Research Article
BibTex RIS Cite

Deep learning classification and object detection in helicopter images: Performance analysis of GoogleNet, AlexNet and YOLOv9c architectures

Year 2025, Volume: 14 Issue: 1, 340 - 349, 15.01.2025
https://doi.org/10.28948/ngumuh.1556995

Abstract

Helicopter imaging classification and detection are crucial for autonomous navigation, military operations, search and rescue, and civil aviation management. This study utilized two helicopter image datasets, applying data augmentation techniques such as random resizing, cutting, horizontal rotation, rotation, and color adjustments, along with histogram equalization for contrast enhancement. Twenty-four helicopter classes were trained using GoogleNet and AlexNet architectures, while the YOLOv9c model was employed for object detection. The results revealed that the GoogleNet classification model achieved an 81% F1 score, and AlexNet reached 73%. In contrast, the YOLOv9c model demonstrated an average mean Average Precision (mAP) of 87%. These findings indicate that CNN architectures and YOLO are effective for helicopter image classification and detection, highlighting their potential applications in military, search and rescue, and civil aviation contexts.

References

  • Anagün, Y., Işik, Ş., & Çakir, F. H. (2023). Surface roughness classification of electro discharge machined surfaces with deep ensemble learning. Measurement, 215,112855. https://doi.org/10.1016/j.measurement.2023.112855
  • Kurt, Z., Işık, Ş., Kaya, Z., Anagün, Y., Koca, N., & Çiçek, S. (2023). Evaluation of EfficientNet models for COVID-19 detection using lung parenchyma. Neural Computing and Applications, 35(16), 12121–12132. https://doi.org/10.1007/s00521-023-08344-z
  • Can, Z., Isik, S., & Anagun, Y. (2024). CVApool: using null-space of CNN weights for the tooth disease classification. Neural Computing and Applications, 36, 16567–16579. https://doi.org/10.1007/s00521-024 09995-2
  • Gozukara, G., Anagun, Y., Isik, S., Zhang, Y., & Hartemink, A. E. (2023). Predicting soil EC using spectroscopy and smartphone-based digital images. Catena, 231, 107319. https://doi.org/10.1016/j.catena.2023.107319
  • Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. arXiv preprint arXiv:1506.02640. https://doi.org/10.48550/arXiv.1506.02640
  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 1–9. https://doi.org/10.1109/CVPR.2015.7298594
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25.
  • Wang, C. Y., Yeh, I. H., & Liao, H. Y. M. (2024). Yolov9: Learning what you want to learn using programmable gradient information. arXiv preprint arXiv:2402.13616. https://doi.org/10.48550/arXiv.2402.13616
  • Wu, Z. Z., Wan, S. H., Wang, X. F., Tan, M., Zou, L., Li, X. L., & Chen, Y. (2020). A benchmark data set for aircraft type recognition from remote sensing images. Applied Soft Computing, 89, 106132. https://doi.org/10.1016/j.asoc.2020.106132
  • Rong, H. J., Jia, Y. X., & Zhao, G. S. (2014). Aircraft recognition using modular extreme learning machine. Neurocomputing, 128, 166-174. https://doi.org/10.1016/j.neucom.2012.12.064
  • Zhao, C., Zhang, S., Luo, R., Feng, S., & Kuang, G. (2023). Scattering features spatial-structural association network for aircraft recognition in SAR images. IEEE Geoscience and Remote Sensing Letters, 20, 1-5. https://doi.org/10.1109/LGRS.2023.3280442
  • Wang, Y., Chen, Y., & Liu, R. (2022). Aircraft image recognition network based on hybrid attention mechanism. Computational Intelligence and Neuroscience, 2022(1), 4189500. https://doi.org/10.1016/j.measurement.2023.113098
  • Huang, X., Xu, K., Huang, C., Wang, C., & Qin, K. (2021). Multiple instance learning convolutional neural networks for fine-grained aircraft recognition. Remote Sensing, 13(24), 5132. https://doi.org/10.3390/rs13245132
  • Zhao, Y., Zhao, L., Li, C., & Kuang, G. (2020). Pyramid attention dilated network for aircraft detection in SAR images. IEEE Geoscience and Remote Sensing Letters, 18(4), 662-666. https://doi.org/10.1109/LGRS.2020.2981255
  • Wu, Q., Feng, D., Cao, C., Zeng, X., Feng, Z., Wu, J., & Huang, Z. (2021). Improved mask R-CNN for aircraft detection in remote sensing images. Sensors, 21(8), 2618. https://doi.org/ 10.3390/s21082618
  • Zhang, F., Du, B., Zhang, L., & Xu, M. (2016). Weakly supervised learning based on coupled convolutional neural networks for aircraft detection. IEEE Transactions on Geoscience and Remote Sensing, 54(9), 5553-5563. https://doi.org/10.1109/TGRS.2016.2569141
  • Alkharji, N., Almazrouei, H., Alzaabi, S., Nassif, A. B., Elsalhy, M., & Talib, M. A. (2024). Aircraft-type classification using deep learning algorithms. Proceedings of the 12th International Conference on Intelligent Systems (IS), Varna, Bulgaria, 1–6. https://doi.org/10.1109/IS61756.2024.10705261

Helikopter görüntülerinde derin öğrenme ile sınıflandırma ve nesne tespiti: GoogleNet, AlexNet ve YOLOv9c mimarilerinin performans analizi

Year 2025, Volume: 14 Issue: 1, 340 - 349, 15.01.2025
https://doi.org/10.28948/ngumuh.1556995

Abstract

Helikopter görüntülerinin sınıflandırılması ve tespiti, otonom navigasyon sistemlerinin, askeri operasyonların, arama kurtarma görevlerinin ve sivil havacılık yönetiminin önemli bileşenlerindendir. Bu çalışmada helikopter görüntüleri için iki farklı veri seti kullanılmıştır. Sınıflandırma için rastgele yeniden boyutlandırma, kesme, yatay döndürme, döndürme ve renk değişiklikleri gibi veri artırma teknikleri uygulanmıştır. Görüntülerin kontrastı da histogram eşitleme yöntemi kullanılarak yeniden düzenlenmiştir. 24 sınıf helikopter veri seti GoogleNet ve AlexNet mimarileri kullanılarak eğitilmiştir. Nesne tespiti için YOLOv9c mimarisi kullanılmıştır. Deneysel sonuçlar, GoogleNet tabanlı sınıflandırma modelinin test setinde %81 F-1 skoru elde ettiğini ve AlexNet modelinde genel F1 skorunun %73 olduğunu göstermektedir. YOLOv9c modeli ise ortalama %87 mAP oranları elde etmiştir. Bu sonuçlar, bir tür derin öğrenme modeli olan CNN mimarilerinin ve YOLO nesne tespitinin helikopter görüntüsü sınıflandırma ve tespitinde iyi olduğunu gösteriyor. Çalışma, helikopter ve bileşenlerini tespit etme ve sınıflandırmada iyi performans gösteren modellerin askeri, arama kurtarma ve sivil havacılık dahil olmak üzere çeşitli alanlarda kullanılabileceğini göstermiştir.

References

  • Anagün, Y., Işik, Ş., & Çakir, F. H. (2023). Surface roughness classification of electro discharge machined surfaces with deep ensemble learning. Measurement, 215,112855. https://doi.org/10.1016/j.measurement.2023.112855
  • Kurt, Z., Işık, Ş., Kaya, Z., Anagün, Y., Koca, N., & Çiçek, S. (2023). Evaluation of EfficientNet models for COVID-19 detection using lung parenchyma. Neural Computing and Applications, 35(16), 12121–12132. https://doi.org/10.1007/s00521-023-08344-z
  • Can, Z., Isik, S., & Anagun, Y. (2024). CVApool: using null-space of CNN weights for the tooth disease classification. Neural Computing and Applications, 36, 16567–16579. https://doi.org/10.1007/s00521-024 09995-2
  • Gozukara, G., Anagun, Y., Isik, S., Zhang, Y., & Hartemink, A. E. (2023). Predicting soil EC using spectroscopy and smartphone-based digital images. Catena, 231, 107319. https://doi.org/10.1016/j.catena.2023.107319
  • Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. arXiv preprint arXiv:1506.02640. https://doi.org/10.48550/arXiv.1506.02640
  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 1–9. https://doi.org/10.1109/CVPR.2015.7298594
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25.
  • Wang, C. Y., Yeh, I. H., & Liao, H. Y. M. (2024). Yolov9: Learning what you want to learn using programmable gradient information. arXiv preprint arXiv:2402.13616. https://doi.org/10.48550/arXiv.2402.13616
  • Wu, Z. Z., Wan, S. H., Wang, X. F., Tan, M., Zou, L., Li, X. L., & Chen, Y. (2020). A benchmark data set for aircraft type recognition from remote sensing images. Applied Soft Computing, 89, 106132. https://doi.org/10.1016/j.asoc.2020.106132
  • Rong, H. J., Jia, Y. X., & Zhao, G. S. (2014). Aircraft recognition using modular extreme learning machine. Neurocomputing, 128, 166-174. https://doi.org/10.1016/j.neucom.2012.12.064
  • Zhao, C., Zhang, S., Luo, R., Feng, S., & Kuang, G. (2023). Scattering features spatial-structural association network for aircraft recognition in SAR images. IEEE Geoscience and Remote Sensing Letters, 20, 1-5. https://doi.org/10.1109/LGRS.2023.3280442
  • Wang, Y., Chen, Y., & Liu, R. (2022). Aircraft image recognition network based on hybrid attention mechanism. Computational Intelligence and Neuroscience, 2022(1), 4189500. https://doi.org/10.1016/j.measurement.2023.113098
  • Huang, X., Xu, K., Huang, C., Wang, C., & Qin, K. (2021). Multiple instance learning convolutional neural networks for fine-grained aircraft recognition. Remote Sensing, 13(24), 5132. https://doi.org/10.3390/rs13245132
  • Zhao, Y., Zhao, L., Li, C., & Kuang, G. (2020). Pyramid attention dilated network for aircraft detection in SAR images. IEEE Geoscience and Remote Sensing Letters, 18(4), 662-666. https://doi.org/10.1109/LGRS.2020.2981255
  • Wu, Q., Feng, D., Cao, C., Zeng, X., Feng, Z., Wu, J., & Huang, Z. (2021). Improved mask R-CNN for aircraft detection in remote sensing images. Sensors, 21(8), 2618. https://doi.org/ 10.3390/s21082618
  • Zhang, F., Du, B., Zhang, L., & Xu, M. (2016). Weakly supervised learning based on coupled convolutional neural networks for aircraft detection. IEEE Transactions on Geoscience and Remote Sensing, 54(9), 5553-5563. https://doi.org/10.1109/TGRS.2016.2569141
  • Alkharji, N., Almazrouei, H., Alzaabi, S., Nassif, A. B., Elsalhy, M., & Talib, M. A. (2024). Aircraft-type classification using deep learning algorithms. Proceedings of the 12th International Conference on Intelligent Systems (IS), Varna, Bulgaria, 1–6. https://doi.org/10.1109/IS61756.2024.10705261
There are 17 citations in total.

Details

Primary Language English
Subjects Machine Vision
Journal Section Research Articles
Authors

İrem Hatice Doğan 0009-0001-5987-391X

Ozan Arslan 0009-0004-7889-4224

Ayşe Betül Tat 0009-0004-3101-2837

Burhan Şahin 0000-0002-8777-7925

Ege Erberk Uslu 0000-0001-9119-8574

İbrahim Yülüce 0000-0002-3652-7184

Orhan Dağdeviren 0000-0001-8789-5086

Early Pub Date January 2, 2025
Publication Date January 15, 2025
Submission Date September 29, 2024
Acceptance Date December 26, 2024
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Doğan, İ. H., Arslan, O., Tat, A. B., Şahin, B., et al. (2025). Deep learning classification and object detection in helicopter images: Performance analysis of GoogleNet, AlexNet and YOLOv9c architectures. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 340-349. https://doi.org/10.28948/ngumuh.1556995
AMA Doğan İH, Arslan O, Tat AB, Şahin B, Uslu EE, Yülüce İ, Dağdeviren O. Deep learning classification and object detection in helicopter images: Performance analysis of GoogleNet, AlexNet and YOLOv9c architectures. NOHU J. Eng. Sci. January 2025;14(1):340-349. doi:10.28948/ngumuh.1556995
Chicago Doğan, İrem Hatice, Ozan Arslan, Ayşe Betül Tat, Burhan Şahin, Ege Erberk Uslu, İbrahim Yülüce, and Orhan Dağdeviren. “Deep Learning Classification and Object Detection in Helicopter Images: Performance Analysis of GoogleNet, AlexNet and YOLOv9c Architectures”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 1 (January 2025): 340-49. https://doi.org/10.28948/ngumuh.1556995.
EndNote Doğan İH, Arslan O, Tat AB, Şahin B, Uslu EE, Yülüce İ, Dağdeviren O (January 1, 2025) Deep learning classification and object detection in helicopter images: Performance analysis of GoogleNet, AlexNet and YOLOv9c architectures. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 1 340–349.
IEEE İ. H. Doğan, O. Arslan, A. B. Tat, B. Şahin, E. E. Uslu, İ. Yülüce, and O. Dağdeviren, “Deep learning classification and object detection in helicopter images: Performance analysis of GoogleNet, AlexNet and YOLOv9c architectures”, NOHU J. Eng. Sci., vol. 14, no. 1, pp. 340–349, 2025, doi: 10.28948/ngumuh.1556995.
ISNAD Doğan, İrem Hatice et al. “Deep Learning Classification and Object Detection in Helicopter Images: Performance Analysis of GoogleNet, AlexNet and YOLOv9c Architectures”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/1 (January 2025), 340-349. https://doi.org/10.28948/ngumuh.1556995.
JAMA Doğan İH, Arslan O, Tat AB, Şahin B, Uslu EE, Yülüce İ, Dağdeviren O. Deep learning classification and object detection in helicopter images: Performance analysis of GoogleNet, AlexNet and YOLOv9c architectures. NOHU J. Eng. Sci. 2025;14:340–349.
MLA Doğan, İrem Hatice et al. “Deep Learning Classification and Object Detection in Helicopter Images: Performance Analysis of GoogleNet, AlexNet and YOLOv9c Architectures”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 1, 2025, pp. 340-9, doi:10.28948/ngumuh.1556995.
Vancouver Doğan İH, Arslan O, Tat AB, Şahin B, Uslu EE, Yülüce İ, Dağdeviren O. Deep learning classification and object detection in helicopter images: Performance analysis of GoogleNet, AlexNet and YOLOv9c architectures. NOHU J. Eng. Sci. 2025;14(1):340-9.

download