Research Article
BibTex RIS Cite

Akımsız nikel kaplama süresinin yeni tür dentritik bakır-nikel alaşım tozlarının özellikleri üzerine etkisi

Year 2023, Volume: 12 Issue: 3, 1013 - 1020, 15.07.2023
https://doi.org/10.28948/ngumuh.1258122

Abstract

Bu çalışmada, elektroliz yöntemi ile hurda bakır plakadan elde edilen dentritik bakır tozları üzerine akımsız nikel kaplama işlemi uygulanmıştır. 30 dk, 60 dk ve 90 dk sürelerinde akımsız nikel kaplama işlemleri uygulanarak elde edilen dentritik bakır-nikel bimetalik tozların morfolojik ve oksidasyon incelemeleri gerçekleştirilmiştir. Morfoloji incelemeleri taramalı elektron mikroskobu (SEM) ile yapılırken, oksidasyon direnci incelemeleri termogravimetrik analiz (TGA) yöntemi ile yapılmıştır. Elde edilen sonuçlara göre, akımsız nikel kaplama süresinin artması ile elektrolitik bakır parçacıklar üzerinde indirgenen nikel miktarı artmıştır. İndirgenen nikel tabaka nano boyutta parçacıklardan oluşmuştur. Akımsız nikel kaplama süresinin artışı ile parçacıkların oksidasyon direnci değerlerinde artış sağlanırken, oksitlenmeye başlama sıcaklıkları da arttırılmıştır. Ayrıca, nano nikel parçacıkların parçacık yüzeylerinde oluşturduğu tabaka ve birikintiler, elektrolitik bakır parçacıklarının yüzey alanı değerlerini yaklaşık %20 oranında arttırmıştır. Parçacık boyutu analizi sonuçlarına göre, akımsız nikel kaplama tabakası sayesinde ortalama parçacık boyutu değerleri artarak 1 µ’ye kadar bir kaplama tabakasının elde edildiği tespit edilmiştir.

References

  • P. Angelo, R. Subramanian and B. Ravisankar, Powder metallurgy: science, technology and applications, PHI Learning Pvt. Ltd., New Delhi, 2022.
  • F. Chang, M. Xiao, R. Miao, Y. Liu, M. Ren, Z. Jia, D. Han, Y. Yuan, Z. Bai and L. Yang, Copper-based catalysts for electrochemical carbon dioxide reduction to multicarbon products, Electrochemical Energy Reviews, 5 (3), 1-35, 2022. https://doi.org/10.1007/s41918-022-00139-5.
  • J. Choi, M.J. Kim, S.H. Ahn, I. Choi, J.H. Jang, Y.S. Ham, J.J. Kim and S.-K. Kim, Electrochemical CO2 reduction to CO on dendritic Ag–Cu electrocatalysts prepared by electrodeposition, Chemical Engineering Journal, 299, 37-44, 2016. https://doi.org/10.1016/j.cej.2016.04.037.
  • S. Vorotilo, P.A. Loginov, A.Y. Churyumov, A.S. Prosviryakov, M.Y. Bychkova, S.I. Rupasov, A.S. Orekhov, P.V. Kiryukhantsev-Korneev and E.A. Levashov, Manufacturing of conductive, wear-resistant nanoreinforced Cu-Ti alloys using partially oxidized electrolytic copper powder, Nanomaterials, 10 (7), 1261, 2020. https://doi.org/10.3390/nano10071261.
  • M. Winnicki, A. Baszczuk, M. Jasiorski and A. Małachowska, Corrosion resistance of copper coatings deposited by cold spraying, Journal of Thermal Spray Technology, 26, 1935-1946, 2017. https://doi.org/10.1007/s11666-017-0646-2.
  • M. Pavlović, M. Gligorić, V. Ćosović, V. Bojanić, M. Tomić and M. Pavlović, Electrical Conductivity of the electrodeposited copper powder filled lignocellulosic composites, Contemporary Materials, 5 (2), 203-211, 2014. https://doi.org/10.7251/COMEN1402203P.
  • Y. Zhou, Y. Li, Y. Chen and M. Zhu, Life model of the electrochemical migration failure of printed circuit boards under NaCl solution, IEEE Transactions on Device and Materials Reliability, 19 (4), 622-629, 2019. https://doi.org/10.1109/TDMR.2019.2938010.
  • C.R. Thurber, Y.H. Ahmad, M.C. Calhoun, A. Al-Shenawa, N. D’Souza, A. Mohamed and T.D. Golden, Metal matrix composite coatings of cupronickel embedded with nanoplatelets for improved corrosion resistant properties, International Journal of Corrosion, 5250713, 2018. https://doi.org/10.1155/2018/5250713.
  • A.D. Pingale, S.U. Belgamwar and J.S. Rathore, Synthesis and characterization of Cu–Ni/Gr nanocomposite coatings by electro-co-deposition method: effect of current density, Bulletin of Materials Science, 43, 1-9, 2020. https://doi.org/10.1007/s12034-019-2031-x.
  • A.D. Pingale, A. Owhal, S.U. Belgamwar and J.S. Rathore, Electro-codeposition and properties of Cu–Ni-MWCNTs composite coatings, Transactions of the IMF, 99 (3), 126-132, 2021. https://doi.org/10.1080/00202967.2021.1861848
  • S.M. Uddin, T. Mahmud, C. Wolf, C. Glanz, I. Kolaric, C. Volkmer, H. Höller, U. Wienecke, S. Roth and H.-J. Fecht, Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites, Composites Science and Technology, 70 (16), 2253-2257, 2010. https://doi.org/10.1016/j.compscitech.2010.07.012.
  • C. Vincent, J.-F. Silvain, J.-M. Heintz and N. Chandra, Effect of porosity on the thermal conductivity of copper processed by powder metallurgy, Journal of Physics and Chemistry of Solids, 73 (3), 499-504, 2012. https://doi.org/10.1016/j.jpcs.2011.11.033.
  • T. Varol, O. Güler, S.B. Akçay and O. Çuvalcı, Enhancement of electrical and thermal conductivity of low-cost novel Cu–Ag alloys prepared by hot-pressing and electroless plating from recycled electrolytic copper powders, Materials Chemistry and Physics, 281, 125892, 2022. https://doi.org/10.1016/j.matchemphys.2022.125892.
  • T. Varol, O. Güler, S.B. Akçay and H.C. Aksa, The effect of silver coated copper particle content on the properties of novel Cu-Ag alloys prepared by hot pressing method, Powder Technology, 384, 236-246, 2021. https://doi.org/10.1016/j.powtec.2021.02.020.
  • H.S. Tekce, D. Kumlutas and I.H. Tavman, Effect of particle shape on thermal conductivity of copper reinforced polymer composites, Journal of Reinforced Plastics and Composites, 26 (1), 113-121, 2007. https://doi.org/10.1177/0731684407072522.
  • A.K. Yadav, S. Banerjee, R. Kumar, K.K. Kar, J. Ramkumar, K. Dasgupta, Mechanical analysis of nickel particle-coated carbon fiber-reinforced epoxy composites for advanced structural applications, ACS Applied Nano Materials, 1 (8), 4332-4339, 2018. https://doi.org/10.1021/acsanm.8b01193.
  • M. Pavlović, L.J. Pavlovic, V.M. Maksimović, N.D. Nikolić, K.I. Popov, Characterization and morphology of copper powder particles as a function of different electrolytic regimes, International Journal of Electrochemical Science 5 (12), 1862-1878, 2010.
  • Q. Bao, Y. Yang, X. Wen, L. Guo, Z. Guo, The preparation of spherical metal powders using the high-temperature remelting spheroidization technology, Materials & Design, 199, 109382, 2021. https://doi.org/10.1016/j.matdes.2020.109382.
  • Y.-J. Yim, K.Y. Rhee, S.-J. Park, Influence of electroless nickel-plating on fracture toughness of pitch-based carbon fibre reinforced composites, Composites Part B: Engineering, 76, 286-291, 2015. https://doi.org/10.1016/j.compositesb.2015.01.052.
  • O. Güler, T. Varol, Ü. Alver, A. Çanakçı, The effect of flake-like morphology on the coating properties of silver coated copper particles fabricated by electroless plating, Journal of Alloys and Compounds, 782, 679-688, 2019. https://doi.org/10.1016/j.jallcom.2018.12.229.
  • S. Yae, K. Ito, T. Hamada, N. Fukumuro, H. Matsuda, Electroless deposition of pure nickel films from a simple solution consisting of nickel acetate and hydrazine, Plating & Surface Finishing, 92 (4), 58-61, 2005.
  • Z. Liu, W. Gao, The effect of substrate on the electroless nickel plating of Mg and Mg alloys, Surface and Coatings Technology, 200 (11), 3553-3560, 2006. https://doi.org/10.1016/j.surfcoat.2004.12.001.
  • S. Haag, M. Burgard, B. Ernst, Pure nickel coating on a mesoporous alumina membrane: preparation by electroless plating and characterization, Surface and Coatings Technology, 201 (6), 2166-2173, 2006. https://doi.org/10.1016/j.surfcoat.2006.03.023.
  • U. Aniekwe, T. Utigard, High-temperature oxidation of nickel-plated copper vs pure copper, Canadian Metallurgical Quarterly, 38 (4), 277-281, 1999. https://doi.org/10.1016/S0008-4433(99)00021-X.
  • D. Serafin, W.J. Nowak, B. Wierzba, The effect of surface preparation on high temperature oxidation of Ni, Cu and Ni-Cu alloy, Applied Surface Science, 476, 442-451, 2019. https://doi.org/10.1016/j.apsusc.2019.01.122.

Effect of electroless nickel plating time on the properties of novel dendritic copper-nickel alloy powders

Year 2023, Volume: 12 Issue: 3, 1013 - 1020, 15.07.2023
https://doi.org/10.28948/ngumuh.1258122

Abstract

In this study, electroless nickel plating process was applied on dendritic copper powders obtained from scrap copper plate by electrolysis method. Morphological and oxidation studies of dendritic copper-nickel bimetallic powders obtained by electroless nickel plating processes for 30 min, 60 min and 90 min were carried out. While morphology studies were performed with scanning electron microscopy (SEM), oxidation resistance studies were performed with thermogravimetric analysis (TGA). According to the results obtained, the amount of reduced nickel on electrolytic copper particles increased with the increase of electroless nickel plating time. The reduced nickel layer is composed of nano-sized particles. With the increase of the electroless nickel plating time, the oxidation resistance values of the particles increased, while the oxidation starting temperatures were also increased. In addition, the layers and deposits formed by the nano nickel particles on the particle surfaces increased the surface area values of the electrolytic copper particles by about 20%. According to the results of the particle size analysis, it was determined that a coating layer up to 1 µ was obtained by increasing the average particle size values thanks to the electroless nickel plating layer.

References

  • P. Angelo, R. Subramanian and B. Ravisankar, Powder metallurgy: science, technology and applications, PHI Learning Pvt. Ltd., New Delhi, 2022.
  • F. Chang, M. Xiao, R. Miao, Y. Liu, M. Ren, Z. Jia, D. Han, Y. Yuan, Z. Bai and L. Yang, Copper-based catalysts for electrochemical carbon dioxide reduction to multicarbon products, Electrochemical Energy Reviews, 5 (3), 1-35, 2022. https://doi.org/10.1007/s41918-022-00139-5.
  • J. Choi, M.J. Kim, S.H. Ahn, I. Choi, J.H. Jang, Y.S. Ham, J.J. Kim and S.-K. Kim, Electrochemical CO2 reduction to CO on dendritic Ag–Cu electrocatalysts prepared by electrodeposition, Chemical Engineering Journal, 299, 37-44, 2016. https://doi.org/10.1016/j.cej.2016.04.037.
  • S. Vorotilo, P.A. Loginov, A.Y. Churyumov, A.S. Prosviryakov, M.Y. Bychkova, S.I. Rupasov, A.S. Orekhov, P.V. Kiryukhantsev-Korneev and E.A. Levashov, Manufacturing of conductive, wear-resistant nanoreinforced Cu-Ti alloys using partially oxidized electrolytic copper powder, Nanomaterials, 10 (7), 1261, 2020. https://doi.org/10.3390/nano10071261.
  • M. Winnicki, A. Baszczuk, M. Jasiorski and A. Małachowska, Corrosion resistance of copper coatings deposited by cold spraying, Journal of Thermal Spray Technology, 26, 1935-1946, 2017. https://doi.org/10.1007/s11666-017-0646-2.
  • M. Pavlović, M. Gligorić, V. Ćosović, V. Bojanić, M. Tomić and M. Pavlović, Electrical Conductivity of the electrodeposited copper powder filled lignocellulosic composites, Contemporary Materials, 5 (2), 203-211, 2014. https://doi.org/10.7251/COMEN1402203P.
  • Y. Zhou, Y. Li, Y. Chen and M. Zhu, Life model of the electrochemical migration failure of printed circuit boards under NaCl solution, IEEE Transactions on Device and Materials Reliability, 19 (4), 622-629, 2019. https://doi.org/10.1109/TDMR.2019.2938010.
  • C.R. Thurber, Y.H. Ahmad, M.C. Calhoun, A. Al-Shenawa, N. D’Souza, A. Mohamed and T.D. Golden, Metal matrix composite coatings of cupronickel embedded with nanoplatelets for improved corrosion resistant properties, International Journal of Corrosion, 5250713, 2018. https://doi.org/10.1155/2018/5250713.
  • A.D. Pingale, S.U. Belgamwar and J.S. Rathore, Synthesis and characterization of Cu–Ni/Gr nanocomposite coatings by electro-co-deposition method: effect of current density, Bulletin of Materials Science, 43, 1-9, 2020. https://doi.org/10.1007/s12034-019-2031-x.
  • A.D. Pingale, A. Owhal, S.U. Belgamwar and J.S. Rathore, Electro-codeposition and properties of Cu–Ni-MWCNTs composite coatings, Transactions of the IMF, 99 (3), 126-132, 2021. https://doi.org/10.1080/00202967.2021.1861848
  • S.M. Uddin, T. Mahmud, C. Wolf, C. Glanz, I. Kolaric, C. Volkmer, H. Höller, U. Wienecke, S. Roth and H.-J. Fecht, Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites, Composites Science and Technology, 70 (16), 2253-2257, 2010. https://doi.org/10.1016/j.compscitech.2010.07.012.
  • C. Vincent, J.-F. Silvain, J.-M. Heintz and N. Chandra, Effect of porosity on the thermal conductivity of copper processed by powder metallurgy, Journal of Physics and Chemistry of Solids, 73 (3), 499-504, 2012. https://doi.org/10.1016/j.jpcs.2011.11.033.
  • T. Varol, O. Güler, S.B. Akçay and O. Çuvalcı, Enhancement of electrical and thermal conductivity of low-cost novel Cu–Ag alloys prepared by hot-pressing and electroless plating from recycled electrolytic copper powders, Materials Chemistry and Physics, 281, 125892, 2022. https://doi.org/10.1016/j.matchemphys.2022.125892.
  • T. Varol, O. Güler, S.B. Akçay and H.C. Aksa, The effect of silver coated copper particle content on the properties of novel Cu-Ag alloys prepared by hot pressing method, Powder Technology, 384, 236-246, 2021. https://doi.org/10.1016/j.powtec.2021.02.020.
  • H.S. Tekce, D. Kumlutas and I.H. Tavman, Effect of particle shape on thermal conductivity of copper reinforced polymer composites, Journal of Reinforced Plastics and Composites, 26 (1), 113-121, 2007. https://doi.org/10.1177/0731684407072522.
  • A.K. Yadav, S. Banerjee, R. Kumar, K.K. Kar, J. Ramkumar, K. Dasgupta, Mechanical analysis of nickel particle-coated carbon fiber-reinforced epoxy composites for advanced structural applications, ACS Applied Nano Materials, 1 (8), 4332-4339, 2018. https://doi.org/10.1021/acsanm.8b01193.
  • M. Pavlović, L.J. Pavlovic, V.M. Maksimović, N.D. Nikolić, K.I. Popov, Characterization and morphology of copper powder particles as a function of different electrolytic regimes, International Journal of Electrochemical Science 5 (12), 1862-1878, 2010.
  • Q. Bao, Y. Yang, X. Wen, L. Guo, Z. Guo, The preparation of spherical metal powders using the high-temperature remelting spheroidization technology, Materials & Design, 199, 109382, 2021. https://doi.org/10.1016/j.matdes.2020.109382.
  • Y.-J. Yim, K.Y. Rhee, S.-J. Park, Influence of electroless nickel-plating on fracture toughness of pitch-based carbon fibre reinforced composites, Composites Part B: Engineering, 76, 286-291, 2015. https://doi.org/10.1016/j.compositesb.2015.01.052.
  • O. Güler, T. Varol, Ü. Alver, A. Çanakçı, The effect of flake-like morphology on the coating properties of silver coated copper particles fabricated by electroless plating, Journal of Alloys and Compounds, 782, 679-688, 2019. https://doi.org/10.1016/j.jallcom.2018.12.229.
  • S. Yae, K. Ito, T. Hamada, N. Fukumuro, H. Matsuda, Electroless deposition of pure nickel films from a simple solution consisting of nickel acetate and hydrazine, Plating & Surface Finishing, 92 (4), 58-61, 2005.
  • Z. Liu, W. Gao, The effect of substrate on the electroless nickel plating of Mg and Mg alloys, Surface and Coatings Technology, 200 (11), 3553-3560, 2006. https://doi.org/10.1016/j.surfcoat.2004.12.001.
  • S. Haag, M. Burgard, B. Ernst, Pure nickel coating on a mesoporous alumina membrane: preparation by electroless plating and characterization, Surface and Coatings Technology, 201 (6), 2166-2173, 2006. https://doi.org/10.1016/j.surfcoat.2006.03.023.
  • U. Aniekwe, T. Utigard, High-temperature oxidation of nickel-plated copper vs pure copper, Canadian Metallurgical Quarterly, 38 (4), 277-281, 1999. https://doi.org/10.1016/S0008-4433(99)00021-X.
  • D. Serafin, W.J. Nowak, B. Wierzba, The effect of surface preparation on high temperature oxidation of Ni, Cu and Ni-Cu alloy, Applied Surface Science, 476, 442-451, 2019. https://doi.org/10.1016/j.apsusc.2019.01.122.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies
Journal Section Materials and Metallurgical Engineering
Authors

Onur Güler 0000-0002-9696-3287

Early Pub Date June 12, 2023
Publication Date July 15, 2023
Submission Date March 1, 2023
Acceptance Date May 23, 2023
Published in Issue Year 2023 Volume: 12 Issue: 3

Cite

APA Güler, O. (2023). Akımsız nikel kaplama süresinin yeni tür dentritik bakır-nikel alaşım tozlarının özellikleri üzerine etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 1013-1020. https://doi.org/10.28948/ngumuh.1258122
AMA Güler O. Akımsız nikel kaplama süresinin yeni tür dentritik bakır-nikel alaşım tozlarının özellikleri üzerine etkisi. NOHU J. Eng. Sci. July 2023;12(3):1013-1020. doi:10.28948/ngumuh.1258122
Chicago Güler, Onur. “Akımsız Nikel Kaplama süresinin Yeni tür Dentritik bakır-Nikel alaşım tozlarının özellikleri üzerine Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 3 (July 2023): 1013-20. https://doi.org/10.28948/ngumuh.1258122.
EndNote Güler O (July 1, 2023) Akımsız nikel kaplama süresinin yeni tür dentritik bakır-nikel alaşım tozlarının özellikleri üzerine etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 3 1013–1020.
IEEE O. Güler, “Akımsız nikel kaplama süresinin yeni tür dentritik bakır-nikel alaşım tozlarının özellikleri üzerine etkisi”, NOHU J. Eng. Sci., vol. 12, no. 3, pp. 1013–1020, 2023, doi: 10.28948/ngumuh.1258122.
ISNAD Güler, Onur. “Akımsız Nikel Kaplama süresinin Yeni tür Dentritik bakır-Nikel alaşım tozlarının özellikleri üzerine Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/3 (July 2023), 1013-1020. https://doi.org/10.28948/ngumuh.1258122.
JAMA Güler O. Akımsız nikel kaplama süresinin yeni tür dentritik bakır-nikel alaşım tozlarının özellikleri üzerine etkisi. NOHU J. Eng. Sci. 2023;12:1013–1020.
MLA Güler, Onur. “Akımsız Nikel Kaplama süresinin Yeni tür Dentritik bakır-Nikel alaşım tozlarının özellikleri üzerine Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 3, 2023, pp. 1013-20, doi:10.28948/ngumuh.1258122.
Vancouver Güler O. Akımsız nikel kaplama süresinin yeni tür dentritik bakır-nikel alaşım tozlarının özellikleri üzerine etkisi. NOHU J. Eng. Sci. 2023;12(3):1013-20.

23135