Research Article
BibTex RIS Cite

PAH, PCB ve PBDE'lerin iç/dış ortam toz konsantrasyon oranlarının karşılaştırılması

Year 2023, Volume: 12 Issue: 3, 656 - 662, 15.07.2023
https://doi.org/10.28948/ngumuh.1164032

Abstract

Özellikle son 50 yılda insan nüfusunun kırsal kesimlerden şehirlere doğru kayması ile birlikte gerek sanayi gerekse yoğun yaşam mahallerinin neden olduğu hava kirliliği özelikle üst solunum ve buna bağlı diğer hastalıkların artmasına neden olmaktadır. Özellikle büyük şehirlerde yaşayanlar, zamanlarının büyük bir bölümünü iç mekanlarda geçirdikleri için son zamanlarda dış ortam havasının yanı sıra iç hava kalitesi de insan sağlığı için önemli olmaya başlamıştır. Bu çalışmada, 2016 yılı Şubat ve Mart aylarında Kocaeli'deki 80 evin iç ve dış mekan tozları eş zamanlı olarak toplanmıştır. 16 Poliaromatik Hidrokarbon (PAH), 14 Polibromlu difenil eter (PBDE) ve 15 Poliklorlu bifenil (PCB) için toz örnekleri analiz edilmiştir. PAH için ölçülen İç ortam/Dış Ortam (I/O) oranları (1.1-3.2 arasında), PBDE (1.9 ila 7.2 arasında) ve PCB (1.8-7.9 arasında) I/O oranlarına göre düşüktür. PBDE ve PCB I/D oranları birbirine yakın değerler bulunmuştur. Sanayi ve trafik yoğun bir şehirde I/D oranlarının 1’den büyük olması ve PBDE ve PCB için bu değerlerin yaklaşık 8 kata kadar çıkması iç ortam hava kalitesinin önemini göstermektedir. Bu sebeple iç ortam hava kalitesinin düzenlenmesi için bazı önlemler alınmalıdır.

Supporting Institution

Tübitak

Project Number

115Y405

Thanks

Çalışma, Tübitak tarafından 115Y405 numaralı proje kapsamında maddi olark desteklenmiştir. Tübitak’a maddi desteklerinden dolayı çok teşekkür ederiz. Örnekleme ve ekstraksyion işlemerinde Dr. öğretim üyesi Demet Arslanbaş’a, Bilgehan Başaran’a, Tuğba Ayaz’a ve Hepsen Bahar Akyıldız’a çok teşekkür ederiz. Örnekleme yapmamıza izin veren ve bizlere yardımcı olan ev sahiplerine minnetarız

References

  • TUIK (Türkiye İstatistik Kurumu) 2022, https://data.tuik.gov.tr/Kategori/GetKategori?p=nufus-ve-demografi-109&dil=1, Erişim Tarihi: 01 Nisan 2022.
  • X. Liu, Understanding semi-volatile organic compounds in indoor dust. Indoor and Built Environment, 31(2), 291-298, 2022. https://doi.org/10.1177/1420326X211070859.
  • Y.X. Yu, Y.P. Pang, C. Li, J.L. Li, X.Y. Zhang, Z.Q. Yu, J.L. Feng, M.H. Wu, G.Y. Sheng, J.M. Fu, Concentrations and seasonal variations of polybrominated diphenyl ethers (PBDEs) in in- and out-house dust and human daily intake via dust ingestion corrected with bioaccessibility of PBDEs. Environmental Internation, 42, 124–131, 2012. https://doi.org/10.1016/j.envint.2011.05.012.
  • W. Wang, M. Huang, Y. Kang, H. Wang, A.O.W Leung, K.C. Cheung, M.H. Wong MH, Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: status, sources and human health risk assessment. Science of Total Environment, 409, 4519–4527, 2011. https://doi.org/10.1016/j.scitotenv. 2011.07.030.
  • O. Audy, L. M. M. Venier, S. Vojta, J. Becanova, K. Romanak, M. Vykoukalova, R. Prokes, P. Kukucka, M. L. Diamond, J. Klanova, PCBs and organochlorine pesticides in indoor environments - A comparison of indoor contamination in Canada and Czech Republic, Chemosphere, 622-631, 2018. https://doi.org/10.1016 /j.chemosphere.2018.05.016.
  • Ulusal Uygulama Planı, 2014, Kalıcı Organik Kirleticilere İlişkin Stockholm Sözleşmesi, T.C. Çevre Ve Şehircilik Bakanlığı, Erişim Tarihi: 15 Mart 2022
  • https://onceliklikimyasallar.csb.gov.tr/stockholm-sozlesmesi-i-5175, Erişim Tarihi 12 Şubat 2022
  • N. Vardar, Y. Taşdemir, M. Odabaşı, K.E. Noll, Characterization of atmospheric concentrations and partitioning of PAHs in the Chicago atmosphere, Science of Total Environment, 327, 163-174, 2004. https://doi.org/10.1016/j.scitotenv.2003.05.002.
  • Y. Zhang, X. Li, H. Zhang, W. Liu., Y. Liu, C. Guo., J. Xu, F. Wu, Distribution, source apportionment and health risk assessment of phthalate esters in outdoor dust samples on Tibetan Plateau, China, Science of Total Environment, 834, 1-14, 2022. https://doi.org/10.1016/j.scitotenv.2022.155103.
  • W. Wang, J. Zheng, C.Y. Chan, M.J. Huang, K.C. Cheung, M.H. Wong, Health risk assessment of exposure to polybrominated diphenyl ethers (PBDEs) contained in residential air particulate and dust in Guangzhou and Hong Kong. Atmospheric Environment, 89,786–796, 2014. https://doi.org/ 10.1016/j.atmosenv.2014.01.030.
  • Y. Hassan, T. Shoeib, Levels of polybrominated diphenyl ethers and novel flame retardants in microenvironment dust from Egypt: an assessment of human exposure. Science of Total Environment 505,47–55, 2015. https://doi.org/10.1016/j.scitotenv. 2014.09.080.
  • B. Cetin, M. Odabasi, A. Bayram, Wet deposition of persistent organic pollutants (POPs) in Izmir. Turkey, Environmental Science and Pollution Research, 6183–6186, 2016. https://doi.org/10.1007/s11356-016-6183-6.
  • C.J. Weschler, W.W. Nazaroff, SVOC partitioning between the gas phase and settled dust indoors. Atmospheric Environment, 44(30), 3609-3620, 2010. https://doi.org/10.1016/j.atmosenv. 2010.06.029
  • A. Besis, C. Samara, Polybrominated diphenyl ethers (PBDEs) in the indoor and outdoor environments–a review on occurrence and human exposure. Environmental Pollution, 169, 217-229, 2012. https://doi.org/10.1016/j.envpol.2012.04.009.
  • O.A. Abafe, B.S. Martincigh, Polybrominated diphenyl ethers and polychlorinated biphenyls in indoor dust in Durban, South Africa.Indoor Air I 25,547–556, 2015. https://doi.org/10.1111/ina.12168.
  • L. Rojas-Bracho, H. Suh, P. Koutrakis, Relationships among personal, indoor, and outdoor fine and coarse particle concentrations for individuals with COPD. J Expo Sci Environ Epidemiol, 10, 294–306, 2000. https://doi.org/10.1038/sj.jea.7500092.
  • T. Bahadori, H. Suh., P. Koutrakis P, Issues in Human Particulate Exposure Assessment: Relationship between Outdoor, Indoor, and Personal Exposures, Human and Ecological Risk Assessment, An International Journal, 5(3), 459-470, 1999. https://doi.org/10.1080/10807039.1999.10518871
  • H. Qi, W.L. Li, N.Z. Zhu, W. Ma, L.Y. Liu, F. Zhang, Y. Li, 2014 Concentrations and sources of polycyclic aromatic hydrocarbons in indoor dust in China. Science of Total Environment, 491–492,100–107, 2014. https://doi.org/10.1016/j.scitotenv.2014.01.119.
  • J.G. Allen, M.D. McClean, H.M Stapleton, T.F. Webster, Critical factors in assessing exposure to PBDEs via house dust. Environmental International, 34,1085–1091, 2008. https://doi.org/10.1016/j.envint. 2008.03.006.
  • Z.G. Cao, Y. Gang, Y.S. Chen, Q.M. Cao, H. Fiedler, S.B. Deng, J. Huang, B. Wang, Particle size: a missing factor in risk assessment of human exposure to toxic chemicals in settled indoor dust. Environmental International 49, 24–30, 2012. https://doi.org/ 10.1016/j.envint.2012.08.010.
  • N. Ali, S. Harrad, E. Goosey, H. Neels, A. Covacia, ‘Novel’’ Brominated Flame Retardants in Belgian and UK Indoor Dust: Implications for Human Exposure, Chemosphere, 83, 1360–1365, 2011. https://doi.org/10.1016/j.chemosphere.2011.02.078.
  • BSEF, 2019. Our substances: Applications of Deca-BDE 〈www.bsef.coaralıkm/our-substances/deca-bde/applications〉(Erişim Tarihi: 02 Aralık 2021)
  • Z. Cao, F Xu, A. Covaci, M. Wu, H. Wang, G.Yu, B.Wang, S. Deng,J. Huang, X. Wang, Distribution patterns of brominated, chlorinated, and phosphorus flame retardants with particle size in indoor and outdoor dust and implications for human exposure. Environmental Science and Technology, 48, 8839–8846, 2014. https://doi.org/10.1021/es501224b.
  • P. Wang, A. Qi, Q. Huang, Y. Wang, X. Tuo, T. Zhao, S. Duan, H. Gao, W. Zhang, P. Xu, T. Zhang, X. Zhang, W. Wang, L. Yang, Spatial and temporal variation, source identifcation, and toxicity evaluation of brominated/chlorinated/nitrated/oxygenated PAHs at a heavily industrialized area in eastern China. Science of Total Environment, 822, 153542, 2022. https://doi.org/10.1016/j.scitotenv.2022.153542.
  • R.M Maertens, J. Bailey, P.A. White, The Mutagenic Hazards of Settled House Dust: A Review, Mutation Research/Reviews in Mutation Research, 567, 401-425, 2004. https://doi.org/10.1016/j.mrrev. 2004.08.004.
  • J. Hetzel., Ö. Hallaç., J. Shideler, M. İpek, Türkiye'deki Poliklorlu Bifenillerin (PCBs) Çevreyle Uyumlu Yönetimi Için Rehber, Çevre ve Şehircilik Bakanlığı 2017
  • C. Bi, ,X. Wang, H. Li, X. Li, X., Y. Xu, Direct transfer of phthalate and alternative plasticizers from indoor source products to dust: Laboratory measurements and predictive modeling. Environmental Science & Technology, 55(1), 341-351, 2020. https://doi.org/ 10.1021/acs.est.0c05131.
  • W. Wang, M.J. Huang, J.S. Zheng, K.C. Cheung, M.H Wong, Exposure assessment and distribution of polychlorinated biphenyls (PCBs) contained in indoor and outdoor dusts and the impacts of particle size and bioaccessibility, Science of Total Environment, 463-464, 1201-1209. https://doi.org/10.1016/j.scitotenv. 2013.04.059.

Comparison of indoor to outdoor concentration ratios of dust for PAHs, PCBs and PBDEs

Year 2023, Volume: 12 Issue: 3, 656 - 662, 15.07.2023
https://doi.org/10.28948/ngumuh.1164032

Abstract

In past 50 years, with migration of human population from rural to urban areas, both industrialization and urbanization bring with air pollutions problems and consequently cause to increase respiratory and other corresponding diseases. Since people, especially those living in urban areas, spend more than 90% of their time indoors, recently indoor air quality has been paid attention as well as ambient air quality. In the current study, the indoor and outdoor dusts of 80 houses in Kocaeli were simultaneously collected in February and March in 2016. The 16 Polyaromatic Hydrocarbons (PAHs), 14 Polybrominated diphenyl ethers (PBDEs) and 15 Polychlorinated biphenyls (PCBs) were detected. Indoor to Outdoor (I/O) ratio for PAHs (ranging from 1.1 to 3.2) were not detected as high as PBDEs (range from 1.9 to 7.2) and PCBs (ranging from 1.8 to 7.9). The I/O ration for PBDEs and PCBs were comparable. Larger than one of I/O ratios in such a city with high loading of industrial and traffic and these ratios reached to 8 for PBDEs and PCBs indicated the importance of indoor air quality. Therefore certain precautions to regulate indoor air quality should be considered.

Project Number

115Y405

References

  • TUIK (Türkiye İstatistik Kurumu) 2022, https://data.tuik.gov.tr/Kategori/GetKategori?p=nufus-ve-demografi-109&dil=1, Erişim Tarihi: 01 Nisan 2022.
  • X. Liu, Understanding semi-volatile organic compounds in indoor dust. Indoor and Built Environment, 31(2), 291-298, 2022. https://doi.org/10.1177/1420326X211070859.
  • Y.X. Yu, Y.P. Pang, C. Li, J.L. Li, X.Y. Zhang, Z.Q. Yu, J.L. Feng, M.H. Wu, G.Y. Sheng, J.M. Fu, Concentrations and seasonal variations of polybrominated diphenyl ethers (PBDEs) in in- and out-house dust and human daily intake via dust ingestion corrected with bioaccessibility of PBDEs. Environmental Internation, 42, 124–131, 2012. https://doi.org/10.1016/j.envint.2011.05.012.
  • W. Wang, M. Huang, Y. Kang, H. Wang, A.O.W Leung, K.C. Cheung, M.H. Wong MH, Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: status, sources and human health risk assessment. Science of Total Environment, 409, 4519–4527, 2011. https://doi.org/10.1016/j.scitotenv. 2011.07.030.
  • O. Audy, L. M. M. Venier, S. Vojta, J. Becanova, K. Romanak, M. Vykoukalova, R. Prokes, P. Kukucka, M. L. Diamond, J. Klanova, PCBs and organochlorine pesticides in indoor environments - A comparison of indoor contamination in Canada and Czech Republic, Chemosphere, 622-631, 2018. https://doi.org/10.1016 /j.chemosphere.2018.05.016.
  • Ulusal Uygulama Planı, 2014, Kalıcı Organik Kirleticilere İlişkin Stockholm Sözleşmesi, T.C. Çevre Ve Şehircilik Bakanlığı, Erişim Tarihi: 15 Mart 2022
  • https://onceliklikimyasallar.csb.gov.tr/stockholm-sozlesmesi-i-5175, Erişim Tarihi 12 Şubat 2022
  • N. Vardar, Y. Taşdemir, M. Odabaşı, K.E. Noll, Characterization of atmospheric concentrations and partitioning of PAHs in the Chicago atmosphere, Science of Total Environment, 327, 163-174, 2004. https://doi.org/10.1016/j.scitotenv.2003.05.002.
  • Y. Zhang, X. Li, H. Zhang, W. Liu., Y. Liu, C. Guo., J. Xu, F. Wu, Distribution, source apportionment and health risk assessment of phthalate esters in outdoor dust samples on Tibetan Plateau, China, Science of Total Environment, 834, 1-14, 2022. https://doi.org/10.1016/j.scitotenv.2022.155103.
  • W. Wang, J. Zheng, C.Y. Chan, M.J. Huang, K.C. Cheung, M.H. Wong, Health risk assessment of exposure to polybrominated diphenyl ethers (PBDEs) contained in residential air particulate and dust in Guangzhou and Hong Kong. Atmospheric Environment, 89,786–796, 2014. https://doi.org/ 10.1016/j.atmosenv.2014.01.030.
  • Y. Hassan, T. Shoeib, Levels of polybrominated diphenyl ethers and novel flame retardants in microenvironment dust from Egypt: an assessment of human exposure. Science of Total Environment 505,47–55, 2015. https://doi.org/10.1016/j.scitotenv. 2014.09.080.
  • B. Cetin, M. Odabasi, A. Bayram, Wet deposition of persistent organic pollutants (POPs) in Izmir. Turkey, Environmental Science and Pollution Research, 6183–6186, 2016. https://doi.org/10.1007/s11356-016-6183-6.
  • C.J. Weschler, W.W. Nazaroff, SVOC partitioning between the gas phase and settled dust indoors. Atmospheric Environment, 44(30), 3609-3620, 2010. https://doi.org/10.1016/j.atmosenv. 2010.06.029
  • A. Besis, C. Samara, Polybrominated diphenyl ethers (PBDEs) in the indoor and outdoor environments–a review on occurrence and human exposure. Environmental Pollution, 169, 217-229, 2012. https://doi.org/10.1016/j.envpol.2012.04.009.
  • O.A. Abafe, B.S. Martincigh, Polybrominated diphenyl ethers and polychlorinated biphenyls in indoor dust in Durban, South Africa.Indoor Air I 25,547–556, 2015. https://doi.org/10.1111/ina.12168.
  • L. Rojas-Bracho, H. Suh, P. Koutrakis, Relationships among personal, indoor, and outdoor fine and coarse particle concentrations for individuals with COPD. J Expo Sci Environ Epidemiol, 10, 294–306, 2000. https://doi.org/10.1038/sj.jea.7500092.
  • T. Bahadori, H. Suh., P. Koutrakis P, Issues in Human Particulate Exposure Assessment: Relationship between Outdoor, Indoor, and Personal Exposures, Human and Ecological Risk Assessment, An International Journal, 5(3), 459-470, 1999. https://doi.org/10.1080/10807039.1999.10518871
  • H. Qi, W.L. Li, N.Z. Zhu, W. Ma, L.Y. Liu, F. Zhang, Y. Li, 2014 Concentrations and sources of polycyclic aromatic hydrocarbons in indoor dust in China. Science of Total Environment, 491–492,100–107, 2014. https://doi.org/10.1016/j.scitotenv.2014.01.119.
  • J.G. Allen, M.D. McClean, H.M Stapleton, T.F. Webster, Critical factors in assessing exposure to PBDEs via house dust. Environmental International, 34,1085–1091, 2008. https://doi.org/10.1016/j.envint. 2008.03.006.
  • Z.G. Cao, Y. Gang, Y.S. Chen, Q.M. Cao, H. Fiedler, S.B. Deng, J. Huang, B. Wang, Particle size: a missing factor in risk assessment of human exposure to toxic chemicals in settled indoor dust. Environmental International 49, 24–30, 2012. https://doi.org/ 10.1016/j.envint.2012.08.010.
  • N. Ali, S. Harrad, E. Goosey, H. Neels, A. Covacia, ‘Novel’’ Brominated Flame Retardants in Belgian and UK Indoor Dust: Implications for Human Exposure, Chemosphere, 83, 1360–1365, 2011. https://doi.org/10.1016/j.chemosphere.2011.02.078.
  • BSEF, 2019. Our substances: Applications of Deca-BDE 〈www.bsef.coaralıkm/our-substances/deca-bde/applications〉(Erişim Tarihi: 02 Aralık 2021)
  • Z. Cao, F Xu, A. Covaci, M. Wu, H. Wang, G.Yu, B.Wang, S. Deng,J. Huang, X. Wang, Distribution patterns of brominated, chlorinated, and phosphorus flame retardants with particle size in indoor and outdoor dust and implications for human exposure. Environmental Science and Technology, 48, 8839–8846, 2014. https://doi.org/10.1021/es501224b.
  • P. Wang, A. Qi, Q. Huang, Y. Wang, X. Tuo, T. Zhao, S. Duan, H. Gao, W. Zhang, P. Xu, T. Zhang, X. Zhang, W. Wang, L. Yang, Spatial and temporal variation, source identifcation, and toxicity evaluation of brominated/chlorinated/nitrated/oxygenated PAHs at a heavily industrialized area in eastern China. Science of Total Environment, 822, 153542, 2022. https://doi.org/10.1016/j.scitotenv.2022.153542.
  • R.M Maertens, J. Bailey, P.A. White, The Mutagenic Hazards of Settled House Dust: A Review, Mutation Research/Reviews in Mutation Research, 567, 401-425, 2004. https://doi.org/10.1016/j.mrrev. 2004.08.004.
  • J. Hetzel., Ö. Hallaç., J. Shideler, M. İpek, Türkiye'deki Poliklorlu Bifenillerin (PCBs) Çevreyle Uyumlu Yönetimi Için Rehber, Çevre ve Şehircilik Bakanlığı 2017
  • C. Bi, ,X. Wang, H. Li, X. Li, X., Y. Xu, Direct transfer of phthalate and alternative plasticizers from indoor source products to dust: Laboratory measurements and predictive modeling. Environmental Science & Technology, 55(1), 341-351, 2020. https://doi.org/ 10.1021/acs.est.0c05131.
  • W. Wang, M.J. Huang, J.S. Zheng, K.C. Cheung, M.H Wong, Exposure assessment and distribution of polychlorinated biphenyls (PCBs) contained in indoor and outdoor dusts and the impacts of particle size and bioaccessibility, Science of Total Environment, 463-464, 1201-1209. https://doi.org/10.1016/j.scitotenv. 2013.04.059.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Environmental Engineering
Authors

Mihriban Civan 0000-0002-2966-3188

Project Number 115Y405
Early Pub Date May 22, 2023
Publication Date July 15, 2023
Submission Date August 18, 2022
Acceptance Date May 3, 2023
Published in Issue Year 2023 Volume: 12 Issue: 3

Cite

APA Civan, M. (2023). PAH, PCB ve PBDE’lerin iç/dış ortam toz konsantrasyon oranlarının karşılaştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 656-662. https://doi.org/10.28948/ngumuh.1164032
AMA Civan M. PAH, PCB ve PBDE’lerin iç/dış ortam toz konsantrasyon oranlarının karşılaştırılması. NOHU J. Eng. Sci. July 2023;12(3):656-662. doi:10.28948/ngumuh.1164032
Chicago Civan, Mihriban. “PAH, PCB Ve PBDE’lerin iç/Dış Ortam Toz Konsantrasyon oranlarının karşılaştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 3 (July 2023): 656-62. https://doi.org/10.28948/ngumuh.1164032.
EndNote Civan M (July 1, 2023) PAH, PCB ve PBDE’lerin iç/dış ortam toz konsantrasyon oranlarının karşılaştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 3 656–662.
IEEE M. Civan, “PAH, PCB ve PBDE’lerin iç/dış ortam toz konsantrasyon oranlarının karşılaştırılması”, NOHU J. Eng. Sci., vol. 12, no. 3, pp. 656–662, 2023, doi: 10.28948/ngumuh.1164032.
ISNAD Civan, Mihriban. “PAH, PCB Ve PBDE’lerin iç/Dış Ortam Toz Konsantrasyon oranlarının karşılaştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/3 (July 2023), 656-662. https://doi.org/10.28948/ngumuh.1164032.
JAMA Civan M. PAH, PCB ve PBDE’lerin iç/dış ortam toz konsantrasyon oranlarının karşılaştırılması. NOHU J. Eng. Sci. 2023;12:656–662.
MLA Civan, Mihriban. “PAH, PCB Ve PBDE’lerin iç/Dış Ortam Toz Konsantrasyon oranlarının karşılaştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 3, 2023, pp. 656-62, doi:10.28948/ngumuh.1164032.
Vancouver Civan M. PAH, PCB ve PBDE’lerin iç/dış ortam toz konsantrasyon oranlarının karşılaştırılması. NOHU J. Eng. Sci. 2023;12(3):656-62.

23135