Research Article
BibTex RIS Cite

Organophile element investigations in Miocene bituminous claystones of Ilgın field (Konya): Effect of nutrient input and paleo-productivity

Year 2024, Volume: 13 Issue: 4, 1168 - 1183, 15.10.2024
https://doi.org/10.28948/ngumuh.1431830

Abstract

In this study, in addition to P, which is a bionutrient element for phytoplankton algae, during the deposition of bituminous claystones in the Ilgın area, the behavior of elements such as Cu, Ni, Zn, Cd, Ba and Se dissolved in water with organic matter was examined. In addition to nutrients such as N and P, elements such as Cu, Ni, Zn, Cd, Ba and Se act as nutritional elements in the biological productivity of phyto and zooplankton algae in lake and marine environments. The abundance of organic matter (%TOC) in bituminous claystones is closely related to bionutrient elements such as Cu, Ni, Zn, Cd, Ba and Se, which are bound to the organic structure as organometallic ligands, as well as P, which is an algal productive and bionutrient element in the water. In the analyzed samples, %TOC exhibits a very weak or weak correlation relationship with Cu (r=0.122), Ni (r=0.002), Zn (r=0.081), Cd (r= -0.279) and Ba (r= -0.661) respectively, while displaying a moderately strong correlation with Se (r= 0.685). This indicates that Selenium specifically exhibits an organophilic element. Moreover, in the examined examples; Cu shows very weak correlations with Fe (r= 0.220) and S (r=0.216), Ni shows weak correlations with Fe (r= 0.029) and S (r=-0.065), Zn demonstrates weak correlations with Fe (r= -0.142) and S (r= -0.135); Cd displays moderate correlations with Fe (r= 0.379) and S (r= 0.262); and Ba exhibits very weak correlations with S (r= -0.515). Conversely, Se shows a strong correlation with Fe (r = 0.696) and S (r = 0.732), indicating that only Se is precipitated in the form of sulfide and sulfate compounds. Furthermore, in the analyzed examples; Cu displays a very weak correlation with Mn (r = -0.524) and Zn (r = -0.163), while Ba shows a strong correlation with Mn (r = 0.750). This suggests that Ba might have precipitated in the form of Barium Permanganate [Ba(Mn2O8)].

References

  • V. F. Cherepovsky, World’s Oil Shale Deposit. Moscow, Russia, Science Press, 263 pp, 1988.
  • R.F. Cane, The origin and formation of oil shale. In Teh Fu Yen; Chilingar, George V. (eds.). Oil Shale. Amsterdam: Elsevier. pp.1–12. 56. ISBN 978-0-444-41408-3, 1976.
  • J. Schieber, Evidence for high-energy events and shallow-water deposition in the Chat-tanooga Shale, Devonian, central Tennessee, USA. Sedimentary Geology, 93, 193–208, 1994. https://doi.org/10.1016/0 037-0738(94)90005-1.
  • J.R. Dyni, Oil Shale: Encyclopedia of Energy. Survey of Energy Resources, 73-91, 2004. https://doi.org/10. 1016/B978-0080444109/50007-3.
  • J.R. Dyni, Oil Shale. In Clarke, Alan W.; Trinnaman, Judy A. (eds.). Survey of energy resources (22 ed.). World Energy Council. ISBN 978-0-946121-02-1, 2010.
  • E.D. Ingall, R.M. Bustın, and P. Van Cappellen, Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochimica et Cosmochimica Acta, 57, 303-316, 1993. https://doi.org/10.1016/0016-7037(93)904 33-W.
  • T.J. Algeo and S, Scheckler, Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philos. Trans. R. Soc. B-Biol. Sci., 353(1365), 113-128, 1998. https://doi.org/10.109 8/rstb.1998.0195.
  • J. Schieber, W. Zimmerle, and P. Sethi, Shales and Mudstones (vol. 1 & 2). Stuttgart, Schweizerbart'sche Verlagsbuchhandlung. 1998.
  • N. Tribovillard, T.J. Algeo, T. Lyons, and A. Riboulleau, Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1-2), 12-32, 2006. https://doi.org/10.101 6/j.chemgeo.2006.02.012.
  • H.P. Mort, T. Adatte, K.B. Follini, G. Keller, P. Steinmann, V. Matera, Z. Berner, and D. Stüben, Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2. Geology, 35, 483-486, 2007. https://doi.org/10.1130/G23475A.1.
  • K.W. Bruland, Trace elements in sea water. In: Riley,J.P., Chester, R. (Eds.), Chemical Oceanography. Academic Press, London, UK, 398p, 1983.
  • L. Waxman, The structure of arthropod and mollusc hemocyanins. The Journal of Biological Chemistry 250(10), 3796-3806, 1975. https://doi.org/10.1016/S0 021-9258(19)41469-5.
  • H.J. Brumsack, The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 344-361, 2006. https://doi.org/10.1016/j.palaeo.2005.05.011.
  • H.J. Brumsack, Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea. Geologische Rundschau, 78, 851-882, 1989. https: //doi.org/10.1007/BF01829327.
  • S.E. Calvert, T.F. Pedersen, Geochemistry of Recent oxic and anoxic marine sediments: implications for the geological record. Marine Geology, 113, 67-88, 1993.
  • J. B. Murphy, R. A. Strachan, R. D. Nance, K.D. Parker, and M.B. Fowler, Proto-Avalonia: A 1.2–1.0 Ga tectonothermal event and constraints on the evolution of Rodinia. Geology, 28, 1071–1074, 2000
  • T.J. Algeo and J.B. Maynard, Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206, 289-318, 2004. https://doi.org/10.1016/ j.chemgeo.2003.12.009.
  • M. Lipinski, B. Warning, and H.J. Brumsack, Trace metal signatures of Jurassic/Cretaceous black shales from the Norwegian Shelf and the Barents Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 190, 459-475, 2003. https://doi.org/10.1016/S0031-01 82(02)00619-3.
  • M. Alberdi-Genolet, and E. Lafergue, Vertical variations of organic matter content in Guayuta Group (Upper Cretaceous), Interior Mountain Belt, Eastern Venezuela. Organic Geochemistry, 20(4), 425-436, 1993. https://doi.org/10.1016/0146-6380(93)90091-O.
  • T.J. Nameroff, L.S. Balutrier, and J.W. Murray, Suboxic trace metal geochemistry in the eastern tropical North Pacific. Geochimica et Cosmochimica Acta, 66(7), 1139-1158, 2002. https://doi.org/10.1016 /S0016-7037(01)00843-2.
  • K. Loukola-Ruskeeniemi, Geochemical evidence for the hydrothermal origin of sulphur, base metals and gold in Proterozoic metamorphosed black shales, Kainuu and Outokumpu areas, Finland. Mineralium Deposita, 26, 152-164, 1991. https://doi.org/10.1007/B F00195262.
  • J.S. Levanthal, and J.W. Hosterman, Chemical and mineralogical analysis of devonian black-shale samples from Martin County, Kentucky; Carroll and Washington counties, Ohio; Wise County, Virginia; and Overton County, Tennessee, U.S.A. Chemical Geology, 37, 237-264, 1982. https://doi.org/10.1016/0 009-2541(82)90081-X.
  • S.J. Schatzel, and B.W. Stewort, Rare Earth Element sources and modification in the Lower Kittanning coal bed, Pennsylvania; Implications for the origin of coal mineral matter and rare earth element exposure in underground mines. International Journal of Coal Geology, 54, 223-251, 2002. https://doi.org/10.1016/S 0166-5162(03)00038-7.
  • S. Paradis, Fluid Inclusion and Isotope Evidence for the Origin of the Upton Ba-Zn-Pb Deposit, Quebec Appalachians, Canada. Economic Geology, 99(4), 807-817, 2004. https://doi.org/10.2113/gsecongeo.99.4.80 7.
  • D.J. Mossman, B. Naggy, and D.W. Dawis, Hydrothermal alteration of organic matter in uranium ores, Elliot Lake, Canada: İmplications for selected organic-rich deposits. Geochimica et Cosmochimica Acta, 57(14), 3251-3259, 1993. https://doi.org/10.10 16/0016-7037(93)90538-8.
  • D.J. Mossman, F. Goodarzi, and T. Gentzis, Characterization of insoluble organic matter from the Lower Proterozoic Huronian Supergroup, Elliot Lake, Ontario. Precambrian Research, 61(3-4), 279-293, 1993. https://doi.org/10.1016/0301-9268(93)90117-K.
  • D.J. Mossman, Carbonaceous substances in mineral deposits: implications for geochemical exploration. Journal of Geochemical Exploration, 66(1-2), 241-247, 1999. https://doi.org/10.1016/S0375-6742(99)00015-1
  • J.R. Dyni, D.E. Anders, and R.C. Rex, Comparison of hydroretorting, Fisher assay, and Rock-Eval analyses of some world oil shales. Proc.1989 Eastern Oil Shale Symp. Univ. Kentucky, Instute for Mining and Research, P.270-286, 1990.
  • A. Kogerman, Estonian oil shale energy, when will it come to the end? Oil Shale, 16, 291-301, 1996. https: /doi.org/10.3176/oil.1996.4.01.
  • A. Sarı, K. Ismayılzada, B.Y. Pehlivanlı and F. Erol, The Relationship between Depositional Processes and Biological Productivity of Bituminous Claystones: Ilgın (Konya) Field, General Topics in Geology and Earth Sciences 1, Chapter II. pp. 23-40, 2023.
  • M.Y. Hüseyinca, ve Y. Eren, Ilgın (Konya) kuzeyinin stratigrafisi ve tektonik evrimi. Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 23, 1-2, 2007.
  • A.I. Karayiğit, F. Akgün, R.A. Gayer, and A. Temel, Quality, Palynology, and Paleoenvironmental Interpretation of the Ilgın Lignite, Turkey. International Journal of Coal Geology, 38, 219‐236, 1999. https:// doi.org/10.1016/S0166-5162(98)00015-9.
  • M.A. Huerta-Diaz, and J.W. Morse, Pyritization of Trace Metals in Anoxic Marine Sediments. Geochimica et Cosmochimica Acta, 56, 2681-2702, 1992. https://doi.org/10.1016/0016-7037(92)90353-K.
  • J.W. Morse, and G.W. Luther III, Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta, 63, 3373-3378, 1999. https://doi.org/10.1016/S0016-7037(99)00258-6
  • A.M. Piper, A graphic procedure in the geochemical interpretation of water analysis. Transactions American Geophysical Union, 25, 914-923, 1944. https://doi.org /10.1029/TR025i006p00914.
  • D.Z. Piper, and S.E. Calvert, A marine biogeochemical perspective on black shale deposition. Earth Science Reviews, 95(1-2), 63-96, 2009. https://doi.org/10.1016 /j.earscirev.2009.03.001.
  • G.W. Luttrell, Annotated bibliography on the geology of selenium/ U.S. Geological Survey Bulletin 1019-M Series, Washington, 1959.
  • J.K.B. Bishop, The barite-opal-organic carbon association in oceanic particulate matter. Nature, 332, 341-343, 1988. https://doi.org/10.1038/332341a0.
  • J. Dymond, E. Suess, and M. Lyle, Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanograph, 7, 163-181, 1992. https://doi.org /10 .1029/92PA00181.
  • M.E. Torres, H.J. Brumsack, G. Bohrman, and K.C. Emeis, Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chemical Geology, 127, 125-139, 1996. https://doi.org/10.1016/0009-2541(95)00090-9.
  • J.W.M. McManus, W.M. Berelson, G.P. Klinkhammer, K.S. Johnson, K.H. Coale, R.F. Anderson, N. Kumar, D.J. Burdige, D.E. Hammond, H.J. Brumsack, D.C. McCorkle, and A. Rushdi, Geochemistry of barium in marine sediments: Implications for its use as a paleoceanographic proxy. Geochimica et Cosmochimica Acta, 62, 3453-3473, 1998. https://doi. org/10.1016/S0016-7037(98)00248-8.
  • K.B. Föllmi, The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth Science Reviews, 40, 55-124, 1996. https://doi.org/10.1016/00 12-8252(95)00049-6.
  • M.L. Delaney, Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Global Biogeochemical Cycles, 12(4), 563-572, 1998. https://doi.org/10.1029/98GB02263.
  • J.B. Comer, Facies Distribution and Hydrocarbon production potential of Woodford Shale in the Southern Midcontinent, in: B.J. Cardott, (Eds.) Unconventional energy resources in the southern midcontinent, 2004 Symposium, Oklahoma Geological Survey Circular, 110, 51-62, 2005.
  • D.W. Kirkland, R.E. Denison, D.M. Summers and J. R. Gormly, Geology and organic geochemistry of the Woodford Shale in the Criner Hills and western Arbuckle Mountains, in K. S. Johnson, B.J. Cardott, eds., Source rocks in the southern Midcontinent, 1990 Symposium: Oklahoma Geological Survey Circular 93, 38–69, 1992.
  • D.J. Over, Conodonts and the Devonian-Carboniferous boundary in the upper Woodford Shale, Arbuckle Mountains, south-central Oklahoma. Journal of Paleontology, 66, 293-311, 1992. https://doi.org/10.10 17/S0022336000033801.
  • T.J. Algeo, and S.E. Scheckler, Terrestrial-marine teleconnections in the Devonian: Links between the evolution of land plants, weathering processes, and marine anoxic events. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 353, 113-130, 1998. https://doi.org/10.1098 /rstb.1998.0195.

Ilgın sahası (Konya) Miyosen yaşlı bitümlü kiltaşlarında organofil element incelemeleri: Besin girdisi ve paleo-üretkenliğin etkisi

Year 2024, Volume: 13 Issue: 4, 1168 - 1183, 15.10.2024
https://doi.org/10.28948/ngumuh.1431830

Abstract

Bu çalışmada Ilgın sahası bitümlü kiltaşlarının çökelimi sırasında fitoplankton algler için biyobesin element olan P’un yanında suda çözünmüş haldeki Cu, Ni, Zn, Cd, Ba ve Se gibi elementlerinin de organik madde ile olan davranışları incelenmiştir. Göl ve denizel ortamlarda fito ve zooplankton alglerin biyolojik üretkenliklerinde N ve P gibi besin elementlerin yanında Cu, Ni, Zn, Cd, Ba ve Se gibi elementlerde besin maddesi elementler olarak davranırlar. Bitümlü kiltaşlarındaki organik madde (%TOC) bolluğu, sudaki algal üretkenik ve biyobesin element olan P’un yanında organik yapıya organometalik ligantlar şeklinde bağlanan Cu, Ni, Zn, Cd, Ba ve Se gibi biyobesin elementlerle de yakın ilişkilidir. Bu amaçla incelenen örneklerde; %TOC’nin sırasıyla Cu (r=0.122), Ni (r=0.002), Zn (r=0.081), Cd (r= -0.279) ve Ba’la (r= -0.661) çok zayıf veya zayıf, Se (r= 0.685) ile orta kuvvette korelasyon ilişkisi vardır. Bu durum, sadece Selenyumun organofil bir element olduğunu gösterir. Yine, incelenen örneklerde; Cu'ın Fe (r= 0.220) ve S (r=0.216), Ni’nin Fe (r= 0.029) ve S (r=-0.065), Zn'nin Fe (r= -0.142) ve S (r= -0.135), Cd'nin Fe (r= 0.379) ve S (r= 0.262) ve Ba’un S ile (r= -0.515) çok zayıf; Se’nin Fe (r= 0.696) ve S ile (r= 0.732) kuvvetli korelasyon ilişkisinin olması, sadece Se’nin sülfidli ve sülfatlı bileşikler şeklinde çökelmiş olduğunu göstermektedir. Yine, incelenen örneklerde; Cu’nin Mn (r= -0.52424) ve Zn (r=-0.16381) ile çok zayıf, Ba’un Mn’la (r=0.750667) olan kuvvetli korelasyon ilişkisi, ortamda sadece Ba’un, Baryum Permanganat [Ba(Mn2O8)] şeklinde çökelmiş olduğunu gösterir.

Thanks

Yazarlar, bu makaleyi eğitim-öğretimindeki 90. yıl münasebetiyle (1934-2024) Ankara Üniversitesi Jeoloji Mühendisliği Bölümü’ne (Ankara Jeoloji) ithaf ederler. Bu çalışmada incelenen örneklerde ana ve iz element analizleri A.Ü. YEBİM Araştırma Merkezinde ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) model cihaz kullanılarak yapılmış olup, kendilerine teşekkür ederiz.

References

  • V. F. Cherepovsky, World’s Oil Shale Deposit. Moscow, Russia, Science Press, 263 pp, 1988.
  • R.F. Cane, The origin and formation of oil shale. In Teh Fu Yen; Chilingar, George V. (eds.). Oil Shale. Amsterdam: Elsevier. pp.1–12. 56. ISBN 978-0-444-41408-3, 1976.
  • J. Schieber, Evidence for high-energy events and shallow-water deposition in the Chat-tanooga Shale, Devonian, central Tennessee, USA. Sedimentary Geology, 93, 193–208, 1994. https://doi.org/10.1016/0 037-0738(94)90005-1.
  • J.R. Dyni, Oil Shale: Encyclopedia of Energy. Survey of Energy Resources, 73-91, 2004. https://doi.org/10. 1016/B978-0080444109/50007-3.
  • J.R. Dyni, Oil Shale. In Clarke, Alan W.; Trinnaman, Judy A. (eds.). Survey of energy resources (22 ed.). World Energy Council. ISBN 978-0-946121-02-1, 2010.
  • E.D. Ingall, R.M. Bustın, and P. Van Cappellen, Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochimica et Cosmochimica Acta, 57, 303-316, 1993. https://doi.org/10.1016/0016-7037(93)904 33-W.
  • T.J. Algeo and S, Scheckler, Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philos. Trans. R. Soc. B-Biol. Sci., 353(1365), 113-128, 1998. https://doi.org/10.109 8/rstb.1998.0195.
  • J. Schieber, W. Zimmerle, and P. Sethi, Shales and Mudstones (vol. 1 & 2). Stuttgart, Schweizerbart'sche Verlagsbuchhandlung. 1998.
  • N. Tribovillard, T.J. Algeo, T. Lyons, and A. Riboulleau, Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1-2), 12-32, 2006. https://doi.org/10.101 6/j.chemgeo.2006.02.012.
  • H.P. Mort, T. Adatte, K.B. Follini, G. Keller, P. Steinmann, V. Matera, Z. Berner, and D. Stüben, Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2. Geology, 35, 483-486, 2007. https://doi.org/10.1130/G23475A.1.
  • K.W. Bruland, Trace elements in sea water. In: Riley,J.P., Chester, R. (Eds.), Chemical Oceanography. Academic Press, London, UK, 398p, 1983.
  • L. Waxman, The structure of arthropod and mollusc hemocyanins. The Journal of Biological Chemistry 250(10), 3796-3806, 1975. https://doi.org/10.1016/S0 021-9258(19)41469-5.
  • H.J. Brumsack, The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 344-361, 2006. https://doi.org/10.1016/j.palaeo.2005.05.011.
  • H.J. Brumsack, Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea. Geologische Rundschau, 78, 851-882, 1989. https: //doi.org/10.1007/BF01829327.
  • S.E. Calvert, T.F. Pedersen, Geochemistry of Recent oxic and anoxic marine sediments: implications for the geological record. Marine Geology, 113, 67-88, 1993.
  • J. B. Murphy, R. A. Strachan, R. D. Nance, K.D. Parker, and M.B. Fowler, Proto-Avalonia: A 1.2–1.0 Ga tectonothermal event and constraints on the evolution of Rodinia. Geology, 28, 1071–1074, 2000
  • T.J. Algeo and J.B. Maynard, Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206, 289-318, 2004. https://doi.org/10.1016/ j.chemgeo.2003.12.009.
  • M. Lipinski, B. Warning, and H.J. Brumsack, Trace metal signatures of Jurassic/Cretaceous black shales from the Norwegian Shelf and the Barents Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 190, 459-475, 2003. https://doi.org/10.1016/S0031-01 82(02)00619-3.
  • M. Alberdi-Genolet, and E. Lafergue, Vertical variations of organic matter content in Guayuta Group (Upper Cretaceous), Interior Mountain Belt, Eastern Venezuela. Organic Geochemistry, 20(4), 425-436, 1993. https://doi.org/10.1016/0146-6380(93)90091-O.
  • T.J. Nameroff, L.S. Balutrier, and J.W. Murray, Suboxic trace metal geochemistry in the eastern tropical North Pacific. Geochimica et Cosmochimica Acta, 66(7), 1139-1158, 2002. https://doi.org/10.1016 /S0016-7037(01)00843-2.
  • K. Loukola-Ruskeeniemi, Geochemical evidence for the hydrothermal origin of sulphur, base metals and gold in Proterozoic metamorphosed black shales, Kainuu and Outokumpu areas, Finland. Mineralium Deposita, 26, 152-164, 1991. https://doi.org/10.1007/B F00195262.
  • J.S. Levanthal, and J.W. Hosterman, Chemical and mineralogical analysis of devonian black-shale samples from Martin County, Kentucky; Carroll and Washington counties, Ohio; Wise County, Virginia; and Overton County, Tennessee, U.S.A. Chemical Geology, 37, 237-264, 1982. https://doi.org/10.1016/0 009-2541(82)90081-X.
  • S.J. Schatzel, and B.W. Stewort, Rare Earth Element sources and modification in the Lower Kittanning coal bed, Pennsylvania; Implications for the origin of coal mineral matter and rare earth element exposure in underground mines. International Journal of Coal Geology, 54, 223-251, 2002. https://doi.org/10.1016/S 0166-5162(03)00038-7.
  • S. Paradis, Fluid Inclusion and Isotope Evidence for the Origin of the Upton Ba-Zn-Pb Deposit, Quebec Appalachians, Canada. Economic Geology, 99(4), 807-817, 2004. https://doi.org/10.2113/gsecongeo.99.4.80 7.
  • D.J. Mossman, B. Naggy, and D.W. Dawis, Hydrothermal alteration of organic matter in uranium ores, Elliot Lake, Canada: İmplications for selected organic-rich deposits. Geochimica et Cosmochimica Acta, 57(14), 3251-3259, 1993. https://doi.org/10.10 16/0016-7037(93)90538-8.
  • D.J. Mossman, F. Goodarzi, and T. Gentzis, Characterization of insoluble organic matter from the Lower Proterozoic Huronian Supergroup, Elliot Lake, Ontario. Precambrian Research, 61(3-4), 279-293, 1993. https://doi.org/10.1016/0301-9268(93)90117-K.
  • D.J. Mossman, Carbonaceous substances in mineral deposits: implications for geochemical exploration. Journal of Geochemical Exploration, 66(1-2), 241-247, 1999. https://doi.org/10.1016/S0375-6742(99)00015-1
  • J.R. Dyni, D.E. Anders, and R.C. Rex, Comparison of hydroretorting, Fisher assay, and Rock-Eval analyses of some world oil shales. Proc.1989 Eastern Oil Shale Symp. Univ. Kentucky, Instute for Mining and Research, P.270-286, 1990.
  • A. Kogerman, Estonian oil shale energy, when will it come to the end? Oil Shale, 16, 291-301, 1996. https: /doi.org/10.3176/oil.1996.4.01.
  • A. Sarı, K. Ismayılzada, B.Y. Pehlivanlı and F. Erol, The Relationship between Depositional Processes and Biological Productivity of Bituminous Claystones: Ilgın (Konya) Field, General Topics in Geology and Earth Sciences 1, Chapter II. pp. 23-40, 2023.
  • M.Y. Hüseyinca, ve Y. Eren, Ilgın (Konya) kuzeyinin stratigrafisi ve tektonik evrimi. Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 23, 1-2, 2007.
  • A.I. Karayiğit, F. Akgün, R.A. Gayer, and A. Temel, Quality, Palynology, and Paleoenvironmental Interpretation of the Ilgın Lignite, Turkey. International Journal of Coal Geology, 38, 219‐236, 1999. https:// doi.org/10.1016/S0166-5162(98)00015-9.
  • M.A. Huerta-Diaz, and J.W. Morse, Pyritization of Trace Metals in Anoxic Marine Sediments. Geochimica et Cosmochimica Acta, 56, 2681-2702, 1992. https://doi.org/10.1016/0016-7037(92)90353-K.
  • J.W. Morse, and G.W. Luther III, Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta, 63, 3373-3378, 1999. https://doi.org/10.1016/S0016-7037(99)00258-6
  • A.M. Piper, A graphic procedure in the geochemical interpretation of water analysis. Transactions American Geophysical Union, 25, 914-923, 1944. https://doi.org /10.1029/TR025i006p00914.
  • D.Z. Piper, and S.E. Calvert, A marine biogeochemical perspective on black shale deposition. Earth Science Reviews, 95(1-2), 63-96, 2009. https://doi.org/10.1016 /j.earscirev.2009.03.001.
  • G.W. Luttrell, Annotated bibliography on the geology of selenium/ U.S. Geological Survey Bulletin 1019-M Series, Washington, 1959.
  • J.K.B. Bishop, The barite-opal-organic carbon association in oceanic particulate matter. Nature, 332, 341-343, 1988. https://doi.org/10.1038/332341a0.
  • J. Dymond, E. Suess, and M. Lyle, Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanograph, 7, 163-181, 1992. https://doi.org /10 .1029/92PA00181.
  • M.E. Torres, H.J. Brumsack, G. Bohrman, and K.C. Emeis, Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chemical Geology, 127, 125-139, 1996. https://doi.org/10.1016/0009-2541(95)00090-9.
  • J.W.M. McManus, W.M. Berelson, G.P. Klinkhammer, K.S. Johnson, K.H. Coale, R.F. Anderson, N. Kumar, D.J. Burdige, D.E. Hammond, H.J. Brumsack, D.C. McCorkle, and A. Rushdi, Geochemistry of barium in marine sediments: Implications for its use as a paleoceanographic proxy. Geochimica et Cosmochimica Acta, 62, 3453-3473, 1998. https://doi. org/10.1016/S0016-7037(98)00248-8.
  • K.B. Föllmi, The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth Science Reviews, 40, 55-124, 1996. https://doi.org/10.1016/00 12-8252(95)00049-6.
  • M.L. Delaney, Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Global Biogeochemical Cycles, 12(4), 563-572, 1998. https://doi.org/10.1029/98GB02263.
  • J.B. Comer, Facies Distribution and Hydrocarbon production potential of Woodford Shale in the Southern Midcontinent, in: B.J. Cardott, (Eds.) Unconventional energy resources in the southern midcontinent, 2004 Symposium, Oklahoma Geological Survey Circular, 110, 51-62, 2005.
  • D.W. Kirkland, R.E. Denison, D.M. Summers and J. R. Gormly, Geology and organic geochemistry of the Woodford Shale in the Criner Hills and western Arbuckle Mountains, in K. S. Johnson, B.J. Cardott, eds., Source rocks in the southern Midcontinent, 1990 Symposium: Oklahoma Geological Survey Circular 93, 38–69, 1992.
  • D.J. Over, Conodonts and the Devonian-Carboniferous boundary in the upper Woodford Shale, Arbuckle Mountains, south-central Oklahoma. Journal of Paleontology, 66, 293-311, 1992. https://doi.org/10.10 17/S0022336000033801.
  • T.J. Algeo, and S.E. Scheckler, Terrestrial-marine teleconnections in the Devonian: Links between the evolution of land plants, weathering processes, and marine anoxic events. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 353, 113-130, 1998. https://doi.org/10.1098 /rstb.1998.0195.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Mineral Stratum and Geochemistry
Journal Section Research Articles
Authors

Ali Sarı 0000-0001-6289-3332

Kamal Ismayılzada 0000-0002-0960-0286

Sinan Akıska 0000-0001-8262-7349

Fuat Erol 0009-0008-5830-3860

Early Pub Date September 2, 2024
Publication Date October 15, 2024
Submission Date February 5, 2024
Acceptance Date July 23, 2024
Published in Issue Year 2024 Volume: 13 Issue: 4

Cite

APA Sarı, A., Ismayılzada, K., Akıska, S., Erol, F. (2024). Ilgın sahası (Konya) Miyosen yaşlı bitümlü kiltaşlarında organofil element incelemeleri: Besin girdisi ve paleo-üretkenliğin etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4), 1168-1183. https://doi.org/10.28948/ngumuh.1431830
AMA Sarı A, Ismayılzada K, Akıska S, Erol F. Ilgın sahası (Konya) Miyosen yaşlı bitümlü kiltaşlarında organofil element incelemeleri: Besin girdisi ve paleo-üretkenliğin etkisi. NOHU J. Eng. Sci. October 2024;13(4):1168-1183. doi:10.28948/ngumuh.1431830
Chicago Sarı, Ali, Kamal Ismayılzada, Sinan Akıska, and Fuat Erol. “Ilgın Sahası (Konya) Miyosen yaşlı bitümlü kiltaşlarında Organofil Element Incelemeleri: Besin Girdisi Ve Paleo-üretkenliğin Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 4 (October 2024): 1168-83. https://doi.org/10.28948/ngumuh.1431830.
EndNote Sarı A, Ismayılzada K, Akıska S, Erol F (October 1, 2024) Ilgın sahası (Konya) Miyosen yaşlı bitümlü kiltaşlarında organofil element incelemeleri: Besin girdisi ve paleo-üretkenliğin etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 4 1168–1183.
IEEE A. Sarı, K. Ismayılzada, S. Akıska, and F. Erol, “Ilgın sahası (Konya) Miyosen yaşlı bitümlü kiltaşlarında organofil element incelemeleri: Besin girdisi ve paleo-üretkenliğin etkisi”, NOHU J. Eng. Sci., vol. 13, no. 4, pp. 1168–1183, 2024, doi: 10.28948/ngumuh.1431830.
ISNAD Sarı, Ali et al. “Ilgın Sahası (Konya) Miyosen yaşlı bitümlü kiltaşlarında Organofil Element Incelemeleri: Besin Girdisi Ve Paleo-üretkenliğin Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/4 (October 2024), 1168-1183. https://doi.org/10.28948/ngumuh.1431830.
JAMA Sarı A, Ismayılzada K, Akıska S, Erol F. Ilgın sahası (Konya) Miyosen yaşlı bitümlü kiltaşlarında organofil element incelemeleri: Besin girdisi ve paleo-üretkenliğin etkisi. NOHU J. Eng. Sci. 2024;13:1168–1183.
MLA Sarı, Ali et al. “Ilgın Sahası (Konya) Miyosen yaşlı bitümlü kiltaşlarında Organofil Element Incelemeleri: Besin Girdisi Ve Paleo-üretkenliğin Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 4, 2024, pp. 1168-83, doi:10.28948/ngumuh.1431830.
Vancouver Sarı A, Ismayılzada K, Akıska S, Erol F. Ilgın sahası (Konya) Miyosen yaşlı bitümlü kiltaşlarında organofil element incelemeleri: Besin girdisi ve paleo-üretkenliğin etkisi. NOHU J. Eng. Sci. 2024;13(4):1168-83.

download