Research Article
BibTex RIS Cite

Geleneksel yöntemle üretilen 15 farklı meyve sirkesinin toplam fenolik, flavonoid ve monomerik antosiyanin içerikleri ve antioksidan özelliklerinin belirlenmesi

Year 2024, Volume: 13 Issue: 3, 844 - 851, 15.07.2024
https://doi.org/10.28948/ngumuh.1442055

Abstract

Bu çalışmada 15 farklı meyveden (kuşburnu, armut, incir, yabani armut, elma, erik, alıç (sarı ve kırmızı), nar, üzüm (cimin, kardinal), şeftali, kızılcık, ayva ve muşmula) geleneksel yöntemle sirke üretilmiştir. Sirkelerin toplam fenolik, toplam flavonoid ve toplam monomerik antosiyanin içerikleri ile antioksidan kapasitelerinin belirlenmesi amaçlanmıştır. Sonuç olarak kuşburnu sirkesinin fenolik, flavonoid içeriklerinin ve her 3 yöntemde (TEAC, FRAP ve DPPH) antioksidan kapasitesinin diğer sirkelere kıyasla oldukça yüksek olduğu, ayrıca ahlat ve alıç sirkelerinin fenolik ve flavonoid bileşikler bakımından oldukça zengin olduğu ve bu sirkelerin çok yüksek antioksidan kapasiteye sahip olduğu sonucuna varılmıştır. Çalışma sonuçları, doğal yapısı nedeniyle kullanımı ve tüketimi sınırlı olan kuşburnu, ahlat, alıç, kızılcık, ayva ve muşmula gibi meyvelerden sağlıklı, aromatik ve katma değeri yüksek alternatif bir ürün olan sirke üretilerek alternatif bir tüketim yöntemi sağlanabileceğini ortaya koymuştur.

Supporting Institution

Gümüşhane University Scientific Research Projects Coordination Department

Project Number

20.B0433.02.01

Thanks

We thank the Gümüşhane University Scientific Research Projects Coordination Department for financial support of this manuscript. This work was supported by Gümüşhane University Scientific Research Projects Coordination Department (Project Number: 20.B0433.02.01).

References

  • K. Pushparaj, W.C. Liu, A. Meyyazhagan, A. Orlacchio, M. Pappusamy, C. Vadivalagan, A.A. Robert, V.A. Arumugam, H. Kamyab, J.J. Klemeš and T. Khademi, Nanofrom nature to nurture: A comprehensive review on facets, trends, perspectives and sustainability of nanotechnology in the food sector. Energy, 240, 122732, 2022. https://doi.org/10.1016/j.e nergy.2021.122732
  • S. Yavari, H. Kamyab, T.S. Abd Manan, S. Chelliapan, R. Asadpour, S. Yavari, N.B. Sapari, L. Baloo, A.B. Sidik and I. Kirpichnikova, Bio-efficacy of imidazolinones in weed control in a tropical paddy soil amended with optimized agrowaste derived biochars. Chemosphere, 303, 134957, 2022. https://doi.org/10. 1016/j.chemosphere.2022.134957
  • B. Abadi, S. Mahdavian and F. Fattahi, The waste management of fruit and vegetable in wholesale markets: Intention and behavior analysis using path analysis. Journal of Cleaner Production, 279, 123802, 2021. https://doi.org/10.1016/j.jclepro.2020.123802
  • L.M. Luzón-Quintana, R. Castro, and E. Durán-Guerrero, Biotechnological processes in fruit vinegar production. Foods, 10, 945, 2021. https://doi.org/10. 3390/foods10050945
  • S. Lalou, S. Ordoudi and F. Mantzouridou, Evaluation of safety and quality parameters of persimmon balsamic-type vinegar during multistarter culture fermentation and accelerated aging with oak chips. Food Bioscience, 57, 103526, 2024. https://doi.org/10. 1016/j.fbio.2023.103526
  • T. Li, X. Wang, C. Li, Q. Fu, X. Xu, J. Sun, C. Wang, J. Du, B. Wang and X. Shi, Investigation of microbial succession and volatile compounds dynamics during the fermentation of traditional cereal vinegar in Xinjiang. LWT-Food Science and Technology, 186, 115258, 2023. https://doi.org/10.1016/j.lwt.2023.115 258
  • T. Zhang, Y. Gong, C. Yang, X. Liu, X. Wang and T. Chen, Biofortification with Aspergillus awamori offers a new strategy to improve the quality of Shanxi aged vinegar. LWT- Food Science and Technology, 192, 115728, 2024. https://doi.org/10.1016/j.lwt.2024.1157 28
  • C. Padureanu, C.L. Badarau, A. Maier, V. Padureanu, M.I. Lupu, C.M. Canja, G.R. Branescu, O.C. Bujor, F. Matei and M.A. Poiana, Ultrasound treatment influence on antioxidant properties of blueberry vinegar. Fermentation, 9(7), 600, 2023. https://doi.org/10. 3390/fermentation9070600
  • Expert Market Research, Global vinegar market report. https://www.expertmarketresearch.com/reports/vinegar-market, Accessed 9 February 2024.
  • F. Visioli, D. Caruso, E. Plasmati, R. Patelli, N. Mulinacci, A. Romani, G. Galli and C. Galli, Hydroxytyrosol, as a component of olive mill waste water, is dose- dependently absorbed and increases the antioxidant capacity of rat plasma. Free Radical Researach, 34, 301-305, 2001. https://doi.org/10.1080 /10715760100300271
  • J. Balch, and P. Balch, Prescription for Nutritional Healing. Garden City Park, New York: Avery Publishing Group. Castleman, M, 1997.
  • O. Güney, A. Canbilen, A. Konak and O. Acar, The effects of folic acid in the prevention of neural tube development defects caused by phenytoin in early chick embryos. Spine, 28(5), 442-445, 2003. https://doi.org/10.1097/01.BRS.0000048647.17577.13
  • Y. Taştan and M.O.A. Salem, Use of phytochemicals as feed supplements in aquaculture: A review on their effects on growth, immune response, and antioxidant status of finfish. Journal of Agricultural Production, 2(1), 32-43, 2021. https://doi.org/10.29329/agripro.20 21.344.5
  • Y. Dündar, Fitokimyasallar ve sağlıklı yaşam. Kocatepe Tıp Dergisi, 2, 131-138, 2001. https://doi.org/10.18229/ktd.09685
  • T.F. Slater, Free-radical mechanisms in tissue injury. Biochemical Journal, 222, 1-15, 1984. https://doi.org /10.1042/bj2220001
  • H. Seifried, D. Anderson, E. Fisher and J. Milner, A review of the interaction among dietary antioxidants and reactive oxygen species. The Journal of Nutritional Biochemistry, 18, 567-579, 2007. https://doi.org/10.10 16/j.jnutbio.2006.10.007
  • X. Li, H. Lei, L. Xie, N. Wang, W. Zhang and R. Cao, Metalloporphyrins as catalytic models for studying hydrogen and oxygen evolution and oxygen reduction reactions. Accounts of Chemical Research, 55(6), 878-892, 2022. https://doi.org/10.1021/acs.accounts.1c007 53
  • B. Mazlum, Antioxidant vitamins and their use in psychiatry. Current Approaches in Psychiatry 4(4), 486-505, 2012. https://doi.org/10.5455/cap.20120429
  • A.G.P. Samaranayaka and E.C.Y. Li-Chan, Food-derived peptidic antioxidants: A review of their production, assessment and potential applications. Journal of Functional Foods, 3, 229-254, 2011. https://doi.org/10.1016/j.jff.2011.05.006
  • V.L. Singleton and J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158, 1965. https://doi.org/10.5344/ajev.1965 .16.3.144
  • Y. Li, D. Ma, D. Sun, C. Wang, J. Zhang, Y. Xie and T. Guo, Total phenolic, flavonoid content, and antioxidant activity of flour, noodles, and steamed bread made from different colored wheat grains by three milling methods. The Crop Journal, 3, 328-334, 2015. https://doi.org/10.1016/j.cj.2015.04.004
  • T. Fuleki and F. Francis, Quantitative methods for anthocyanins. Journal of Food Science, 33, 72-77, 1968. https://doi.org/10.1111/j.1365-2621.1968.tb008 87.x
  • I.F.F. Benzie and J.J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry 239, 70–76, 1996. https://doi.org/10.1006/abio.1996.0292
  • W. Brand-Williams, M. Cuvelier and C. Berset, Use of free radical method to evaluate antioxidant activity. LTW-Food Science and Technology, 28, 25-30, 1995. https://doi.org/10.1016/S0023-6438(95)80008-5
  • R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231–1237, 1999. https://doi.org/10.1016/S0891-5849(98)00315-3
  • M. Kara, A. Assouguem, S. Benmessaoud, M. El Fadili, S. Alshawwa, O. Kamaly, H. Saghrouchni, R. Zerhouni, and J. Bahhou, Contribution to the evaluation of physicochemical properties, total phenolic content, antioxidant potential, and antimicrobial activity of vinegar commercialized in Morocco. Molecules, 27(3), 770, 2022. https://doi.org/10.3390/molecules27030770
  • O.T. Okan, H. Varlıbaş, M. Öz and I. Deniz, Antioksidan analiz yöntemleri ve doğu karadeniz bölgesinde antioksidan kaynağı olarak kullanılabilecek odun dışı bazı bitkisel ürünler. Kastamonu Üni. Orman Fakültesi Dergisi, 13(1), 48-59, 2013.
  • I.Y. Şengün, G. Kilic and B. Ozturk, Screening physicochemical, microbiological and bioactive properties of fruit vinegars produced from various raw materials. Food Science and Biotechnology, 29(3), 401-408, 2020. https://doi.org/10.1007/s10068-019-00678-6
  • E. Yıldız, Characterization of fruit vinegars via bioactive and organic acid profile using chemometrics. Foods 12 (20), 3769, 2023. https://doi.org/10.3390/foo ds12203769
  • N. Özdemir, H. Pashazadeh, O. Zannou and I. Koca, Phytochemical content, and antioxidant activity, and volatile compounds associated with the aromatic property of the vinegar produced from rosehip fruit (Rosa canina L.). LTW-Food Science and Technology. 154, 112716, 2022. https://doi.org/10.1016/j.lwt.2021 .112716
  • S. Bakır, G. Toydemir, D. Boyacioglu, J. Beekwilder and E. Capanoglu, Fruit antioxidants during vinegar processing: Changes in content and in vitro bio-accessibility. International Journal of Molecular Sciences. 17 (10), 1658, 2016. https://doi.org/10.3390 /ijms17101658
  • H.N. Budak, B.E. Filiz, E.S. Çetin and Ç. Gökırmaklı, Antimicrobial activity of different kinds of traditional vinegar and its relationship with antioxidant properties. The Annals of the University Dunarea De Jos of Galati. Fascicle VI - Food Technology 46 (1), 140-54, 2022. https://doi.org/10.35219/foodtechnology.2022.1.11
  • H.N. Budak, Alteration of antioxidant activity and total phenolic content during the eight-week fermentation of apple cider vinegar. Horticultural Studies, 38(1), 39-45, 2021. https://doi.org/10.16882/hortis.882469
  • H.N. Budak and Z.B. Guzel-Seydim, Antioxidant activity and phenolic content of wine vinegars produced by two different techniques. Journal of the Science of Food and Agriculture, 90, 2021-2026, 2010. https://doi.org/10.1002/jsfa.4047
  • A. Aybek and E. Akkemik, Comparison of traditional Zivzik pomegranate vinegar against commercial pomegranate vinegar: antioxidant activity and chemical composition. Türk Doğa ve Fen Dergisi, 11(3), 178-185, 2022. https://doi.org/10.46810/tdfd.1112619
  • J.H. Yun, Y.J. Kim and K.H. Koh, Investigation into factors influencing antioxidant capacity of vinegars. Applied Biological Chemistry 59, 495–509, 2016. https://doi.org/10.1007/s13765-016-0185-4
  • N. H., Budak, N. Özdemir and Ç. Gökırmaklı, The changes of physicochemical properties, antioxidants, organic, and key volatile compounds associated with the flavor of peach (Prunus cerasus L. Batsch) vinegar during the fermentation process. Journal of Food Biochemistry, 46, 13978, 2022. https://doi.org/10.1111 /jfbc.13978
  • D. Karakçı, B. Bakır, N. Seyidoglu and S. Yıkmış, Ultrasound-treated and thermal-pasteurized hawthorn vinegar: Antioxidant and lipid profiles in rats. Nutrients, 15(18), 3933, 2023. https://doi.org/10.3390/ nu15183933
  • C.C., Chang, M.H., Yang, H.M. Wen and J.C. Chern, Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 178-182, 2002. https://doi.org/ 10.38212/2224-6614.2748
  • S. Aydın and C. Demir Gökışık, Total phenolic and flavonoid contents and antioxidant capacity of home-made Isabella grape (Vitis labrusca L.) vinegar. International Journal of Chemistry and Technology, 3 (1), 1-11, 2019. https://doi.org/10.32571/ijct.471953
  • H. Pashazadeh, N. Özdemir, O. Zannou and İ. Koca, Antioxidant capacity, phytochemical compounds, and volatile compounds related to aromatic property of vinegar produced from black rosehip (Rosa pimpinellifolia L.) juice. Food Bioscience, 44 (A), 101318, 2021. https://doi.org/10.1016/j.fbio.2021.101 318
  • G. Toydemir, Bazı siyah üzüm ve nar ürünlerinin antioksidan özelliklerinin incelenmesi. European Journal of Science and Technology, (23), 800-809, 2021. https://doi.org/10.31590/ejosat.918712
  • Z. Kadas, G.A., Evrendilek and G. Heper, The metabolic effects of hawthorn vinegar in patients with high cardiovascular risk group. Journal of Food and Nutrition Research, 2, 539-545, 2014. https://doi.org/ 10.12691/jfnr-2-9-2
  • C. Ubeda, R.M. Callejon, C. Hidalgo, M.J., Torija, A.M. Troncoso and M.L. Morales, Employment of different processes for the production of strawberry vinegars: Effects on antioxidant activity, total phenols and monomeric anthocyanins. LWT - Food Science and Technology, 52 (2), 139-145, 2013. https://doi.org/ 10.1016/j.lwt.2012.04.021
  • M. Cruz, A. Correia, F. Gonçalves and A. Jordão, Phenolic composition and total antioxidant capacity analysis of red wine vinegars commercialized in Portuguese market. Ciência e Técnica Vitivinícola, 33, 102-115, 2018. https://doi.org/10.1051/ctv/20183302 102
  • S. Yikmiş, Investigation of the effects of non-thermal, combined and thermal treatments on the physicochemical parameters of pomegranate (Punica granatum L.) juice. Food Science and Technology Research, 25 (3), 341-350, 2019. https://doi.org/10.31 36/fstr.25.341
  • F. Song, S. Parekh, L. Hooper, Y.K. Loke, J.J. Ryder, A.J. Sutton, C. Hing, C.S. Kwok, C. Pang and I. Harvey, Dissemination and publication of research findings: an updated review of related biases. Health Technology Assessment, 14(8), 1-193, 2010. https://doi.org/10.3310/hta14080
  • P.S., Kumar, E. Suresh and K. Kalavathy, Review on a potential herb Calotropis gigantea (L.) R. Br. Scholars Academic Journal of Pharmacy, 2(2), 135-143, 2013.
  • R.L., Prior, X. Wu and K. Schaich, Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53, 4290-4303, 2005. https://doi. org/10.1021/jf0502698
  • H. Kelebek, P. K. Kelebek, N. B. Demircan and S. Selli, Screening of bioactive components in grape and apple vinegar's: Antioxidant and antimicrobial potential. Journal of the Institute of Brewing. 123, 407-416. https://doi.org/10.1002/jib.432
  • G.B. Özdemir, N. Özdemir, B. Ertekin-Filiz, Ç. Gökırmaklı, T. Kök-Taş and N.H. Budak, Volatile aroma compounds and bioactive compounds of hawthorn vinegar produced from hawthorn fruit (Crataegus tanacetifolia (lam.) pers.). Journal of Food Biochemistry, 46(3), 13676, 2022. https://doi.org/ 10.1111/jfbc.13676
  • S. Bakir, D. Devecioglu, S. Kayacan, G. Toydemir, F. Karbancioglu-Guler and E. Capanoglu, Investigating the antioxidant and antimicrobial activities of different vinegars. European Food Research and Technology, 243(12), 2083-2094, 2017. https://doi.org/10.1007/s00 217-017-2908-0
  • M.B. Hammouda, R. Castro, E. Durán-Guerrero, H. Attia, and S. Azabou, Vinegar production via spontaneous fermentation of different prickly pear fruit matrices: changes in chemical composition and biological activities, Journal of the Science of Food and Agriculture, 103, 5221-5230, 2023. https://doi.org/10. 1002/jsfa.12605
  • Q. Xu, W. Tao and Z. Ao, Antioxidant activity of vinegar melanoidins, Food Chemistry, 102, 841–849, 2007. https://doi.org/10.1016/j.foodchem.2006.06.013

Determination of total phenolic, flavonoid and monomeric anthocyanin contents and antioxidant properties of 15 different fruit vinegars produced by traditional method

Year 2024, Volume: 13 Issue: 3, 844 - 851, 15.07.2024
https://doi.org/10.28948/ngumuh.1442055

Abstract

In this study, vinegars were produced using traditional method from 15 different fruits (rosehip, pear, fig, wild pear, apple, plum, hawthorn (yellow and red), pomegranate, grape (cimin, cardinal), peach, cranberry, quince and medlar). It was aimed to determine the total phenolic, total flavonoid and total monomeric anthocyanin contents and antioxidant capacities of vinegars. As a result, it was concluded that the phenolic, flavonoid contents and the antioxidant capacity in all 3 methods (TEAC, FRAP and DPPH) of rosehip vinegar was significantly higher than other vinegars. In addition, wild pear and hawthorn vinegars were very rich in phenolic and flavonoid compounds and these vinegars had very high antioxidant capacity. The results of the study suggest that an alternative consumption method can be provided by producing vinegar, which is a healthy, aromatic and alternative product with high added value, from fruits such as rosehip, wild pear, hawthorn, cranberry, quince and medlar, whose usage and consumption are limited due to their natural structure.

Project Number

20.B0433.02.01

References

  • K. Pushparaj, W.C. Liu, A. Meyyazhagan, A. Orlacchio, M. Pappusamy, C. Vadivalagan, A.A. Robert, V.A. Arumugam, H. Kamyab, J.J. Klemeš and T. Khademi, Nanofrom nature to nurture: A comprehensive review on facets, trends, perspectives and sustainability of nanotechnology in the food sector. Energy, 240, 122732, 2022. https://doi.org/10.1016/j.e nergy.2021.122732
  • S. Yavari, H. Kamyab, T.S. Abd Manan, S. Chelliapan, R. Asadpour, S. Yavari, N.B. Sapari, L. Baloo, A.B. Sidik and I. Kirpichnikova, Bio-efficacy of imidazolinones in weed control in a tropical paddy soil amended with optimized agrowaste derived biochars. Chemosphere, 303, 134957, 2022. https://doi.org/10. 1016/j.chemosphere.2022.134957
  • B. Abadi, S. Mahdavian and F. Fattahi, The waste management of fruit and vegetable in wholesale markets: Intention and behavior analysis using path analysis. Journal of Cleaner Production, 279, 123802, 2021. https://doi.org/10.1016/j.jclepro.2020.123802
  • L.M. Luzón-Quintana, R. Castro, and E. Durán-Guerrero, Biotechnological processes in fruit vinegar production. Foods, 10, 945, 2021. https://doi.org/10. 3390/foods10050945
  • S. Lalou, S. Ordoudi and F. Mantzouridou, Evaluation of safety and quality parameters of persimmon balsamic-type vinegar during multistarter culture fermentation and accelerated aging with oak chips. Food Bioscience, 57, 103526, 2024. https://doi.org/10. 1016/j.fbio.2023.103526
  • T. Li, X. Wang, C. Li, Q. Fu, X. Xu, J. Sun, C. Wang, J. Du, B. Wang and X. Shi, Investigation of microbial succession and volatile compounds dynamics during the fermentation of traditional cereal vinegar in Xinjiang. LWT-Food Science and Technology, 186, 115258, 2023. https://doi.org/10.1016/j.lwt.2023.115 258
  • T. Zhang, Y. Gong, C. Yang, X. Liu, X. Wang and T. Chen, Biofortification with Aspergillus awamori offers a new strategy to improve the quality of Shanxi aged vinegar. LWT- Food Science and Technology, 192, 115728, 2024. https://doi.org/10.1016/j.lwt.2024.1157 28
  • C. Padureanu, C.L. Badarau, A. Maier, V. Padureanu, M.I. Lupu, C.M. Canja, G.R. Branescu, O.C. Bujor, F. Matei and M.A. Poiana, Ultrasound treatment influence on antioxidant properties of blueberry vinegar. Fermentation, 9(7), 600, 2023. https://doi.org/10. 3390/fermentation9070600
  • Expert Market Research, Global vinegar market report. https://www.expertmarketresearch.com/reports/vinegar-market, Accessed 9 February 2024.
  • F. Visioli, D. Caruso, E. Plasmati, R. Patelli, N. Mulinacci, A. Romani, G. Galli and C. Galli, Hydroxytyrosol, as a component of olive mill waste water, is dose- dependently absorbed and increases the antioxidant capacity of rat plasma. Free Radical Researach, 34, 301-305, 2001. https://doi.org/10.1080 /10715760100300271
  • J. Balch, and P. Balch, Prescription for Nutritional Healing. Garden City Park, New York: Avery Publishing Group. Castleman, M, 1997.
  • O. Güney, A. Canbilen, A. Konak and O. Acar, The effects of folic acid in the prevention of neural tube development defects caused by phenytoin in early chick embryos. Spine, 28(5), 442-445, 2003. https://doi.org/10.1097/01.BRS.0000048647.17577.13
  • Y. Taştan and M.O.A. Salem, Use of phytochemicals as feed supplements in aquaculture: A review on their effects on growth, immune response, and antioxidant status of finfish. Journal of Agricultural Production, 2(1), 32-43, 2021. https://doi.org/10.29329/agripro.20 21.344.5
  • Y. Dündar, Fitokimyasallar ve sağlıklı yaşam. Kocatepe Tıp Dergisi, 2, 131-138, 2001. https://doi.org/10.18229/ktd.09685
  • T.F. Slater, Free-radical mechanisms in tissue injury. Biochemical Journal, 222, 1-15, 1984. https://doi.org /10.1042/bj2220001
  • H. Seifried, D. Anderson, E. Fisher and J. Milner, A review of the interaction among dietary antioxidants and reactive oxygen species. The Journal of Nutritional Biochemistry, 18, 567-579, 2007. https://doi.org/10.10 16/j.jnutbio.2006.10.007
  • X. Li, H. Lei, L. Xie, N. Wang, W. Zhang and R. Cao, Metalloporphyrins as catalytic models for studying hydrogen and oxygen evolution and oxygen reduction reactions. Accounts of Chemical Research, 55(6), 878-892, 2022. https://doi.org/10.1021/acs.accounts.1c007 53
  • B. Mazlum, Antioxidant vitamins and their use in psychiatry. Current Approaches in Psychiatry 4(4), 486-505, 2012. https://doi.org/10.5455/cap.20120429
  • A.G.P. Samaranayaka and E.C.Y. Li-Chan, Food-derived peptidic antioxidants: A review of their production, assessment and potential applications. Journal of Functional Foods, 3, 229-254, 2011. https://doi.org/10.1016/j.jff.2011.05.006
  • V.L. Singleton and J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158, 1965. https://doi.org/10.5344/ajev.1965 .16.3.144
  • Y. Li, D. Ma, D. Sun, C. Wang, J. Zhang, Y. Xie and T. Guo, Total phenolic, flavonoid content, and antioxidant activity of flour, noodles, and steamed bread made from different colored wheat grains by three milling methods. The Crop Journal, 3, 328-334, 2015. https://doi.org/10.1016/j.cj.2015.04.004
  • T. Fuleki and F. Francis, Quantitative methods for anthocyanins. Journal of Food Science, 33, 72-77, 1968. https://doi.org/10.1111/j.1365-2621.1968.tb008 87.x
  • I.F.F. Benzie and J.J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry 239, 70–76, 1996. https://doi.org/10.1006/abio.1996.0292
  • W. Brand-Williams, M. Cuvelier and C. Berset, Use of free radical method to evaluate antioxidant activity. LTW-Food Science and Technology, 28, 25-30, 1995. https://doi.org/10.1016/S0023-6438(95)80008-5
  • R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231–1237, 1999. https://doi.org/10.1016/S0891-5849(98)00315-3
  • M. Kara, A. Assouguem, S. Benmessaoud, M. El Fadili, S. Alshawwa, O. Kamaly, H. Saghrouchni, R. Zerhouni, and J. Bahhou, Contribution to the evaluation of physicochemical properties, total phenolic content, antioxidant potential, and antimicrobial activity of vinegar commercialized in Morocco. Molecules, 27(3), 770, 2022. https://doi.org/10.3390/molecules27030770
  • O.T. Okan, H. Varlıbaş, M. Öz and I. Deniz, Antioksidan analiz yöntemleri ve doğu karadeniz bölgesinde antioksidan kaynağı olarak kullanılabilecek odun dışı bazı bitkisel ürünler. Kastamonu Üni. Orman Fakültesi Dergisi, 13(1), 48-59, 2013.
  • I.Y. Şengün, G. Kilic and B. Ozturk, Screening physicochemical, microbiological and bioactive properties of fruit vinegars produced from various raw materials. Food Science and Biotechnology, 29(3), 401-408, 2020. https://doi.org/10.1007/s10068-019-00678-6
  • E. Yıldız, Characterization of fruit vinegars via bioactive and organic acid profile using chemometrics. Foods 12 (20), 3769, 2023. https://doi.org/10.3390/foo ds12203769
  • N. Özdemir, H. Pashazadeh, O. Zannou and I. Koca, Phytochemical content, and antioxidant activity, and volatile compounds associated with the aromatic property of the vinegar produced from rosehip fruit (Rosa canina L.). LTW-Food Science and Technology. 154, 112716, 2022. https://doi.org/10.1016/j.lwt.2021 .112716
  • S. Bakır, G. Toydemir, D. Boyacioglu, J. Beekwilder and E. Capanoglu, Fruit antioxidants during vinegar processing: Changes in content and in vitro bio-accessibility. International Journal of Molecular Sciences. 17 (10), 1658, 2016. https://doi.org/10.3390 /ijms17101658
  • H.N. Budak, B.E. Filiz, E.S. Çetin and Ç. Gökırmaklı, Antimicrobial activity of different kinds of traditional vinegar and its relationship with antioxidant properties. The Annals of the University Dunarea De Jos of Galati. Fascicle VI - Food Technology 46 (1), 140-54, 2022. https://doi.org/10.35219/foodtechnology.2022.1.11
  • H.N. Budak, Alteration of antioxidant activity and total phenolic content during the eight-week fermentation of apple cider vinegar. Horticultural Studies, 38(1), 39-45, 2021. https://doi.org/10.16882/hortis.882469
  • H.N. Budak and Z.B. Guzel-Seydim, Antioxidant activity and phenolic content of wine vinegars produced by two different techniques. Journal of the Science of Food and Agriculture, 90, 2021-2026, 2010. https://doi.org/10.1002/jsfa.4047
  • A. Aybek and E. Akkemik, Comparison of traditional Zivzik pomegranate vinegar against commercial pomegranate vinegar: antioxidant activity and chemical composition. Türk Doğa ve Fen Dergisi, 11(3), 178-185, 2022. https://doi.org/10.46810/tdfd.1112619
  • J.H. Yun, Y.J. Kim and K.H. Koh, Investigation into factors influencing antioxidant capacity of vinegars. Applied Biological Chemistry 59, 495–509, 2016. https://doi.org/10.1007/s13765-016-0185-4
  • N. H., Budak, N. Özdemir and Ç. Gökırmaklı, The changes of physicochemical properties, antioxidants, organic, and key volatile compounds associated with the flavor of peach (Prunus cerasus L. Batsch) vinegar during the fermentation process. Journal of Food Biochemistry, 46, 13978, 2022. https://doi.org/10.1111 /jfbc.13978
  • D. Karakçı, B. Bakır, N. Seyidoglu and S. Yıkmış, Ultrasound-treated and thermal-pasteurized hawthorn vinegar: Antioxidant and lipid profiles in rats. Nutrients, 15(18), 3933, 2023. https://doi.org/10.3390/ nu15183933
  • C.C., Chang, M.H., Yang, H.M. Wen and J.C. Chern, Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 178-182, 2002. https://doi.org/ 10.38212/2224-6614.2748
  • S. Aydın and C. Demir Gökışık, Total phenolic and flavonoid contents and antioxidant capacity of home-made Isabella grape (Vitis labrusca L.) vinegar. International Journal of Chemistry and Technology, 3 (1), 1-11, 2019. https://doi.org/10.32571/ijct.471953
  • H. Pashazadeh, N. Özdemir, O. Zannou and İ. Koca, Antioxidant capacity, phytochemical compounds, and volatile compounds related to aromatic property of vinegar produced from black rosehip (Rosa pimpinellifolia L.) juice. Food Bioscience, 44 (A), 101318, 2021. https://doi.org/10.1016/j.fbio.2021.101 318
  • G. Toydemir, Bazı siyah üzüm ve nar ürünlerinin antioksidan özelliklerinin incelenmesi. European Journal of Science and Technology, (23), 800-809, 2021. https://doi.org/10.31590/ejosat.918712
  • Z. Kadas, G.A., Evrendilek and G. Heper, The metabolic effects of hawthorn vinegar in patients with high cardiovascular risk group. Journal of Food and Nutrition Research, 2, 539-545, 2014. https://doi.org/ 10.12691/jfnr-2-9-2
  • C. Ubeda, R.M. Callejon, C. Hidalgo, M.J., Torija, A.M. Troncoso and M.L. Morales, Employment of different processes for the production of strawberry vinegars: Effects on antioxidant activity, total phenols and monomeric anthocyanins. LWT - Food Science and Technology, 52 (2), 139-145, 2013. https://doi.org/ 10.1016/j.lwt.2012.04.021
  • M. Cruz, A. Correia, F. Gonçalves and A. Jordão, Phenolic composition and total antioxidant capacity analysis of red wine vinegars commercialized in Portuguese market. Ciência e Técnica Vitivinícola, 33, 102-115, 2018. https://doi.org/10.1051/ctv/20183302 102
  • S. Yikmiş, Investigation of the effects of non-thermal, combined and thermal treatments on the physicochemical parameters of pomegranate (Punica granatum L.) juice. Food Science and Technology Research, 25 (3), 341-350, 2019. https://doi.org/10.31 36/fstr.25.341
  • F. Song, S. Parekh, L. Hooper, Y.K. Loke, J.J. Ryder, A.J. Sutton, C. Hing, C.S. Kwok, C. Pang and I. Harvey, Dissemination and publication of research findings: an updated review of related biases. Health Technology Assessment, 14(8), 1-193, 2010. https://doi.org/10.3310/hta14080
  • P.S., Kumar, E. Suresh and K. Kalavathy, Review on a potential herb Calotropis gigantea (L.) R. Br. Scholars Academic Journal of Pharmacy, 2(2), 135-143, 2013.
  • R.L., Prior, X. Wu and K. Schaich, Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53, 4290-4303, 2005. https://doi. org/10.1021/jf0502698
  • H. Kelebek, P. K. Kelebek, N. B. Demircan and S. Selli, Screening of bioactive components in grape and apple vinegar's: Antioxidant and antimicrobial potential. Journal of the Institute of Brewing. 123, 407-416. https://doi.org/10.1002/jib.432
  • G.B. Özdemir, N. Özdemir, B. Ertekin-Filiz, Ç. Gökırmaklı, T. Kök-Taş and N.H. Budak, Volatile aroma compounds and bioactive compounds of hawthorn vinegar produced from hawthorn fruit (Crataegus tanacetifolia (lam.) pers.). Journal of Food Biochemistry, 46(3), 13676, 2022. https://doi.org/ 10.1111/jfbc.13676
  • S. Bakir, D. Devecioglu, S. Kayacan, G. Toydemir, F. Karbancioglu-Guler and E. Capanoglu, Investigating the antioxidant and antimicrobial activities of different vinegars. European Food Research and Technology, 243(12), 2083-2094, 2017. https://doi.org/10.1007/s00 217-017-2908-0
  • M.B. Hammouda, R. Castro, E. Durán-Guerrero, H. Attia, and S. Azabou, Vinegar production via spontaneous fermentation of different prickly pear fruit matrices: changes in chemical composition and biological activities, Journal of the Science of Food and Agriculture, 103, 5221-5230, 2023. https://doi.org/10. 1002/jsfa.12605
  • Q. Xu, W. Tao and Z. Ao, Antioxidant activity of vinegar melanoidins, Food Chemistry, 102, 841–849, 2007. https://doi.org/10.1016/j.foodchem.2006.06.013
There are 54 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Articles
Authors

Melih Güzel 0000-0001-5374-8838

Project Number 20.B0433.02.01
Early Pub Date May 31, 2024
Publication Date July 15, 2024
Submission Date February 23, 2024
Acceptance Date May 10, 2024
Published in Issue Year 2024 Volume: 13 Issue: 3

Cite

APA Güzel, M. (2024). Determination of total phenolic, flavonoid and monomeric anthocyanin contents and antioxidant properties of 15 different fruit vinegars produced by traditional method. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(3), 844-851. https://doi.org/10.28948/ngumuh.1442055
AMA Güzel M. Determination of total phenolic, flavonoid and monomeric anthocyanin contents and antioxidant properties of 15 different fruit vinegars produced by traditional method. NOHU J. Eng. Sci. July 2024;13(3):844-851. doi:10.28948/ngumuh.1442055
Chicago Güzel, Melih. “Determination of Total Phenolic, Flavonoid and Monomeric Anthocyanin Contents and Antioxidant Properties of 15 Different Fruit Vinegars Produced by Traditional Method”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 3 (July 2024): 844-51. https://doi.org/10.28948/ngumuh.1442055.
EndNote Güzel M (July 1, 2024) Determination of total phenolic, flavonoid and monomeric anthocyanin contents and antioxidant properties of 15 different fruit vinegars produced by traditional method. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 3 844–851.
IEEE M. Güzel, “Determination of total phenolic, flavonoid and monomeric anthocyanin contents and antioxidant properties of 15 different fruit vinegars produced by traditional method”, NOHU J. Eng. Sci., vol. 13, no. 3, pp. 844–851, 2024, doi: 10.28948/ngumuh.1442055.
ISNAD Güzel, Melih. “Determination of Total Phenolic, Flavonoid and Monomeric Anthocyanin Contents and Antioxidant Properties of 15 Different Fruit Vinegars Produced by Traditional Method”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/3 (July 2024), 844-851. https://doi.org/10.28948/ngumuh.1442055.
JAMA Güzel M. Determination of total phenolic, flavonoid and monomeric anthocyanin contents and antioxidant properties of 15 different fruit vinegars produced by traditional method. NOHU J. Eng. Sci. 2024;13:844–851.
MLA Güzel, Melih. “Determination of Total Phenolic, Flavonoid and Monomeric Anthocyanin Contents and Antioxidant Properties of 15 Different Fruit Vinegars Produced by Traditional Method”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 3, 2024, pp. 844-51, doi:10.28948/ngumuh.1442055.
Vancouver Güzel M. Determination of total phenolic, flavonoid and monomeric anthocyanin contents and antioxidant properties of 15 different fruit vinegars produced by traditional method. NOHU J. Eng. Sci. 2024;13(3):844-51.

download