Research Article
BibTex RIS Cite

Effect of sulfurization time on the properties of Cu2SnS3 thin films prepared with aqueous solution mixture

Year 2025, Volume: 14 Issue: 1, 1 - 1
https://doi.org/10.28948/ngumuh.1549548

Abstract

In this study, Cu2SnS3 (CTS) thin films were produced using a simple and environmentally friendly aqueous precursor mixture in a spin coating system. The effects of sulfurization time on the structural, optical, and electrical properties of CTS thin films grown in a rapid thermal annealing furnace using a 2-methoxyethanol-pure water solution were examined in detail. Energy Dispersive X-ray spectroscopy (EDX) revealed that CTS thin films produced at 525°C with holding times of 60 s, 180 s, and 300 s have Cu-rich stoichiometry and crystallize in the monoclinic phase. According to the parameters calculated from X-ray diffraction (XRD) analyses, it was determined that the CTS-180 sample with a crystal size of 35.6 nm has lower dislocation density and microstrain compared to other samples, thus exhibiting higher quality crystallization. Raman analyses support the CTS monoclinic phase and secondary phase formations that emerged in the XRD results. On the other hand, when the surface images of the samples were examined using Scanning Electron Microscopy (SEM), it was determined that the sulfurization time changed the surface morphology of the films. It was observed that with the increase in sulfurization time, homogeneously distributed compact surface images were obtained. Through optical absorption measurements, it was determined that the band gap values of the samples were between 1.01-1.10 eV, which is also attributed to the monoclinic phase of CTS. It was found that the CTS-180 sample had a higher carrier density and lower resistivity compared to the others. According to all characterization results, it was concluded that the CTS-180 sample exhibited suitable structural, morphological, optical, and electrical properties for solar cell applications.

Project Number

122F217

References

  • I. M. El Radaf and A. S. Hassanien, Effect of thickness on structural, optical, and optoelectrical properties of sprayed CuInSnS4 thin films as a new absorber layer for solar cells. Physica B: Condensed Matter, 659, 414867, 2023.https://doi.org/10.1016/j.physb.2023.414867.
  • G. P. Reddy and K. R. Reddy, Preparation and characterization of Cu2SnS3 thin films by two stage process for solar cell application. Materials Today: Proceedings, 4(13), 12401-12406, 2017. https://doi.org/10.1016/j.matpr.2017.10.010.
  • G. P. Reddy and K. R. Reddy,Physical Properties of Cu2SnS3 Thin Films Prepared by Sulfurization of co-sputtered Cu-Sn Metallic Precursors. Materials Today: Proceedings, 4(14), 12518-12524, 2017. https://doi.org/10.1016/j.matpr.2017.10.054.
  • M. M. Abusnina, Synthesis and characterization of kesterite Cu2ZnSnS4 (CZTS) thin films for solar cell applications. Ph.D. Thesis, University of Denver, USA, 2016.
  • M. Adelifard, M. M. B. Mohagheghi and H. Eshghi, Preparation and characterization of Cu2SnS3 ternary semiconductor nanostructures via the spray pyrolysis technique for photovoltaic applications. Physica Scripta, 85(3), 035603, 2012. http://doi.org/10.1088/0031-8949/85/03/035603.
  • H. Queisser and W. Shockley, Some theoretical aspects of the physics of solar cells. Energy Conversion for Space Power, 3, 317, 1961.
  • M. Umehara, S. Tajima, Y. Aoki, Y. Takeda and T. Motohiro, Cu2Sn1− xGexS3 solar cells fabricated with a graded bandgap structure. Applied Physics Express, 9(7), 072301, 2016. http://doi.org/10.7567/APEX.9.072301.
  • E. A. Pogue, A. Sutrisno, N. E. Johnson, M. B. Goetter, Z. Jiang, N. E. Johnson, D. P. Shoemaker, and A. A. Rockett, Phase stability and structural comparison of phases in the Cu-Zn-Sn-S system using solid-state NMR.Solar EnergyMaterials and Solar Cells, 190, 37-48, 2019. https://doi.org/10.1016/j.solmat.2018.10.007.
  • D. Avellaneda, M. Nair and P. Nair, Cu2SnS3 and Cu4SnS4 thin films via chemical deposition for photovoltaic application. Journal of the Electrochemical Society, 157(6), D346-D352, 2010. http://doi.org/10.1149/1.3384660.
  • A. C. Lokhande, K. V. Gurav, E. Jo and J. H. Kim, Chemical synthesis of Cu2SnS3 (CTS) nanoparticles: A status review. Journal of Alloys and Compounds, 656, 295-310, 2016. https://doi.org/10.1016/j.jallcom.2015.09.232.
  • J. A. Oke and T. C. Jen, Atomic layer deposition and other thin film deposition techniques: from principles to film properties. Journal of Materials Research and Technology, 21, 2481-2514, 2022. https://doi.org/10.1016/j.jmrt.2022.10.064.
  • H. Guan, H. Shen, C. Gao and X. He. Structural and optical properties of Cu2SnS3 and Cu3SnS4 thin films by successive ionic layer adsorption and reaction. Journal of Materials Science: Materials in Electronics, 24, 1490-1494, 2013. https://doi.org/10.1007/s10854-012-0960-x.
  • A. Weber, R. Mainz and H. W. Schock, On the Sn loss from thin films of the material system Cu–Zn–Sn–S in high vacuum. Journal of Applied Physics, 107, 013516, 2010. https://doi.org/10.1063/1.3273495.
  • V. Robles, J. F. Trigo, C. Guillén and J. Herrero, Copper tin sulfide (CTS) absorber thin films obtained by co-evaporation: Influence of the ratio Cu/Sn. Journal of Alloys and Compounds, 642, 40-44, 2015. https://doi.org/10.1016/j.jallcom.2015.04.104.
  • J. Tao, L. Chen, H. Cao, C.Zhang, J. Liu, Y. Zhang and J. Chu, Co-electrodeposited Cu2ZnSnS4 thin-film solar cells with over 7% efficiency fabricated via fine-tuning of the Zn content in absorber layers. Journal of Materials Chemistry A, 4(10), 3798-3805, 2016,https://doi.org/10.1039/C5TA09636G.
  • Q. Chen, X. Dou, Y. Ni, S. Cheng and S. Zhuang, Study and enhance the photovoltaic properties of narrow-bandgap Cu2SnS3 solar cell by p-n junction interface modification. J Colloid Interface Sci. 15;376(1):327-30,2012. https://doi.org/10.1016/j.jcis.2012.03.015
  • E. Indubala, N. Sneha, V. Sudha and S. Harinipriya, Non-vacuum synthesis of CZTS by sulphurization of electrochemically layered zinc and tin on copper. Materials Science in Semiconductor Processing, 101, 3745, 2019.https://doi.org/10.1016/j.mssp.2019.05.027
  • H.Ahmoum,P.Chelvanathan,M.S.Su’ait,M. Boughrara, G.Li, A.H. Al-Waeli and N. Amin, Impact of preheating environment on microstructural and optoelectronic properties of Cu2ZnSnS4 (CZTS) thin films deposited by spin-coating. Superlattices and microstructures, 140, 106452, 2020. https://doi.org/10.1016/j.spmi.2020.106452.
  • W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Advanced Energy Materials, 4(7), 1301465, 2014. https://doi.org/10.1002/aenm.201301465.
  • A. Cho, S. Banu, Y. Cho, S. K. Ahn, J. H. Yun and J. S. Cho, The effect of metal-chelate complex in Cu2SnS3 thin film solar cells and their characteristics, photovoltaic performance, and defect analysis. Solar Energy, 185, 131-145, 2019. https://doi.org/10.1016/j.solener .2019.04.065.
  • S. Dias, B. Murali and S. B. Krupanidhi. Solution processible Cu2SnS3 thin films for cost effective photovoltaics: Characterization.Materials Chemistry and Physics, 167, 309-314, 2015. https://doi.org/10.1016/j.matchemphys.2015.10.049.
  • M. P. Suryawanshi, U. V. Ghorpade, S. W. Shin, S. A. Pawar, I. Y. Kim, C. W. Hong and J. H. Kim, A simple aqueous precursor solution processing earth-abundant Cu2SnS3 absorbers for thin-film solar cells. ACS applied materials & interfaces, 8(18), 11603-11614, 2016. https://doi.org/10.1021/acsami.6b02167.
  • M. Bouaziz, M. Amlouk and S. Belgacem, Structural and optical properties of Cu2SnS3 sprayed thin films. Thin Solid Films, 517(7), 2527-2530, 2009. https://doi.org/10.1016/j.tsf.2008.11.039.
  • M. H. Sayed, E. V. Robert, P. J. Dale and L. Gütay, Cu2SnS3 based thin film solar cells from chemical spray pyrolysis. Thin Solid Films, 669, 436-439, 2019. https://doi.org/10.1016/j.tsf.2018.11.002.
  • V. Uvarov and I. Popov. Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials.Materials Characterization, 85, 111-123, 2013. https://doi.org/10.1016/j.matchar.2013.09.002.
  • D. M. Berg, R. Djemour, L S. Gütay, P. J. Dale, X. Fontane and A. Rodriguez, Raman analysis of monoclinic Cu2SnS3 thin films. Applied Physics Letters, 100(19), 192103, 2012. https://doi.org/10.1063/1.4712623.
  • D. P. Antunez, A. D. Torelli, Y. Fan, A. Federico, Rabuffetti, N. S. Lewis and L. Brutchey, Low temperature solution-phase deposition of SnS thin films Chemistry of Materials, 26(19), 5444-5446, 2014. https:/doi.org/10.1021/cm503124u.
  • G. Dölek, Perovskit güneş hücrelerinde kaliksaren molekül temelli kendiliğinden oluşan tek tabaka arayüzey modifikasyonunun performans üzerine etkileri. Yüksek Lisans Tezi, Konya Teknik Üniversitesi. Türkiye, 2020.
  • J. I. Pankove, Optical processes in semiconductors.: Courier Corporation, 1975.
  • O. G, Abdullah, S. B, Aziz, K. M, Omer and Y. M. Salih, Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. Journal of Materials Science: Materials in Electronics, 26, 5303-5309, 2015. https://doi.org/10.1007/s10854-015-3067-3.
  • T. Bayazıt, M. A. Olğar, T. Küçükömeroğlu, E. Bacaksız and M. Tomakin, Growth and characterization of Cu2SnS3 (CTS), Cu2SnSe3 (CTSe), and Cu2Sn (S, Se) (CTSSe) thin films using dip-coated Cu–Sn precursor. Journal of Materials Science: Materials in Electronics, 30, 12612-12618, 2019. https://doi.org/10.1007/s10854-019-01622-4.
  • J. Chantana, K. Tai, H. Hayashi, T. Nishimura, Y. Kawano and T. Minemoto. Investigation of carrier recombination of Na-doped Cu2SnS3 solar cell for its improved conversion efficiency of 5.1%. Solar Energy Materials and Solar Cells, 206, 110261, 2020. https://doi.org/10.1016/j.solmat.2019.110261.
  • T. S. Reddy, M. C. S. Kumar and S. Shaji, Deposition rate dependant formation and properties of Sn2S3 and SnS thin films by co-evaporation, Materials Research Express, 4, 046404, 2017. https://doi.org/10.1088/2053-1591/aa6b71.
  • T. S. Reddy and M. C. S. Kumar, Co-evaporated SnS thin films for visible light photodetector applications, RSC Advances, 6, 95680–95692, 2016. https://doi.org/10.1039/C6RA20129F.

Sülfürleme süresinin sulu çözelti karışımı ile hazırlanan Cu2SnS3 ince filmlerin özellikleri üzerine etkisi

Year 2025, Volume: 14 Issue: 1, 1 - 1
https://doi.org/10.28948/ngumuh.1549548

Abstract

Bu çalışmada, basit ve çevre dostu sulu bir öncül karışım kullanılarak Cu2SnS3 (CTS) ince filmleri dönel kaplama sisteminde üretilmiştir. 2- metoksietanol -saf su çözeltisi kullanılarak hızlı tavlama fırınında büyütülen CTS ince filmlerinde sülfürleme süresinin yapısal, optik ve elektrik özellikler üzerine etkileri ayrıntılı bir şekilde incelenmiştir. 525°C’de 60s, 180s ve 300s bekleme sürelerinde üretilen CTS ince filmlerin, Cu-zengini stokiyometriye sahip olduğu ve monoklinik fazda kristalleştiği Enerji Dağılımlı X-ışını spektroskopisi (EDX) ile tespit edilmiştir. X ışını kırınımı (XRD) analizleri ile hesaplanan parametrelere göre, 35.6 nm kristal boyutuna sahip CTS-180 örneğinin diğer numunelere kıyasla daha düşük dislokasyon yoğunluğuna ve mikro gerinime sahip olduğu, dolayısı ile daha yüksek kalitede kristalleştiği tespit edilmiştir. Raman analizleri, XRD sonuçlarında ortaya çıkan CTS monoklinik fazı ve ikincil faz oluşumlarını desteklemektedir. Diğer taraftan, örneklerin Taramalı Elektron Mikroskopisi (SEM) ile yüzey görüntüleri incelendiğinde sülfürleme süresinin filmlerin yüzey morfolojisini değiştirdiği belirlenmiştir. Sülfürleme süresinin artması ile homojen dağılımlı kompakt yüzey görüntülerinin elde edildiği tespit edilmiştir. Yapılan optik soğurma ölçümleri ile örneklerin yasak enerji bant aralığı değerlerinin 1.01-1.10 eV arasında olduğu belirlenmiş, bu değerlerin aynı zamanda CTS’nin monoklinik fazına atfedilmiştir. CTS-180 örneğinin diğerlerine göre daha yüksek taşıyıcı yoğunluğuna ve daha düşük özdirence sahip olduğu belirlenmiş olup, tüm karakterizasyon sonuçlarına göre CTS-180 örneğinin güneş hücre uygulamaları için uygun yapısal, morfolojik optik ve elektrik özellikler sergilediği sonucuna varılmıştır.

Ethical Statement

Yazarlar çıkar çatışması olmadığını beyan etmektedir.

Supporting Institution

Bu çalışma TÜBİTAK Bilim İnsanı Destek Programları Başkanlığı (BİDEB) tarafından yürütülen 122F217 numaralı proje ve “BİÇABA Birlikte Çalışıp Birlikte Başaracağız Burs Programı kapsamında desteklenmiştir

Project Number

122F217

Thanks

Bu çalışma TÜBİTAK Bilim İnsanı Destek Programları Başkanlığı (BİDEB) tarafından yürütülen 122F217 numaralı proje ve “BİÇABA Birlikte Çalışıp Birlikte Başaracağız Burs Programı kapsamında desteklenmiştir. Desteklerinden dolayı teşekkür ederim.

References

  • I. M. El Radaf and A. S. Hassanien, Effect of thickness on structural, optical, and optoelectrical properties of sprayed CuInSnS4 thin films as a new absorber layer for solar cells. Physica B: Condensed Matter, 659, 414867, 2023.https://doi.org/10.1016/j.physb.2023.414867.
  • G. P. Reddy and K. R. Reddy, Preparation and characterization of Cu2SnS3 thin films by two stage process for solar cell application. Materials Today: Proceedings, 4(13), 12401-12406, 2017. https://doi.org/10.1016/j.matpr.2017.10.010.
  • G. P. Reddy and K. R. Reddy,Physical Properties of Cu2SnS3 Thin Films Prepared by Sulfurization of co-sputtered Cu-Sn Metallic Precursors. Materials Today: Proceedings, 4(14), 12518-12524, 2017. https://doi.org/10.1016/j.matpr.2017.10.054.
  • M. M. Abusnina, Synthesis and characterization of kesterite Cu2ZnSnS4 (CZTS) thin films for solar cell applications. Ph.D. Thesis, University of Denver, USA, 2016.
  • M. Adelifard, M. M. B. Mohagheghi and H. Eshghi, Preparation and characterization of Cu2SnS3 ternary semiconductor nanostructures via the spray pyrolysis technique for photovoltaic applications. Physica Scripta, 85(3), 035603, 2012. http://doi.org/10.1088/0031-8949/85/03/035603.
  • H. Queisser and W. Shockley, Some theoretical aspects of the physics of solar cells. Energy Conversion for Space Power, 3, 317, 1961.
  • M. Umehara, S. Tajima, Y. Aoki, Y. Takeda and T. Motohiro, Cu2Sn1− xGexS3 solar cells fabricated with a graded bandgap structure. Applied Physics Express, 9(7), 072301, 2016. http://doi.org/10.7567/APEX.9.072301.
  • E. A. Pogue, A. Sutrisno, N. E. Johnson, M. B. Goetter, Z. Jiang, N. E. Johnson, D. P. Shoemaker, and A. A. Rockett, Phase stability and structural comparison of phases in the Cu-Zn-Sn-S system using solid-state NMR.Solar EnergyMaterials and Solar Cells, 190, 37-48, 2019. https://doi.org/10.1016/j.solmat.2018.10.007.
  • D. Avellaneda, M. Nair and P. Nair, Cu2SnS3 and Cu4SnS4 thin films via chemical deposition for photovoltaic application. Journal of the Electrochemical Society, 157(6), D346-D352, 2010. http://doi.org/10.1149/1.3384660.
  • A. C. Lokhande, K. V. Gurav, E. Jo and J. H. Kim, Chemical synthesis of Cu2SnS3 (CTS) nanoparticles: A status review. Journal of Alloys and Compounds, 656, 295-310, 2016. https://doi.org/10.1016/j.jallcom.2015.09.232.
  • J. A. Oke and T. C. Jen, Atomic layer deposition and other thin film deposition techniques: from principles to film properties. Journal of Materials Research and Technology, 21, 2481-2514, 2022. https://doi.org/10.1016/j.jmrt.2022.10.064.
  • H. Guan, H. Shen, C. Gao and X. He. Structural and optical properties of Cu2SnS3 and Cu3SnS4 thin films by successive ionic layer adsorption and reaction. Journal of Materials Science: Materials in Electronics, 24, 1490-1494, 2013. https://doi.org/10.1007/s10854-012-0960-x.
  • A. Weber, R. Mainz and H. W. Schock, On the Sn loss from thin films of the material system Cu–Zn–Sn–S in high vacuum. Journal of Applied Physics, 107, 013516, 2010. https://doi.org/10.1063/1.3273495.
  • V. Robles, J. F. Trigo, C. Guillén and J. Herrero, Copper tin sulfide (CTS) absorber thin films obtained by co-evaporation: Influence of the ratio Cu/Sn. Journal of Alloys and Compounds, 642, 40-44, 2015. https://doi.org/10.1016/j.jallcom.2015.04.104.
  • J. Tao, L. Chen, H. Cao, C.Zhang, J. Liu, Y. Zhang and J. Chu, Co-electrodeposited Cu2ZnSnS4 thin-film solar cells with over 7% efficiency fabricated via fine-tuning of the Zn content in absorber layers. Journal of Materials Chemistry A, 4(10), 3798-3805, 2016,https://doi.org/10.1039/C5TA09636G.
  • Q. Chen, X. Dou, Y. Ni, S. Cheng and S. Zhuang, Study and enhance the photovoltaic properties of narrow-bandgap Cu2SnS3 solar cell by p-n junction interface modification. J Colloid Interface Sci. 15;376(1):327-30,2012. https://doi.org/10.1016/j.jcis.2012.03.015
  • E. Indubala, N. Sneha, V. Sudha and S. Harinipriya, Non-vacuum synthesis of CZTS by sulphurization of electrochemically layered zinc and tin on copper. Materials Science in Semiconductor Processing, 101, 3745, 2019.https://doi.org/10.1016/j.mssp.2019.05.027
  • H.Ahmoum,P.Chelvanathan,M.S.Su’ait,M. Boughrara, G.Li, A.H. Al-Waeli and N. Amin, Impact of preheating environment on microstructural and optoelectronic properties of Cu2ZnSnS4 (CZTS) thin films deposited by spin-coating. Superlattices and microstructures, 140, 106452, 2020. https://doi.org/10.1016/j.spmi.2020.106452.
  • W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Advanced Energy Materials, 4(7), 1301465, 2014. https://doi.org/10.1002/aenm.201301465.
  • A. Cho, S. Banu, Y. Cho, S. K. Ahn, J. H. Yun and J. S. Cho, The effect of metal-chelate complex in Cu2SnS3 thin film solar cells and their characteristics, photovoltaic performance, and defect analysis. Solar Energy, 185, 131-145, 2019. https://doi.org/10.1016/j.solener .2019.04.065.
  • S. Dias, B. Murali and S. B. Krupanidhi. Solution processible Cu2SnS3 thin films for cost effective photovoltaics: Characterization.Materials Chemistry and Physics, 167, 309-314, 2015. https://doi.org/10.1016/j.matchemphys.2015.10.049.
  • M. P. Suryawanshi, U. V. Ghorpade, S. W. Shin, S. A. Pawar, I. Y. Kim, C. W. Hong and J. H. Kim, A simple aqueous precursor solution processing earth-abundant Cu2SnS3 absorbers for thin-film solar cells. ACS applied materials & interfaces, 8(18), 11603-11614, 2016. https://doi.org/10.1021/acsami.6b02167.
  • M. Bouaziz, M. Amlouk and S. Belgacem, Structural and optical properties of Cu2SnS3 sprayed thin films. Thin Solid Films, 517(7), 2527-2530, 2009. https://doi.org/10.1016/j.tsf.2008.11.039.
  • M. H. Sayed, E. V. Robert, P. J. Dale and L. Gütay, Cu2SnS3 based thin film solar cells from chemical spray pyrolysis. Thin Solid Films, 669, 436-439, 2019. https://doi.org/10.1016/j.tsf.2018.11.002.
  • V. Uvarov and I. Popov. Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials.Materials Characterization, 85, 111-123, 2013. https://doi.org/10.1016/j.matchar.2013.09.002.
  • D. M. Berg, R. Djemour, L S. Gütay, P. J. Dale, X. Fontane and A. Rodriguez, Raman analysis of monoclinic Cu2SnS3 thin films. Applied Physics Letters, 100(19), 192103, 2012. https://doi.org/10.1063/1.4712623.
  • D. P. Antunez, A. D. Torelli, Y. Fan, A. Federico, Rabuffetti, N. S. Lewis and L. Brutchey, Low temperature solution-phase deposition of SnS thin films Chemistry of Materials, 26(19), 5444-5446, 2014. https:/doi.org/10.1021/cm503124u.
  • G. Dölek, Perovskit güneş hücrelerinde kaliksaren molekül temelli kendiliğinden oluşan tek tabaka arayüzey modifikasyonunun performans üzerine etkileri. Yüksek Lisans Tezi, Konya Teknik Üniversitesi. Türkiye, 2020.
  • J. I. Pankove, Optical processes in semiconductors.: Courier Corporation, 1975.
  • O. G, Abdullah, S. B, Aziz, K. M, Omer and Y. M. Salih, Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. Journal of Materials Science: Materials in Electronics, 26, 5303-5309, 2015. https://doi.org/10.1007/s10854-015-3067-3.
  • T. Bayazıt, M. A. Olğar, T. Küçükömeroğlu, E. Bacaksız and M. Tomakin, Growth and characterization of Cu2SnS3 (CTS), Cu2SnSe3 (CTSe), and Cu2Sn (S, Se) (CTSSe) thin films using dip-coated Cu–Sn precursor. Journal of Materials Science: Materials in Electronics, 30, 12612-12618, 2019. https://doi.org/10.1007/s10854-019-01622-4.
  • J. Chantana, K. Tai, H. Hayashi, T. Nishimura, Y. Kawano and T. Minemoto. Investigation of carrier recombination of Na-doped Cu2SnS3 solar cell for its improved conversion efficiency of 5.1%. Solar Energy Materials and Solar Cells, 206, 110261, 2020. https://doi.org/10.1016/j.solmat.2019.110261.
  • T. S. Reddy, M. C. S. Kumar and S. Shaji, Deposition rate dependant formation and properties of Sn2S3 and SnS thin films by co-evaporation, Materials Research Express, 4, 046404, 2017. https://doi.org/10.1088/2053-1591/aa6b71.
  • T. S. Reddy and M. C. S. Kumar, Co-evaporated SnS thin films for visible light photodetector applications, RSC Advances, 6, 95680–95692, 2016. https://doi.org/10.1039/C6RA20129F.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Photovoltaic Devices (Solar Cells)
Journal Section Articles
Authors

Sevde Erkan 0009-0003-7875-4048

Yavuz Atasoy 0000-0002-6382-992X

Mehmet Ali Olğar 0000-0002-6359-8316

Recep Zan 0000-0001-6739-4348

Project Number 122F217
Early Pub Date December 10, 2024
Publication Date
Submission Date September 13, 2024
Acceptance Date October 12, 2024
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Erkan, S., Atasoy, Y., Olğar, M. A., Zan, R. (2024). Sülfürleme süresinin sulu çözelti karışımı ile hazırlanan Cu2SnS3 ince filmlerin özellikleri üzerine etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 1-1. https://doi.org/10.28948/ngumuh.1549548
AMA Erkan S, Atasoy Y, Olğar MA, Zan R. Sülfürleme süresinin sulu çözelti karışımı ile hazırlanan Cu2SnS3 ince filmlerin özellikleri üzerine etkisi. NOHU J. Eng. Sci. December 2024;14(1):1-1. doi:10.28948/ngumuh.1549548
Chicago Erkan, Sevde, Yavuz Atasoy, Mehmet Ali Olğar, and Recep Zan. “Sülfürleme süresinin Sulu çözelti karışımı Ile hazırlanan Cu2SnS3 Ince Filmlerin özellikleri üzerine Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 1 (December 2024): 1-1. https://doi.org/10.28948/ngumuh.1549548.
EndNote Erkan S, Atasoy Y, Olğar MA, Zan R (December 1, 2024) Sülfürleme süresinin sulu çözelti karışımı ile hazırlanan Cu2SnS3 ince filmlerin özellikleri üzerine etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 1 1–1.
IEEE S. Erkan, Y. Atasoy, M. A. Olğar, and R. Zan, “Sülfürleme süresinin sulu çözelti karışımı ile hazırlanan Cu2SnS3 ince filmlerin özellikleri üzerine etkisi”, NOHU J. Eng. Sci., vol. 14, no. 1, pp. 1–1, 2024, doi: 10.28948/ngumuh.1549548.
ISNAD Erkan, Sevde et al. “Sülfürleme süresinin Sulu çözelti karışımı Ile hazırlanan Cu2SnS3 Ince Filmlerin özellikleri üzerine Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/1 (December 2024), 1-1. https://doi.org/10.28948/ngumuh.1549548.
JAMA Erkan S, Atasoy Y, Olğar MA, Zan R. Sülfürleme süresinin sulu çözelti karışımı ile hazırlanan Cu2SnS3 ince filmlerin özellikleri üzerine etkisi. NOHU J. Eng. Sci. 2024;14:1–1.
MLA Erkan, Sevde et al. “Sülfürleme süresinin Sulu çözelti karışımı Ile hazırlanan Cu2SnS3 Ince Filmlerin özellikleri üzerine Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 1, 2024, pp. 1-1, doi:10.28948/ngumuh.1549548.
Vancouver Erkan S, Atasoy Y, Olğar MA, Zan R. Sülfürleme süresinin sulu çözelti karışımı ile hazırlanan Cu2SnS3 ince filmlerin özellikleri üzerine etkisi. NOHU J. Eng. Sci. 2024;14(1):1-.

download