Research Article
BibTex RIS Cite

Determination of gastrointestinal pathogens in Tunceli biological wastewater treatment plant

Year 2022, Volume: 11 Issue: 3, 550 - 556, 18.07.2022
https://doi.org/10.28948/ngumuh.1090090

Abstract

In this study, gastrointestinal pathogens (bacterial gastroenteritis, viral gastroenteritis, enteroviruses, human parechovirus, adenoviruses, stool parasites) in Tunceli biological wastewater treatment plant (TBAAT) are investigated. The gastrointestinal pathogen analyzes are done in influent and effluent of TBAAT. According to obtained results, enterohemorragic/verotoxin-producing Esherichia coli, salmonella, noroviruses G1, noroviruses G2, astroviruses, adenoviruses, and Giardia lamblia agents were detected in influents of the TBAAT. Although these agents are present in the influents of TBAAT, bacterial agents causing gastroenteritis, enteroviruses, parechoviruses, adenoviruses (EPA) and stool parasites are not detected in effluents of the TBAAT. Noroviruses G2, astroviruses and adenoviruses from viral agents were detected as positive (+) in effluents of the TBAAT.

References

  • E. K. Lipp, S. A. Farrah and J. B. Rose, Assessment and impact of microbial fecal pollution and human enteric pathogens in a coastal community. Marine Pollution Bulletin, 42, 286-293, 2001. https://doi.org/10.1016/s0025-326x(00)00152-1.
  • V. E. Prez, P. I. Gil, C. F. Temprana, P. R. Cuadrado, L. C. Martínez, M. O. Giordano, G. Masachessi, M. B. Isa, V. E. Ré, J. V. Paván, S. V. Nates and P. A. Barril, Quantification of human infection risk caused by rotavirus in surface waters from Córdoba, Argentina. Science of The Total Environment, 538, 220-229, 2015. https://doi.org/10.1016/j.scitotenv.2015.08.041.
  • K. Krumhansl, W. Krkosek, M. Greenwood, C. Ragush, J. Schmidt, J. Grant, J. Barrell, L. Lu, B. Lam, G. Gagnon and R. Jamieson, Assessment of Arctic community wastewater impacts on marine benthic invertebrates. Environmental Science and Technology, 49 (2), 760-766, 2015. https://doi.org/10.1021/es503330n.
  • Y. Huang, L. Truelstrup Hansen, C. Ragush and R. Jamieson, Disinfection and removal of human pathogenic bacteria in arctic waste stabilization ponds. Environmental Science and Pollution Research, 25 (33), 32881-32893, 2018. https://doi.org/10.1007/s11356-017-8816-9.
  • K. Daley, R. Jamieson, D. Rainham, L. T. Hansen and S. L. Harper, Microbial risk assessment and mitigation options for wastewater treatment in Arctic Canada. Microbial Risk Analysis, 100186, 2022. https://doi.org/0.1016/j.mran.2021.100186.
  • S. Donaldson, J. Van Oostdam, C. Tikhonov, M. Feeley, B. Armstrong, P. Ayotte, O. Boucher, W. Bowers, L. Chan, F. Dallaaire, R. Dallaire, E. Dewailly, J. Edwards, G. M. Egeland, J. Fontaine, C. Furgal, T. Leech, E. Loring, G. Muckle, T. Nancarrow, D. Pereg, P. Plusquellec, M. Potyrala, O. Receveur and R. G. Shearer, Environmental contaminants and human health in the Canadian Arctic. Science of The Total Environment, 408 (22), 5165-5234, 2010. https://doi.org/10.1016/j.scitotenv.2010.04.059.
  • L. M. Nilsson, G. Destouni, J. Berner, A. A. Dudarev, G. Mulvad, J. Ø. Oland, A. Parkinson, C. Tikhonov, A. Rautio and B. Evengård, A call for urgent monitoring of food and water security based on relevant indicators for the Arctic. Ambio, 42, 816-822, 2013. https://doi.org/10.1007/s13280-013-0427-1.
  • H. Leclerc, L. Schwartzbrod and E. Dei-Cas, Microbial agents associated with waterborne disease, Critical Review Microbiology, 28 (4), 371-409, 2002. https://doi.org/10.1080/1040-840291046768.
  • M. A. Martínez, L. Soto-Del Rio Mde, R. M. Gutierrez, C. Y. Chiu, A. L. Greninger, J. F. Contreras, S. Lopez, C. F. Arias and P. Isa, DNA Microarray for Detection of Gastrointestinal Viruses. Journal of Clinical Microbiology, 53 (1), 136-145, 2015. https://doi.org/ 10.1128/JCM.01317-14.
  • WHO, World health statistics, World Health Organization, Geneva, Switzerland, 2011.
  • M. Moazeni, M. Nikaeen, M. Hadi, S. Moghim, L. Mouhebat, M. Hatamzadeh and A. Hassanzadeh, Estimation of health risks caused by exposure to enteroviruses from agricultural application of wastewater effluents. Water Research, 125, 104-113, 2017. https://doi.org/10.1016/j.watres.2017.08.028.
  • C. P. Gerba and J. E. Smith, Sources of pathogenic microorganisms and their fate during land application of wastes. Journal of Environmental Quality, 34, 42-48, 2005. https://doi.org/10.2134/jeq2005.0042a.
  • A. Kundu, G. McBride and S. Wuertz, Adenovirus-associated health risks for recreational activities in a multi-use coastal watershed based on site-specific quantitative microbial risk assessment. Water Research, 47, 6309-6325, 2013. https://doi.org/10.1016/j.watres.2013.08.002.
  • F. G. Masclaux, P. Hotz, D. Gashi, D. Savova-Bianchi and A. Oppliger, Assessment of airborne virus contamination in wastewater treatment plants. Environment Research, 133, 260-265, 2014. https://doi.org/10.1016/j.envres.2014.06.002.
  • T. Gao, R. Chen, X. Wang, H. Hao, Y. Li, J. Zhou and L. Zhang, Application of disease burden to quantitative assessment of health hazards for a decentralized water reuse system. Science of the Total Environment, 551-552, 83-91, 2016. https://doi.org/10.1016/j.scitotenv.2016.01.210.
  • M. J. Carter, Enterically Infecting Viruses: Pathogenicity, Transmission and Significance for Food and Waterborne Infection. Journal of Applied Microbiology, 1354-1380, 2005. https://doi.org/10.1111/j.1365-2672.2005.02635.x.
  • I. Uhnoo, G. Wadell, L. Svenson and M. E. Johansson, Importance of enteric adenoviruses 40 and 41 in acute gastroenteritis in infants and children. Journal of Clinic Microbiology, 20, 365-372, 1984. https://doi.org/10.1128/jcm.20.3.365-372.1984.
  • K. L. Kotloff, G. A. Losonsky, J. G. Morris, S. S. Wasserman, N. Singh-Naz and M. M. Levine, Enteric adenovirus infection and childhood diarrhoea: an epidemiological survey in three clinical settings. Pediatrics, 84, 219-225, 1989.
  • L. A. Sanz and B. M. Gawlik, Water Reuse in Europe Relevant Guidelines, Needs for and Barriers to Innovation, Publications Office of the European Union, Luxembourg, 2014. https://doi.org/10.2788/29234.
  • N. V. Paranychianakis, M. Salgot, S. A. Snyder and A. N. Angelakis, Water reuse in EU states: necessity for uniform criteria to mitigate human and environmental risks. Critical Reviews in Environmental Science and Technology, 45, 1409-1468, 2015. https://doi.org/10.1080/10643389.2014.955629.
  • M. De Sanctis, G. Del Moro, S. Chimienti, P. Ritelli, C. Levantesi and C. Di Iaconi, Removal of pollutants and pathogens by a simplified treatment scheme for municipal wastewater reuse in agriculture. Science of The Total Environment, 580, 17-25, 2017. https://doi.org/10.1016/j.scitotenv.2016.12.002
  • R. Contreras-Omaña, A.E. Escorcia-Saucedo and J. A. Velarde-Ruiz Velasco, Prevalence and impact of antimicrobial resistance in gastrointestinal infections: A review. Revista de Gastroenterología de México, 86 (3), 265-275, 2021. https://doi.org/10.1016/j.rgmxen.2021.06.004.
  • S. Bahrami, M. Zarei and K. Liljebjelke, Chlorine-stressed Salmonella cells are significantly more engulfed by Acanthamoeba trophozoites and have a longer intracystic survival than the non-stressed cells. Food Microbiology, 102, 103927, 2022. https://doi.org/10.1016/j.fm.2021.103927.
  • M. Emch, M. Ali and M. Yunus, Risk areas and neighborhood-level risk factors for Shigella dysenteriae 1 and Shigella flexneri. Health Place, 14 (1), 96-105, 2008. https://doi.org/10.1016/j.healthplace.2007.05.004.
  • D. Singh and V. Agarwal, An in vivo acute toxicity and anti-shigellosis effect of designed formulation on rat. Journal of Ayurveda and Integrative Medicine, 100536, 2022. https://doi.org/10.1016/j.jaim.2021.100536.
  • J. G. Bartlett, Narrative review: the new epidemic of Clostridium difficile-associated enteric disease, Ann Intern Med, 145, 758-764, 2006. https://doi.org/10.7326/0003-4819-145-10-200611210-00008.
  • F. Skyum, M. Chen and C. B. Mogensen, Evaluation of a new fast in-house Real-Time PCR assay for detecting both Norovirus and toxigenic Clostridium difficile using fecal sample and rectal swab. American Journal of Infection Control, 50 (1), 67-71, 2022. https://doi.org/10.1016/j.ajic.2021.08.026
  • E. J. Bottone, Yersinia enterocolitica: revisitation of an enduring human pathogen. Clinical Microbiology Newsletter, 37, 1-8, 2015. https://doi.org/10.1016/j.clinmicnews.2014.12.003.
  • M. Adeolu, S. Alnajar, S. Naushad and R. S. Gupta, Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov, International Journal of Systematic and Evolutionary Microbiology, 66, 5575-5599, 2016. https://doi.org/10.1099/ijsem.0.001485.
  • D. Cristiano, M. F. Peruzy, M. Aponte, A. Mancusi, Y. T. R. Proroga, F. Capuano and N. Murrub, Comparison of droplet digital PCR vs real-time PCR for Yersinia enterocolitica detection in vegetables. International Journal of Food Microbiology, 354, 109321, 2021. https://doi.org/10.1016/j.ijfoodmicro.2021.109321.
  • B. T. F. Martins, E. C. de Azevedo, R. S. Yamatogi, D. R. Call and L. A. Nero, Persistence of Yersinia enterocolitica bio-serotype 4/O:3 in a pork production chain in Minas Gerais, Brazi. Food Microbiology, 94, 103660, 2021. https://doi.org/10.1016/j.fm.2020.103660.
  • P. Karanis, C. Kourenti and H. Smith, Waterborne transmission of protozoan parasites: a worldwide review of outbreaks and lessons learnt. Journal of Water Health, 5, 1-38, 2007. https://doi.org/10.2166/wh.2006.002.
  • S. Baldursson and P. Karanis, Waterborne transmission of protozoan parasites: review of worldwide outbreaks - an update 2004–2010. Water Research, 45, 6603-6614, 2011. https://doi.org/10.1016/j.watres.2011.10.013.
  • J. Plutzer, and P. Karanis, Neglected waterborne parasitic protozoa and their detection in water. Water Research, 101, 318-332, 2016. https://doi.org/10.1016/j.watres.2016.05.085.
  • S. A. Collier, L. Deng, E. A. Adam, K. M. Benedict, E. M. Beshearse, A. J. Blackstock, B. B. Bruce, G. Derado, C. Edens, K. E. Fullerton, J. W. Gargano, A. L. Geissler, A. J. Hall, A. H. Havelaar, V. R. Hill, R. M. Hoekstra, S. C. Reddy, E. Scallan, E. K. Stokes, J. S. Yoder and M. J. Beach, Estimate of burden and direct healthcare cost of infectious waterborne disease in the United States. Emerging of Infection Diseases., 27 (1), 140-149, 2021. https://doi.org/10.3201/eid2701.190676
  • L. Teel, A. Olivieri, R. Danielson, B. Delić, B. Pecson and J. Crook, Protozoa reduction through secondary wastewater treatment in two water reclamation facilities. Science of The Total Environment, 807 (3), 151053, 2022. https://doi.org/10.1016/j.scitotenv.2021.151053
  • A. Efstratiou, J. E. Ongerth and P. Karanis, Waterborne transmission of protozoan parasites: review of worldwide outbreaks - an update 2011–2016. Water Research, 114, 14-22, 2017. https://doi.org/10.1016/j.watres.2017.01.036
  • L. P. Leonel and A. L. Tonetti, Wastewater reuse for crop irrigation: Crop yield, soil and human health implications based on giardiasis epidemiology. Science of The Total Environment, 775, 145833, 2021. https://doi.org/10.1016/j.scitotenv.2021.145833
  • J. R. Gumbo, E. M. Malaka, J. O. Odiyo and L. Nare, The health implications of wastewater reuse in vegetable irrigation: a case study from Malamulele, South Africa. International Journal of Environment Health Research, 20, 201-211, 2010. https://doi.org/10.1080/09603120903511093.
  • R. A. Guy, P. Payment, U. J. Krull and P .A. Horgen, Real-time PCR for quantification of Giardia and Cryptosporidium in environmental water samples and wastewater. Applied and Environment Microbiology, 69, 5178-5185, 2003. https://doi.org/10.1128/AEM.69.9.5178-5185.2003.
  • E. Seto, A. W. Olivieri and R. E. Danielson, Quantitative microbial risk assessment used to evaluate seasonal wastewater treatment limits: case study in Vacaville, CA, Water Sci. Technol. Water Supply, 18, 910-925, 2018. https://doi.org/10.2166/ws.2017.162.
  • M. E. Ellis, B. Watson and B. K. Mandal, Micro-organisms in gastroenteritis. Archives of Disease Childhood, 59, 848-855, 1984. https://doi.org/10.1136/adc.59.9.848.
  • J. E. Herrmann, D. N. Taylor, P. Echeverria and N. R. Blacklow, Astroviruses as a cause of gastroenteritis in children. N Engl J Med 324, 1757-1760, 1991. https://doi.org/10.1056/NEJM199106203242501.
  • E. Y. Seto, J. Konnan, A. W. Olivieri and R. E. Danielson, A quantitative microbial risk assessment of wastewater plant blending: case study in San Francisco Bay. Environmental Science: Water Research and Technology, 2, 134-145, 2016. https://doi.org/10.1039/C5EW00147A.
  • G. Sedmak, D. Bina, J. MacDonald and L. Couillard, Nine-year study of the occurrence of culturable viruses in source water for two drinking water treatment plants and the influent and effluent of a wastewater treatment plant in Milwaukee, Wisconsin (August 1994 through July 2003). Applied and Environment Microbiology, 1042-1050, 2005. https://doi.org/10.1128/AEM.71.2.1042-1050.2005.
  • J. Ottoson, A. Hansen, B. Bjorlenius, H. Norder and T. A. Stenstrom, Removal of viruses, parasitic protozoa and microbial indicators in conventional and membrane processes in a wastewater pilot plant. Water Research, 40, 1449-1457, 2006. https://doi.org/10.1016/j.watres.2006.01.039.
  • S. Jebri, J. Jofre, I. Barkallah, M. Saidi and F. Hmaied, Presence and fate of coliphages and enteric viruses in three wastewater treatment plants effluents and activated sludge from Tunisia. Environmental Science and Pollution Research, 19, 2195-2201, 2012. https://doi.org/10.1007/s11356-011-0722-y
  • B. Pecson, E. Darby, M. Bartolo, G. Di Giovanni, M. Leddy, K. Nelson, C. Rock, T. Slifko and A. Olivieri, DPR-2: Pathogen Monitoring in Raw Wastewater, WRF 4989, The Water Research Foundation, Alexandria, VA Office , https://www.waterrf.org/research/projects/pathogen-monitoring-untreated-wastewater, Accessed 10 March 2021.
  • M. Kitajima, E. Haramoto, B. C. Iker, C. P. Gerba, Occurrence of Cryptosporidium, Giardia, and Cyclospora in influent and effluent water at wastewater treatment plants in Arizona. Science of The Total Environment, 484, 129-136, 2014. https://doi.org/10.1016/j.scitotenv.2014.03.036.
  • S. N. Gosling and N. W. Arnell, A global assessment of the impact of climate change on water scarcity. Climate Change, 134, 371-385, 2016. https://doi.org/10.1007/s10584-013-0853-x.
  • UNESCO, United Nations Educational Scientific and Cultural Organization, The 1st UN World Water Development Report: Water for People, Water for Life, http://webworld.unesco.org/water/wwap/wwdr/wwdr1/table_contents/index.shtml, Accessed 12 April 2022.
  • A. Levine and T. Asano, Recovering sustainable water from wastewater. Environmental Science and Technology, 1, 201-208, 2004. https://doi.org/10.1021/es040504n.
  • B. F. F. Pereira, Z. L. He, M. S. Silva, U. Herpin, S. F. Nogueira, C. R. Montes and A. J. Melfi, Reclaimed wastewater: impact on soil–plant system under tropical conditions. Journal of Hazardous Materials, 192, 54-61, 2011. https://doi.org/10.1016/j.jhazmat.2011.04.095.
  • C. N. Berger, S. V. Sodha, R. K. Shaw, P. M. Griffin, D. Pink, P. Hand and G. Frankel, Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environment Microbiology, 12, 2385-2397, 2010. https://doi.org/10.1111/j.1462-2920.2010.02297.x.
  • EFSA, Panel on Biological Hazards (BIOHAZ) Panel; Scientific Opinion on the risk posed by pathogens in food of non-animal origin. Part 1 (outbreak data analysis and risk ranking of food/pathogen combinations). 138, 2013. https://doi.org/10.2903/j.efsa.2013.3025.
  • J. N. Ssemanda, M. W. Reij, G. van Middendorp, E. Bouw, R. van der Plaats, E. Franz, C. M. Muvunyi, M. C. Bagabe, M. H. Zwietering and H. Joosten, Foodborne pathogens and their risk exposure factors associated with farm vegetables in Rwanda. Food Control, 89, 86-96, 2018. https://doi.org/10.1016/j.foodcont.2017.12.034.
  • S. M. Markland, D. Ingram, K. E. Kniel, M. Sharma, Water for agriculture: the convergence of sustainability and safety. Preharvest Food Safety, 143-157, 2018. https://doi.org/10.1128/microbiolspec.PFS-0014-2016.

Tunceli biyolojik atıksu arıtma tesisinde gastrointestinal patojenlerin belirlenmesi

Year 2022, Volume: 11 Issue: 3, 550 - 556, 18.07.2022
https://doi.org/10.28948/ngumuh.1090090

Abstract

Bu çalışmada, Tunceli ili biyolojik atıksu arıtma tesisinde (TBAAT) gastrointestinal patojenler (bakteriyel gastroenterit, viral gastroenterit, enterovirüsler, insan parekovirüsleri, adenovirüsler, dışkı parazitleri) incelenmiştir. TBAAT 'nin giriş ve çıkış suyunda gastrointestinal patojen analizleri yapılmıştır. Elde edilen sonuçlara göre TBAAT 'nin giriş suyunda enterohemorajik/verotoksin üreten Esherichia coli, salmonella, norovirüsler G1, norovirüsler G2, astrovirüsler, adenovirüsler ve Giardia lamblia ajanları tespit edilmiştir. Bu ajanlar TBAAT 'nin giriş suyunda mevcut olmasına rağmen, TBAAT 'nin çıkış suyunda gastroenterite sebep bakteriyel etkenler, enterovirüsler, parekovirüsler, adenovirüsler (EPA) ve dışkı parazitleri tespit edilmemiştir. TBAAT çıkış suyunda viral ajanlardan olan norovirüsler G2, astrovirüsler ve adenovirüsler pozitif (+) olarak tespit edilmiştir.

References

  • E. K. Lipp, S. A. Farrah and J. B. Rose, Assessment and impact of microbial fecal pollution and human enteric pathogens in a coastal community. Marine Pollution Bulletin, 42, 286-293, 2001. https://doi.org/10.1016/s0025-326x(00)00152-1.
  • V. E. Prez, P. I. Gil, C. F. Temprana, P. R. Cuadrado, L. C. Martínez, M. O. Giordano, G. Masachessi, M. B. Isa, V. E. Ré, J. V. Paván, S. V. Nates and P. A. Barril, Quantification of human infection risk caused by rotavirus in surface waters from Córdoba, Argentina. Science of The Total Environment, 538, 220-229, 2015. https://doi.org/10.1016/j.scitotenv.2015.08.041.
  • K. Krumhansl, W. Krkosek, M. Greenwood, C. Ragush, J. Schmidt, J. Grant, J. Barrell, L. Lu, B. Lam, G. Gagnon and R. Jamieson, Assessment of Arctic community wastewater impacts on marine benthic invertebrates. Environmental Science and Technology, 49 (2), 760-766, 2015. https://doi.org/10.1021/es503330n.
  • Y. Huang, L. Truelstrup Hansen, C. Ragush and R. Jamieson, Disinfection and removal of human pathogenic bacteria in arctic waste stabilization ponds. Environmental Science and Pollution Research, 25 (33), 32881-32893, 2018. https://doi.org/10.1007/s11356-017-8816-9.
  • K. Daley, R. Jamieson, D. Rainham, L. T. Hansen and S. L. Harper, Microbial risk assessment and mitigation options for wastewater treatment in Arctic Canada. Microbial Risk Analysis, 100186, 2022. https://doi.org/0.1016/j.mran.2021.100186.
  • S. Donaldson, J. Van Oostdam, C. Tikhonov, M. Feeley, B. Armstrong, P. Ayotte, O. Boucher, W. Bowers, L. Chan, F. Dallaaire, R. Dallaire, E. Dewailly, J. Edwards, G. M. Egeland, J. Fontaine, C. Furgal, T. Leech, E. Loring, G. Muckle, T. Nancarrow, D. Pereg, P. Plusquellec, M. Potyrala, O. Receveur and R. G. Shearer, Environmental contaminants and human health in the Canadian Arctic. Science of The Total Environment, 408 (22), 5165-5234, 2010. https://doi.org/10.1016/j.scitotenv.2010.04.059.
  • L. M. Nilsson, G. Destouni, J. Berner, A. A. Dudarev, G. Mulvad, J. Ø. Oland, A. Parkinson, C. Tikhonov, A. Rautio and B. Evengård, A call for urgent monitoring of food and water security based on relevant indicators for the Arctic. Ambio, 42, 816-822, 2013. https://doi.org/10.1007/s13280-013-0427-1.
  • H. Leclerc, L. Schwartzbrod and E. Dei-Cas, Microbial agents associated with waterborne disease, Critical Review Microbiology, 28 (4), 371-409, 2002. https://doi.org/10.1080/1040-840291046768.
  • M. A. Martínez, L. Soto-Del Rio Mde, R. M. Gutierrez, C. Y. Chiu, A. L. Greninger, J. F. Contreras, S. Lopez, C. F. Arias and P. Isa, DNA Microarray for Detection of Gastrointestinal Viruses. Journal of Clinical Microbiology, 53 (1), 136-145, 2015. https://doi.org/ 10.1128/JCM.01317-14.
  • WHO, World health statistics, World Health Organization, Geneva, Switzerland, 2011.
  • M. Moazeni, M. Nikaeen, M. Hadi, S. Moghim, L. Mouhebat, M. Hatamzadeh and A. Hassanzadeh, Estimation of health risks caused by exposure to enteroviruses from agricultural application of wastewater effluents. Water Research, 125, 104-113, 2017. https://doi.org/10.1016/j.watres.2017.08.028.
  • C. P. Gerba and J. E. Smith, Sources of pathogenic microorganisms and their fate during land application of wastes. Journal of Environmental Quality, 34, 42-48, 2005. https://doi.org/10.2134/jeq2005.0042a.
  • A. Kundu, G. McBride and S. Wuertz, Adenovirus-associated health risks for recreational activities in a multi-use coastal watershed based on site-specific quantitative microbial risk assessment. Water Research, 47, 6309-6325, 2013. https://doi.org/10.1016/j.watres.2013.08.002.
  • F. G. Masclaux, P. Hotz, D. Gashi, D. Savova-Bianchi and A. Oppliger, Assessment of airborne virus contamination in wastewater treatment plants. Environment Research, 133, 260-265, 2014. https://doi.org/10.1016/j.envres.2014.06.002.
  • T. Gao, R. Chen, X. Wang, H. Hao, Y. Li, J. Zhou and L. Zhang, Application of disease burden to quantitative assessment of health hazards for a decentralized water reuse system. Science of the Total Environment, 551-552, 83-91, 2016. https://doi.org/10.1016/j.scitotenv.2016.01.210.
  • M. J. Carter, Enterically Infecting Viruses: Pathogenicity, Transmission and Significance for Food and Waterborne Infection. Journal of Applied Microbiology, 1354-1380, 2005. https://doi.org/10.1111/j.1365-2672.2005.02635.x.
  • I. Uhnoo, G. Wadell, L. Svenson and M. E. Johansson, Importance of enteric adenoviruses 40 and 41 in acute gastroenteritis in infants and children. Journal of Clinic Microbiology, 20, 365-372, 1984. https://doi.org/10.1128/jcm.20.3.365-372.1984.
  • K. L. Kotloff, G. A. Losonsky, J. G. Morris, S. S. Wasserman, N. Singh-Naz and M. M. Levine, Enteric adenovirus infection and childhood diarrhoea: an epidemiological survey in three clinical settings. Pediatrics, 84, 219-225, 1989.
  • L. A. Sanz and B. M. Gawlik, Water Reuse in Europe Relevant Guidelines, Needs for and Barriers to Innovation, Publications Office of the European Union, Luxembourg, 2014. https://doi.org/10.2788/29234.
  • N. V. Paranychianakis, M. Salgot, S. A. Snyder and A. N. Angelakis, Water reuse in EU states: necessity for uniform criteria to mitigate human and environmental risks. Critical Reviews in Environmental Science and Technology, 45, 1409-1468, 2015. https://doi.org/10.1080/10643389.2014.955629.
  • M. De Sanctis, G. Del Moro, S. Chimienti, P. Ritelli, C. Levantesi and C. Di Iaconi, Removal of pollutants and pathogens by a simplified treatment scheme for municipal wastewater reuse in agriculture. Science of The Total Environment, 580, 17-25, 2017. https://doi.org/10.1016/j.scitotenv.2016.12.002
  • R. Contreras-Omaña, A.E. Escorcia-Saucedo and J. A. Velarde-Ruiz Velasco, Prevalence and impact of antimicrobial resistance in gastrointestinal infections: A review. Revista de Gastroenterología de México, 86 (3), 265-275, 2021. https://doi.org/10.1016/j.rgmxen.2021.06.004.
  • S. Bahrami, M. Zarei and K. Liljebjelke, Chlorine-stressed Salmonella cells are significantly more engulfed by Acanthamoeba trophozoites and have a longer intracystic survival than the non-stressed cells. Food Microbiology, 102, 103927, 2022. https://doi.org/10.1016/j.fm.2021.103927.
  • M. Emch, M. Ali and M. Yunus, Risk areas and neighborhood-level risk factors for Shigella dysenteriae 1 and Shigella flexneri. Health Place, 14 (1), 96-105, 2008. https://doi.org/10.1016/j.healthplace.2007.05.004.
  • D. Singh and V. Agarwal, An in vivo acute toxicity and anti-shigellosis effect of designed formulation on rat. Journal of Ayurveda and Integrative Medicine, 100536, 2022. https://doi.org/10.1016/j.jaim.2021.100536.
  • J. G. Bartlett, Narrative review: the new epidemic of Clostridium difficile-associated enteric disease, Ann Intern Med, 145, 758-764, 2006. https://doi.org/10.7326/0003-4819-145-10-200611210-00008.
  • F. Skyum, M. Chen and C. B. Mogensen, Evaluation of a new fast in-house Real-Time PCR assay for detecting both Norovirus and toxigenic Clostridium difficile using fecal sample and rectal swab. American Journal of Infection Control, 50 (1), 67-71, 2022. https://doi.org/10.1016/j.ajic.2021.08.026
  • E. J. Bottone, Yersinia enterocolitica: revisitation of an enduring human pathogen. Clinical Microbiology Newsletter, 37, 1-8, 2015. https://doi.org/10.1016/j.clinmicnews.2014.12.003.
  • M. Adeolu, S. Alnajar, S. Naushad and R. S. Gupta, Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov, International Journal of Systematic and Evolutionary Microbiology, 66, 5575-5599, 2016. https://doi.org/10.1099/ijsem.0.001485.
  • D. Cristiano, M. F. Peruzy, M. Aponte, A. Mancusi, Y. T. R. Proroga, F. Capuano and N. Murrub, Comparison of droplet digital PCR vs real-time PCR for Yersinia enterocolitica detection in vegetables. International Journal of Food Microbiology, 354, 109321, 2021. https://doi.org/10.1016/j.ijfoodmicro.2021.109321.
  • B. T. F. Martins, E. C. de Azevedo, R. S. Yamatogi, D. R. Call and L. A. Nero, Persistence of Yersinia enterocolitica bio-serotype 4/O:3 in a pork production chain in Minas Gerais, Brazi. Food Microbiology, 94, 103660, 2021. https://doi.org/10.1016/j.fm.2020.103660.
  • P. Karanis, C. Kourenti and H. Smith, Waterborne transmission of protozoan parasites: a worldwide review of outbreaks and lessons learnt. Journal of Water Health, 5, 1-38, 2007. https://doi.org/10.2166/wh.2006.002.
  • S. Baldursson and P. Karanis, Waterborne transmission of protozoan parasites: review of worldwide outbreaks - an update 2004–2010. Water Research, 45, 6603-6614, 2011. https://doi.org/10.1016/j.watres.2011.10.013.
  • J. Plutzer, and P. Karanis, Neglected waterborne parasitic protozoa and their detection in water. Water Research, 101, 318-332, 2016. https://doi.org/10.1016/j.watres.2016.05.085.
  • S. A. Collier, L. Deng, E. A. Adam, K. M. Benedict, E. M. Beshearse, A. J. Blackstock, B. B. Bruce, G. Derado, C. Edens, K. E. Fullerton, J. W. Gargano, A. L. Geissler, A. J. Hall, A. H. Havelaar, V. R. Hill, R. M. Hoekstra, S. C. Reddy, E. Scallan, E. K. Stokes, J. S. Yoder and M. J. Beach, Estimate of burden and direct healthcare cost of infectious waterborne disease in the United States. Emerging of Infection Diseases., 27 (1), 140-149, 2021. https://doi.org/10.3201/eid2701.190676
  • L. Teel, A. Olivieri, R. Danielson, B. Delić, B. Pecson and J. Crook, Protozoa reduction through secondary wastewater treatment in two water reclamation facilities. Science of The Total Environment, 807 (3), 151053, 2022. https://doi.org/10.1016/j.scitotenv.2021.151053
  • A. Efstratiou, J. E. Ongerth and P. Karanis, Waterborne transmission of protozoan parasites: review of worldwide outbreaks - an update 2011–2016. Water Research, 114, 14-22, 2017. https://doi.org/10.1016/j.watres.2017.01.036
  • L. P. Leonel and A. L. Tonetti, Wastewater reuse for crop irrigation: Crop yield, soil and human health implications based on giardiasis epidemiology. Science of The Total Environment, 775, 145833, 2021. https://doi.org/10.1016/j.scitotenv.2021.145833
  • J. R. Gumbo, E. M. Malaka, J. O. Odiyo and L. Nare, The health implications of wastewater reuse in vegetable irrigation: a case study from Malamulele, South Africa. International Journal of Environment Health Research, 20, 201-211, 2010. https://doi.org/10.1080/09603120903511093.
  • R. A. Guy, P. Payment, U. J. Krull and P .A. Horgen, Real-time PCR for quantification of Giardia and Cryptosporidium in environmental water samples and wastewater. Applied and Environment Microbiology, 69, 5178-5185, 2003. https://doi.org/10.1128/AEM.69.9.5178-5185.2003.
  • E. Seto, A. W. Olivieri and R. E. Danielson, Quantitative microbial risk assessment used to evaluate seasonal wastewater treatment limits: case study in Vacaville, CA, Water Sci. Technol. Water Supply, 18, 910-925, 2018. https://doi.org/10.2166/ws.2017.162.
  • M. E. Ellis, B. Watson and B. K. Mandal, Micro-organisms in gastroenteritis. Archives of Disease Childhood, 59, 848-855, 1984. https://doi.org/10.1136/adc.59.9.848.
  • J. E. Herrmann, D. N. Taylor, P. Echeverria and N. R. Blacklow, Astroviruses as a cause of gastroenteritis in children. N Engl J Med 324, 1757-1760, 1991. https://doi.org/10.1056/NEJM199106203242501.
  • E. Y. Seto, J. Konnan, A. W. Olivieri and R. E. Danielson, A quantitative microbial risk assessment of wastewater plant blending: case study in San Francisco Bay. Environmental Science: Water Research and Technology, 2, 134-145, 2016. https://doi.org/10.1039/C5EW00147A.
  • G. Sedmak, D. Bina, J. MacDonald and L. Couillard, Nine-year study of the occurrence of culturable viruses in source water for two drinking water treatment plants and the influent and effluent of a wastewater treatment plant in Milwaukee, Wisconsin (August 1994 through July 2003). Applied and Environment Microbiology, 1042-1050, 2005. https://doi.org/10.1128/AEM.71.2.1042-1050.2005.
  • J. Ottoson, A. Hansen, B. Bjorlenius, H. Norder and T. A. Stenstrom, Removal of viruses, parasitic protozoa and microbial indicators in conventional and membrane processes in a wastewater pilot plant. Water Research, 40, 1449-1457, 2006. https://doi.org/10.1016/j.watres.2006.01.039.
  • S. Jebri, J. Jofre, I. Barkallah, M. Saidi and F. Hmaied, Presence and fate of coliphages and enteric viruses in three wastewater treatment plants effluents and activated sludge from Tunisia. Environmental Science and Pollution Research, 19, 2195-2201, 2012. https://doi.org/10.1007/s11356-011-0722-y
  • B. Pecson, E. Darby, M. Bartolo, G. Di Giovanni, M. Leddy, K. Nelson, C. Rock, T. Slifko and A. Olivieri, DPR-2: Pathogen Monitoring in Raw Wastewater, WRF 4989, The Water Research Foundation, Alexandria, VA Office , https://www.waterrf.org/research/projects/pathogen-monitoring-untreated-wastewater, Accessed 10 March 2021.
  • M. Kitajima, E. Haramoto, B. C. Iker, C. P. Gerba, Occurrence of Cryptosporidium, Giardia, and Cyclospora in influent and effluent water at wastewater treatment plants in Arizona. Science of The Total Environment, 484, 129-136, 2014. https://doi.org/10.1016/j.scitotenv.2014.03.036.
  • S. N. Gosling and N. W. Arnell, A global assessment of the impact of climate change on water scarcity. Climate Change, 134, 371-385, 2016. https://doi.org/10.1007/s10584-013-0853-x.
  • UNESCO, United Nations Educational Scientific and Cultural Organization, The 1st UN World Water Development Report: Water for People, Water for Life, http://webworld.unesco.org/water/wwap/wwdr/wwdr1/table_contents/index.shtml, Accessed 12 April 2022.
  • A. Levine and T. Asano, Recovering sustainable water from wastewater. Environmental Science and Technology, 1, 201-208, 2004. https://doi.org/10.1021/es040504n.
  • B. F. F. Pereira, Z. L. He, M. S. Silva, U. Herpin, S. F. Nogueira, C. R. Montes and A. J. Melfi, Reclaimed wastewater: impact on soil–plant system under tropical conditions. Journal of Hazardous Materials, 192, 54-61, 2011. https://doi.org/10.1016/j.jhazmat.2011.04.095.
  • C. N. Berger, S. V. Sodha, R. K. Shaw, P. M. Griffin, D. Pink, P. Hand and G. Frankel, Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environment Microbiology, 12, 2385-2397, 2010. https://doi.org/10.1111/j.1462-2920.2010.02297.x.
  • EFSA, Panel on Biological Hazards (BIOHAZ) Panel; Scientific Opinion on the risk posed by pathogens in food of non-animal origin. Part 1 (outbreak data analysis and risk ranking of food/pathogen combinations). 138, 2013. https://doi.org/10.2903/j.efsa.2013.3025.
  • J. N. Ssemanda, M. W. Reij, G. van Middendorp, E. Bouw, R. van der Plaats, E. Franz, C. M. Muvunyi, M. C. Bagabe, M. H. Zwietering and H. Joosten, Foodborne pathogens and their risk exposure factors associated with farm vegetables in Rwanda. Food Control, 89, 86-96, 2018. https://doi.org/10.1016/j.foodcont.2017.12.034.
  • S. M. Markland, D. Ingram, K. E. Kniel, M. Sharma, Water for agriculture: the convergence of sustainability and safety. Preharvest Food Safety, 143-157, 2018. https://doi.org/10.1128/microbiolspec.PFS-0014-2016.
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Environmental Engineering
Authors

Murat Topal 0000-0003-0222-5409

Zülal Aşcı Toraman 0000-0001-5202-8564

Emine Işıl Arslan Topal 0000-0003-0309-7787

Ceren Sel 0000-0001-8709-3630

Erdal Öbek 0000-0002-4595-572X

Publication Date July 18, 2022
Submission Date March 18, 2022
Acceptance Date June 14, 2022
Published in Issue Year 2022 Volume: 11 Issue: 3

Cite

APA Topal, M., Aşcı Toraman, Z., Arslan Topal, E. I., Sel, C., et al. (2022). Tunceli biyolojik atıksu arıtma tesisinde gastrointestinal patojenlerin belirlenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(3), 550-556. https://doi.org/10.28948/ngumuh.1090090
AMA Topal M, Aşcı Toraman Z, Arslan Topal EI, Sel C, Öbek E. Tunceli biyolojik atıksu arıtma tesisinde gastrointestinal patojenlerin belirlenmesi. NOHU J. Eng. Sci. July 2022;11(3):550-556. doi:10.28948/ngumuh.1090090
Chicago Topal, Murat, Zülal Aşcı Toraman, Emine Işıl Arslan Topal, Ceren Sel, and Erdal Öbek. “Tunceli Biyolojik atıksu arıtma Tesisinde Gastrointestinal Patojenlerin Belirlenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 3 (July 2022): 550-56. https://doi.org/10.28948/ngumuh.1090090.
EndNote Topal M, Aşcı Toraman Z, Arslan Topal EI, Sel C, Öbek E (July 1, 2022) Tunceli biyolojik atıksu arıtma tesisinde gastrointestinal patojenlerin belirlenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 3 550–556.
IEEE M. Topal, Z. Aşcı Toraman, E. I. Arslan Topal, C. Sel, and E. Öbek, “Tunceli biyolojik atıksu arıtma tesisinde gastrointestinal patojenlerin belirlenmesi”, NOHU J. Eng. Sci., vol. 11, no. 3, pp. 550–556, 2022, doi: 10.28948/ngumuh.1090090.
ISNAD Topal, Murat et al. “Tunceli Biyolojik atıksu arıtma Tesisinde Gastrointestinal Patojenlerin Belirlenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/3 (July 2022), 550-556. https://doi.org/10.28948/ngumuh.1090090.
JAMA Topal M, Aşcı Toraman Z, Arslan Topal EI, Sel C, Öbek E. Tunceli biyolojik atıksu arıtma tesisinde gastrointestinal patojenlerin belirlenmesi. NOHU J. Eng. Sci. 2022;11:550–556.
MLA Topal, Murat et al. “Tunceli Biyolojik atıksu arıtma Tesisinde Gastrointestinal Patojenlerin Belirlenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 3, 2022, pp. 550-6, doi:10.28948/ngumuh.1090090.
Vancouver Topal M, Aşcı Toraman Z, Arslan Topal EI, Sel C, Öbek E. Tunceli biyolojik atıksu arıtma tesisinde gastrointestinal patojenlerin belirlenmesi. NOHU J. Eng. Sci. 2022;11(3):550-6.

23135