,110, 163-172, 2013.
  • [23] CUI Y., LIU C., HU S., YU X., “The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials,” Sol. Energy Mater. Sol. Cells,95, 1208-1212, 2011.
  • [24] SHI J.N., GER M.D., LIU Y.M., FAN Y.C., WEN N.T., LIN C.K., PU N.W., “Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives,” Carbon, 51, 365-372, 2013.
  • [25] WANG J., XIE H., XIN Z., “Thermal properties of paraffin based composites containing multi-walled carbon nanotubes,” Thermochim. Acta, 488, 49-42, 2009.
  • [26] WANG J., XIE H., XIN Z., LI Y., CHEN L., “Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers,” Sol. Energy,84, 339-344, 2010.
Year 2020, Volume: 9 Issue: 1, 504 - 517, 30.01.2020
https://doi.org/10.28948/ngumuh.605135

Abstract

References

  • [1] SARIER N., ONDER E., “Organic phase change materials and their textile applications: An overview,” Thermochim. Acta, 540, 7–60, 2012.
  • [2] LIU L., SU D., TANG Y., FANG G., “Thermal conductivity enhancement of phase change materials for thermal energy storage: A review,” Renew. Sustain. Energy Rev., 62, 305–317, 2016.
  • [3] HADIYA J.P., SHUKLA A.K.N., “Experimental thermal behavior response of paraffin wax as storage unit,” J. Therm. Anal. Calorim.,124, 1511–1518, 2016.
  • [4] LORWANISHPAISARN N., KASEMSIRI P., POSI P., CHINDAPRASIRT P.,“Characterization of paraffin/ultrasonic-treated diatomite for use as phase change material in thermal energy storage of buildings,” J. Therm. Anal. Calorim.,128, 1293–1303, 2017.
  • [5] ORO E., DE GRACIA A., CASTELL A., FARID M.M., CABEZA L.F., “Review on phase change materials (PCMs) for cold thermal energy storage applications,” Applied Energy, 99, 513-533, 2012.
  • [6] YUAN Y., LI T., ZHANG N., CAO X., YANG X., “Investigation on thermal properties of capric–palmitic–stearic acid/activated carbon composite phase change materials for high-temperature cooling application,” J. Therm. Anal. Calorim., 124, 881-888, 2016.
  • [7] AL HALLAJ S., SELMAN J.R., “A Novel Thermal Management System for Electric Vehicle Batteries Using Phase-Change Material,” J. Electrochem. Soc.,147, 3231-3236, 2000.
  • [8] KHATEEB S.A., FARID M.M., SELMAN J.R., AL-HALLAJ S., “Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter,” J. Power Sources,128, PP. 292-307, 2004.
  • [9] HEMERY C.V., PRA F., ROBIN J.F., MARTY P., “Experimental performances of a battery thermal management system using a phase change material,” J. Power Sources,270,PP.349-358, 2014.
  • [10] SHARMA A., TYAGI V.V., CHEN C.R., BUDDHI D., “Review on thermal energy storage with phase change materials and applications,” Renewable and Sustainable Energy Reviews, 13, PP. 318-345, 2009.
  • [11] STRITIH U., “An experimental study of enhanced heat transfer in rectangular PCM thermal storage,” Int. J. Heat Mass Transf.,47, 2841-2847, 2004.
  • [12] AGYENIM F., EAMES P., SMYTH M., “A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins,” Sol. Energy,83, 1509-1520, 2009.
  • [13] XIAO M., FENG B., GONG K., “Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity,” Energy Convers. Manag.,43, 103-108, 2002.
  • [14] YANG J., YANG L., XU C., DU X.,“Experimental study on enhancement of thermal energy storage with phase-change material,” Appl. Energy,169, 164-176, 2016.
  • [15] WANG Z., ZHANGH., XIA X., “Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure,” Int. J. Heat Mass Transf., 109, 958–970, 2017.
  • [16] JIANG G., HUANG J., LIU M., CAO M., “Experiment and simulation of thermal management for a tube-shell Li-ion battery pack with composite phase change material,” Appl. Therm. Eng., 120, 1-9, 2017.
  • [17] WANG J.F., XIE H.Q., LI Y., XIN Z., “PW based phase change nanocomposites containing gamma-Al(2)O(3),” J. Therm. Anal. Calorim.,102, 709-713, 2010.
  • [18] HO C.J., GAO J.Y., “Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material,” Int. Commun. Heat Mass Transf.,36, 467-470, 2009.
  • [19] TEMEL U.N., CIFTCI B.Y., "Determination of thermal properties of A82 organic phase change material embedded with different type nanoparticles " Isi Bilimi ve Teknigi Dergisi/Journal of Thermal Science & Technology, 38, 75-85, 2018.
  • [20] WANG J., XIE H., XIN Z., LI Y., “Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes,” Carbon, 48, 3979-3986, 2010.
  • [21] YU Z.T., FANG X., FAN L.W., WANG X., XIAO Y.Q., ZENG Y., XU X., HU Y.C., CEN K.F., “Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes,” Carbon, 53, 277-285, 2013.
  • [22] FAN L.W., FANG X., WANG X., ZENG Y., XIAO Y.Q., YU Z.T., XU X., HU Y.C., CEN K.F., “Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials,” Appl. Energy,110, 163-172, 2013.
  • [23] CUI Y., LIU C., HU S., YU X., “The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials,” Sol. Energy Mater. Sol. Cells,95, 1208-1212, 2011.
  • [24] SHI J.N., GER M.D., LIU Y.M., FAN Y.C., WEN N.T., LIN C.K., PU N.W., “Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives,” Carbon, 51, 365-372, 2013.
  • [25] WANG J., XIE H., XIN Z., “Thermal properties of paraffin based composites containing multi-walled carbon nanotubes,” Thermochim. Acta, 488, 49-42, 2009.
  • [26] WANG J., XIE H., XIN Z., LI Y., CHEN L., “Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers,” Sol. Energy,84, 339-344, 2010.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Mechanical Engineering
Authors

Ümit Nazlı Temel 0000-0001-5053-5124

Publication Date January 30, 2020
Submission Date August 12, 2019
Acceptance Date December 6, 2019
Published in Issue Year 2020 Volume: 9 Issue: 1

Cite

APA Temel, Ü. N. (2020). TERMAL OLARAK İYİLEŞTİRİLMİŞ FARKLI ERİME SICAKLIKLARINA SAHİP FAZ DEĞİŞKEN MALZEMELERİN ISIL CEVAPLARININ ARAŞTIRILMASI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1), 504-517. https://doi.org/10.28948/ngumuh.605135
AMA Temel ÜN. TERMAL OLARAK İYİLEŞTİRİLMİŞ FARKLI ERİME SICAKLIKLARINA SAHİP FAZ DEĞİŞKEN MALZEMELERİN ISIL CEVAPLARININ ARAŞTIRILMASI. NOHU J. Eng. Sci. January 2020;9(1):504-517. doi:10.28948/ngumuh.605135
Chicago Temel, Ümit Nazlı. “TERMAL OLARAK İYİLEŞTİRİLMİŞ FARKLI ERİME SICAKLIKLARINA SAHİP FAZ DEĞİŞKEN MALZEMELERİN ISIL CEVAPLARININ ARAŞTIRILMASI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9, no. 1 (January 2020): 504-17. https://doi.org/10.28948/ngumuh.605135.
EndNote Temel ÜN (January 1, 2020) TERMAL OLARAK İYİLEŞTİRİLMİŞ FARKLI ERİME SICAKLIKLARINA SAHİP FAZ DEĞİŞKEN MALZEMELERİN ISIL CEVAPLARININ ARAŞTIRILMASI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9 1 504–517.
IEEE Ü. N. Temel, “TERMAL OLARAK İYİLEŞTİRİLMİŞ FARKLI ERİME SICAKLIKLARINA SAHİP FAZ DEĞİŞKEN MALZEMELERİN ISIL CEVAPLARININ ARAŞTIRILMASI”, NOHU J. Eng. Sci., vol. 9, no. 1, pp. 504–517, 2020, doi: 10.28948/ngumuh.605135.
ISNAD Temel, Ümit Nazlı. “TERMAL OLARAK İYİLEŞTİRİLMİŞ FARKLI ERİME SICAKLIKLARINA SAHİP FAZ DEĞİŞKEN MALZEMELERİN ISIL CEVAPLARININ ARAŞTIRILMASI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9/1 (January 2020), 504-517. https://doi.org/10.28948/ngumuh.605135.
JAMA Temel ÜN. TERMAL OLARAK İYİLEŞTİRİLMİŞ FARKLI ERİME SICAKLIKLARINA SAHİP FAZ DEĞİŞKEN MALZEMELERİN ISIL CEVAPLARININ ARAŞTIRILMASI. NOHU J. Eng. Sci. 2020;9:504–517.
MLA Temel, Ümit Nazlı. “TERMAL OLARAK İYİLEŞTİRİLMİŞ FARKLI ERİME SICAKLIKLARINA SAHİP FAZ DEĞİŞKEN MALZEMELERİN ISIL CEVAPLARININ ARAŞTIRILMASI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 9, no. 1, 2020, pp. 504-17, doi:10.28948/ngumuh.605135.
Vancouver Temel ÜN. TERMAL OLARAK İYİLEŞTİRİLMİŞ FARKLI ERİME SICAKLIKLARINA SAHİP FAZ DEĞİŞKEN MALZEMELERİN ISIL CEVAPLARININ ARAŞTIRILMASI. NOHU J. Eng. Sci. 2020;9(1):504-17.

23135