Research Article
BibTex RIS Cite

İçme sularındaki kloroformun kuvars kristal mikroterazi sensör ile kolay tespiti

Year 2021, Volume: 10 Issue: 1, 79 - 83, 15.01.2021
https://doi.org/10.28948/ngumuh.811606

Abstract

Bu çalışmada, şebeke suyunda fazla bulunması halinde insan sağlığına zararlı olan kloroformun Kuvars Kristal Mikroterazi (QCM) sensör ile kolay tespiti için iki farklı yüzey modifikasyonu yöntemi denenmiştir. İlk kaplama yönteminde, 3-Merkaptopropiltrimetoksisilan’ın (MPS) etil alkol içerisinde sırasıyla asidik ve bazik solüsyonları uygulanmıştır. İkinci kaplama yönteminde ise; ilk aşamada asidik MPS uygulanmış ve daha sonra 2-Merkaptoetanol (ME) kullanılarak yüzey modifikasyonu tamamlanmıştır. Kaplama-1’de, asidik MPS, bazik MPS ve 10 ng/mL kloroform için sırasıyla -180(±30) Hz, -200(±40) Hz ve +40(±10) Hz ortalama frekans kaymaları kaydedilmiştir. Kaplama-2’de, kloroform molekülleri tiyol grupları ile kovalent bağlar oluşturmuş ve asidik MPS, ME ve 10 ng/mL kloroform için elde edilen ortalama frekans kaymaları sırasıyla -180(±30) Hz, -80(±15) Hz ve -70(±8) Hz olmuştur. Ampirik sonuçlara göre, kaplama-2 yöntemi, kaplama-1 yönteminden daha iyi bir yüzey modifikasyonu sunmuştur. MPS + ME ile modifiye edilmiş QCM sensör kullanarak, 0.1, 1, 10 ve 100 ng/mL kloroform konsantrasyonlarında, sırasıyla -2.5(±1), -12(±4), -70(±8) ve -356(±87) Hz rezonans frekansı kaymaları elde edilmiştir.

References

  • [1] G. C. Cao, K. Huang, A.Whelton, A. Shah, Formation and sorption of trihalomethanes from cross-linked polyethylene pipes following chlorinated water exposure. Environmental Science: Water Research & Technology, Environ. Sci.: Water Res. Technol., 6, 2479-2491, 2020. https://doi.org/10.1039/ D0E W00 262C
  • [2] I. Zimoch, and E. Łobos, Evaluation of health risk caused by chloroform in drinking water. Desalination and Water Treatment, 57.3: 1027-1033, 2016. https://doi.org/10.1080/19443994.2015.1033134
  • [3] Y. Fakhri, A. Mohseni-Bandpei, G. Oliveri Conti, H. Keramati, Y. Zandsalimi, N. Amanidaz, and Z. Baninameh, Health risk assessment induced by chloroform content of the drinking water in Iran: systematic review. Toxin reviews, 36(4), 342-351, 2017. https://doi.org/10.1080/15569543.2017.1370601
  • [4] R. Kujlu, M. Mahdavianpour and F. Ghanbari, Multi-route human health risk assessment from trihalomethanes in drinking and non- drinking water in Abadan, Iran. Environmental Science and Pollution Research, 1-10, 2020. https://doi.org/10.1007/s11356-020-09990-9
  • [5] E. Aneheim, S. Palm, H. Jensen, C. Ekberg, P. Albertsson and S. Lindegren, Towards elucidating the radiochemistry of astatine– Behavior in chloroform. Scientific reports, 9(1), 1-9, 2019. https://doi.org/ 10.1038/s41598-019-52365-5
  • [6] J.L.P. Pavón, S.H. Martín, C.G. Pinto and B.M. Cordero, Determination of trihalomethanes in water samples: a review. Analytica chimica acta, 629(1-2), 6-23, 2008. https://doi.org/10.1016/j.aca.2008.09.042
  • [7] M. Villar-Navarro, M. Ramos-Payán, J.L. Pérez-Bernal, R. Fernández- Torres, M. Callejón-Mochón and M.Á. Bello-López, Application of three phase hollow fiber based liquid phase microextraction (HF-LPME) for the simultaneous HPLC determination of phenol substituting compounds (alkyl-, chloro-and nitrophenols). Talanta, 99, 55-61, 2012. https:// doi .org /10.1016/j.talanta.2012.05.020
  • [8] L. Wolska, C. Olszewska, M. Turska, B. Zygmunt and J. Namieśnik, Volatile and semivolatile organo-halogen trace analysis in surface water by direct aqueous injection GC-ECD. Chemosphere, 37(13), 2645-2651, 1998. https://doi.org/10.1016/S0045-6535(98)00163-5
  • [9] M. Biziuk, J. Namieśnik, J. Czerwiński, D. Gorlo, B. Makuch, W. Janicki, and L.Wolska, Occurrence and determination of organic pollutants in tap and surface waters of the Gdańsk district. Journal of Chromatography A, 733(1-2), 171-183, 1996. https:// doi.org/10.1016/0021- 9673(95)00905-1
  • [10] M. Shariati-Rad and F. Fattahi, A simple equipment and colorimetric method for determination of chloroform in water. Analytica Chimica Acta, 1100, 208-214, 2020. https://doi.org/10.1016/j.aca.2019.11. 066
  • [11] P. Ncube, R.W. Krause and B.B. Mamba, Detection of chloroform in water using an azo dye-modified β-cyclodextrin–Epichlorohydrin copolymer as a fluorescent probe. Physics and Chemistry of the Earth, Parts A/B/C, 67, 79-85, 2014. https://doi.org/10.1016/ j.pce.2013.10.009
  • [12] E.R. Carvalho, A.A. Correa, O.N. Oliveira, H.L. Gomes, L.H.C. Mattoso and L. Martin-Neto, Detection of chloroform with a sensor array consisting of electrochemically deposited polythiophenes films: Processes governing the electrical response. Sensor Letters, 5(2), 374- 379, 2007. https://doi.org/10.1166/ sl.2007.204
  • [13] I.Z.M. Ahad, S.W. Harun, S.N. Gan and S.W. Phang, Polyaniline (PAni) optical sensor in chloroform detection. Sensors and Actuators B: Chemical, 261, 97-105, 2018. https://doi.org/10.1016/j.snb.2018.01.082
  • [14] W. Ma, J. Luo, W. Ling and W. Wang, Chloroform-sensing properties of plasmonic nanostructures using poly (methyl methacrylate) transduction layer. Micro & Nano Letters, 8(2), 111-114, 2013. https://doi.org /10.1049/mnl.2012.0824
  • [15] M.M. Rahman, A. Jamal, S.B. Khan and M. Faisal, Fabrication of chloroform sensor based on hydrothermally prepared low- dimensional β-Fe2O3 nanoparticles. Superlattices and Microstructures, 50(4), 369-376, 2011. https://doi.org/10.1016/ j.spmi.2011. 07.016
  • [16] M.M. Rahman, H.B. Balkhoyor, A.M. Asiri and T.R. Sobahi, Development of selective chloroform sensor with transition metal oxide nanoparticle/multi-walled carbon nanotube nanocomposites by modified glassy carbon electrode. Journal of the Taiwan Institute of Chemical Engineers, 66, 336-346, 2016. https:// doi.org/10.1016/j.jtice.2016.06.004
  • [17] H. Mahmud, J. Minnery, Y. Fang, V.A. Pham, R.M. Narbaitz, J.P. Santerre and T. Matsuura, Evaluation of membranes containing surface modifying macromolecules: determination of the chloroform separation from aqueous mixtures via pervaporation. Journal of applied polymer science, 79(1), 183-189, 2001. https://doi.org/10.1002/1097-4628(20010103) 79:1%3C183::AID- APP210%3E3.0.CO;2-E
  • [18] M.C. Soylu, W.H. Shih and W.Y. Shih, Insulation by solution 3- mercaptopropyltrimethoxysilane (mps) coating: Effect of ph, water, and mps content. Industrial & Engineering Chemistry Research, 52(7), 2590-2597, 2013. https://doi.org/10.1021/ie302231g
  • [19] K. Keser, H. Mıhçıokur and M.Ç. Soylu, Simple, rapid and sensitive detection of phenylarsine oxide in drinking water using quartz crystal microbalance: a novel surface functionalization Technique. ChemistrySelect, 5(6), 2057-2062, 2020. https:// doi .org/10.1002/slct.201904821
  • [20] M.X. Nie, X.Z. Li, S.R. Liu and Y. Guo, ZnO/CuO/Al2O3 composites for chloroform detection. Sensors and Actuators B: Chemical, 210, 211- 217, 2015. https://doi.org/10.1016/j.snb.2014.12.099

Easy detection of chloroform in drinking water by quartz crystal microbalance sensor

Year 2021, Volume: 10 Issue: 1, 79 - 83, 15.01.2021
https://doi.org/10.28948/ngumuh.811606

Abstract

In this study, two different surface modification methods have been tested for easy detection of chloroform, which is harmful to human health in case of excess in the mains water, with a Quartz Crystal Microbalance (QCM) sensor. In the first coating method, acidic and basic solutions of 3-mercaptopropyltrimethoxysilane (MPS) in ethyl alcohol were applied respectively. In the second coating method; Acidic MPS was applied in the first step and then surface modification was completed using 2-mercaptoethanol (ME). In Coating-1, average frequency shifts of -180(±30) Hz, -200(±40) Hz and +40(±10) Hz were recorded for acidic MPS, basic MPS and 10 ng mL chloroform, respectively. In Coating-2, chloroform molecules formed covalent bonds with thiol groups and the mean frequency shifts obtained for acidic MPS, ME and 10 ng / mL chloroform were -180(±30) Hz, -80(±15) Hz, and -70(± 8) Hz, respectively. According to empirical results, coating-2 method provided a better surface modification than coating-1 method. Resonance frequency shifts of -2.5(±1), -12(±4), -70(±8) and -356(±87) Hz respectively were obtained at chloroform concentrations of 0.1, 1, 10, and 100 ng/mL by using QCM sensor modified with MPS + ME.

References

  • [1] G. C. Cao, K. Huang, A.Whelton, A. Shah, Formation and sorption of trihalomethanes from cross-linked polyethylene pipes following chlorinated water exposure. Environmental Science: Water Research & Technology, Environ. Sci.: Water Res. Technol., 6, 2479-2491, 2020. https://doi.org/10.1039/ D0E W00 262C
  • [2] I. Zimoch, and E. Łobos, Evaluation of health risk caused by chloroform in drinking water. Desalination and Water Treatment, 57.3: 1027-1033, 2016. https://doi.org/10.1080/19443994.2015.1033134
  • [3] Y. Fakhri, A. Mohseni-Bandpei, G. Oliveri Conti, H. Keramati, Y. Zandsalimi, N. Amanidaz, and Z. Baninameh, Health risk assessment induced by chloroform content of the drinking water in Iran: systematic review. Toxin reviews, 36(4), 342-351, 2017. https://doi.org/10.1080/15569543.2017.1370601
  • [4] R. Kujlu, M. Mahdavianpour and F. Ghanbari, Multi-route human health risk assessment from trihalomethanes in drinking and non- drinking water in Abadan, Iran. Environmental Science and Pollution Research, 1-10, 2020. https://doi.org/10.1007/s11356-020-09990-9
  • [5] E. Aneheim, S. Palm, H. Jensen, C. Ekberg, P. Albertsson and S. Lindegren, Towards elucidating the radiochemistry of astatine– Behavior in chloroform. Scientific reports, 9(1), 1-9, 2019. https://doi.org/ 10.1038/s41598-019-52365-5
  • [6] J.L.P. Pavón, S.H. Martín, C.G. Pinto and B.M. Cordero, Determination of trihalomethanes in water samples: a review. Analytica chimica acta, 629(1-2), 6-23, 2008. https://doi.org/10.1016/j.aca.2008.09.042
  • [7] M. Villar-Navarro, M. Ramos-Payán, J.L. Pérez-Bernal, R. Fernández- Torres, M. Callejón-Mochón and M.Á. Bello-López, Application of three phase hollow fiber based liquid phase microextraction (HF-LPME) for the simultaneous HPLC determination of phenol substituting compounds (alkyl-, chloro-and nitrophenols). Talanta, 99, 55-61, 2012. https:// doi .org /10.1016/j.talanta.2012.05.020
  • [8] L. Wolska, C. Olszewska, M. Turska, B. Zygmunt and J. Namieśnik, Volatile and semivolatile organo-halogen trace analysis in surface water by direct aqueous injection GC-ECD. Chemosphere, 37(13), 2645-2651, 1998. https://doi.org/10.1016/S0045-6535(98)00163-5
  • [9] M. Biziuk, J. Namieśnik, J. Czerwiński, D. Gorlo, B. Makuch, W. Janicki, and L.Wolska, Occurrence and determination of organic pollutants in tap and surface waters of the Gdańsk district. Journal of Chromatography A, 733(1-2), 171-183, 1996. https:// doi.org/10.1016/0021- 9673(95)00905-1
  • [10] M. Shariati-Rad and F. Fattahi, A simple equipment and colorimetric method for determination of chloroform in water. Analytica Chimica Acta, 1100, 208-214, 2020. https://doi.org/10.1016/j.aca.2019.11. 066
  • [11] P. Ncube, R.W. Krause and B.B. Mamba, Detection of chloroform in water using an azo dye-modified β-cyclodextrin–Epichlorohydrin copolymer as a fluorescent probe. Physics and Chemistry of the Earth, Parts A/B/C, 67, 79-85, 2014. https://doi.org/10.1016/ j.pce.2013.10.009
  • [12] E.R. Carvalho, A.A. Correa, O.N. Oliveira, H.L. Gomes, L.H.C. Mattoso and L. Martin-Neto, Detection of chloroform with a sensor array consisting of electrochemically deposited polythiophenes films: Processes governing the electrical response. Sensor Letters, 5(2), 374- 379, 2007. https://doi.org/10.1166/ sl.2007.204
  • [13] I.Z.M. Ahad, S.W. Harun, S.N. Gan and S.W. Phang, Polyaniline (PAni) optical sensor in chloroform detection. Sensors and Actuators B: Chemical, 261, 97-105, 2018. https://doi.org/10.1016/j.snb.2018.01.082
  • [14] W. Ma, J. Luo, W. Ling and W. Wang, Chloroform-sensing properties of plasmonic nanostructures using poly (methyl methacrylate) transduction layer. Micro & Nano Letters, 8(2), 111-114, 2013. https://doi.org /10.1049/mnl.2012.0824
  • [15] M.M. Rahman, A. Jamal, S.B. Khan and M. Faisal, Fabrication of chloroform sensor based on hydrothermally prepared low- dimensional β-Fe2O3 nanoparticles. Superlattices and Microstructures, 50(4), 369-376, 2011. https://doi.org/10.1016/ j.spmi.2011. 07.016
  • [16] M.M. Rahman, H.B. Balkhoyor, A.M. Asiri and T.R. Sobahi, Development of selective chloroform sensor with transition metal oxide nanoparticle/multi-walled carbon nanotube nanocomposites by modified glassy carbon electrode. Journal of the Taiwan Institute of Chemical Engineers, 66, 336-346, 2016. https:// doi.org/10.1016/j.jtice.2016.06.004
  • [17] H. Mahmud, J. Minnery, Y. Fang, V.A. Pham, R.M. Narbaitz, J.P. Santerre and T. Matsuura, Evaluation of membranes containing surface modifying macromolecules: determination of the chloroform separation from aqueous mixtures via pervaporation. Journal of applied polymer science, 79(1), 183-189, 2001. https://doi.org/10.1002/1097-4628(20010103) 79:1%3C183::AID- APP210%3E3.0.CO;2-E
  • [18] M.C. Soylu, W.H. Shih and W.Y. Shih, Insulation by solution 3- mercaptopropyltrimethoxysilane (mps) coating: Effect of ph, water, and mps content. Industrial & Engineering Chemistry Research, 52(7), 2590-2597, 2013. https://doi.org/10.1021/ie302231g
  • [19] K. Keser, H. Mıhçıokur and M.Ç. Soylu, Simple, rapid and sensitive detection of phenylarsine oxide in drinking water using quartz crystal microbalance: a novel surface functionalization Technique. ChemistrySelect, 5(6), 2057-2062, 2020. https:// doi .org/10.1002/slct.201904821
  • [20] M.X. Nie, X.Z. Li, S.R. Liu and Y. Guo, ZnO/CuO/Al2O3 composites for chloroform detection. Sensors and Actuators B: Chemical, 210, 211- 217, 2015. https://doi.org/10.1016/j.snb.2014.12.099
There are 20 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Electrical and Electronics Engineering
Authors

Mehmet Cagri Soylu 0000-0001-5213-2679

Publication Date January 15, 2021
Submission Date October 17, 2020
Acceptance Date December 2, 2020
Published in Issue Year 2021 Volume: 10 Issue: 1

Cite

APA Soylu, M. C. (2021). Easy detection of chloroform in drinking water by quartz crystal microbalance sensor. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 79-83. https://doi.org/10.28948/ngumuh.811606
AMA Soylu MC. Easy detection of chloroform in drinking water by quartz crystal microbalance sensor. NOHU J. Eng. Sci. January 2021;10(1):79-83. doi:10.28948/ngumuh.811606
Chicago Soylu, Mehmet Cagri. “Easy Detection of Chloroform in Drinking Water by Quartz Crystal Microbalance Sensor”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, no. 1 (January 2021): 79-83. https://doi.org/10.28948/ngumuh.811606.
EndNote Soylu MC (January 1, 2021) Easy detection of chloroform in drinking water by quartz crystal microbalance sensor. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 1 79–83.
IEEE M. C. Soylu, “Easy detection of chloroform in drinking water by quartz crystal microbalance sensor”, NOHU J. Eng. Sci., vol. 10, no. 1, pp. 79–83, 2021, doi: 10.28948/ngumuh.811606.
ISNAD Soylu, Mehmet Cagri. “Easy Detection of Chloroform in Drinking Water by Quartz Crystal Microbalance Sensor”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/1 (January 2021), 79-83. https://doi.org/10.28948/ngumuh.811606.
JAMA Soylu MC. Easy detection of chloroform in drinking water by quartz crystal microbalance sensor. NOHU J. Eng. Sci. 2021;10:79–83.
MLA Soylu, Mehmet Cagri. “Easy Detection of Chloroform in Drinking Water by Quartz Crystal Microbalance Sensor”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 1, 2021, pp. 79-83, doi:10.28948/ngumuh.811606.
Vancouver Soylu MC. Easy detection of chloroform in drinking water by quartz crystal microbalance sensor. NOHU J. Eng. Sci. 2021;10(1):79-83.

23135