SİYAH HAVUÇ KALLUS KÜLTÜRÜNÜN ANTİOKSİDAN AKTİVİTESİ VE FENOLİK BİLEŞİK İÇERİĞİNİN BELİRLENMESİ
Year 2018,
Volume: 13 Issue: 2, 87 - 93, 21.04.2018
İlhami Karataş
,
Fatih Polat
,
Rahime Karataş
Tarık Dal
Mahfuz Elmastaş
Abstract
Kallus kültürü bir bitki doku kültürü yöntemi olup birçok sektörün ihtiyacı olan fenolik bileşiklerin üretimi için alternatif bir tekniktir. Bu çalışmada, siyah havuç (Daucus carota ssp. sativus var. atrorubens Alef.) bitkisinde kallus kültürü oluşturulması ve elde edilen kallusların antioksidan kapasitesi, toplam fenolik, flavonoid ve antosiyanin içeriklerinin belirlenmesi amaçlanmıştır. Ekstraktların antioksidan kapasiteleri serbest radikal giderme aktivitesi (DPPH: 2.2-diphenyl-1- picrylhydrazyl) ve demir indirgeme antioksidan gücü (FRAP) metotlarıyla
belirlenmiştir. Kallus indüksiyonu, steril koşullarda yetiştirilen bitkilerin hipokotil kısımlarının 2mg/L 2.4-D, 0.2mg/L BAP, 30g/L sükroz ve 2g/L phytagel içeren MS besi ortamında kültüre alınmasıyla (Murashige ve Skoog) sağlanmıştır. Siyah havuç kalluslarının yüksek miktarda fenolik bileşik içermesini yanında yüksek serbest radikal giderme aktivitesi (DPPH) ve demir indirgeme gücüne sahip olduğu belirlenmiştir.
References
- [1] Algarra, M., Fernandes, A., Mateus, N., Freitas, V., Silva, J. C.G.E., and Casado, J., (2014). Anthocyanin Profile and Antioxidant Capacity of Black Carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.) from Cuevas Bajas, Spain. Journal of Food Composition and Analysis, 33 71–76.
- [2] Bakowska-Barczak, A., (2005). Acylated Anthocyanins as Stable, Natural Food Colorants. Pol. J. Food Nutr. Sci., 14:55(2), 107-116.
- [3] Bilek, S.E., Yılmaz, F.M., and Özkan, G., (2017). The Effects of Industrial Production on Black Carrot Concentrate Quality and Encapsulation of Anthocyanins in Whey Protein Hydrogels. Food and Bioproducts Processing, 102 72–80.
- [4] Blois, M.S., (1958). Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 26 1199-1200.
- [5] Delgado-Vargas, F., Jiménez, A.R., and Paredes-López, O., (2000). Natural Pigments: Carotenoids, Anthocyanins, and Betalains- Characteristics, Biosynthesis, Processing, and Stability. Critical Reviews in Food Science and Nutrition, 40(3)173-289.
- [6] Deroles, S., (2009). Anthocyanins, Biosynthesis, Functions, and Applications. Anthocyanin Biosynthesis in Plant Cell Cultures: A Potential Source of Natural Colourants. Editors: Gould, K., Davies, K., Winefield, C. (5):107-155.
- [7] Elmastaş, M., Telci, İ., Akşit, H., and Erenler, R., (2015). Comparison of Total Phenolic Contents and Antioxidant Capacities in Mint Genotypes Used as Spices. Turkish Journal of Biochemistry 40(6):456–462.
- [8] Ghosh, D. and Konishi, T., (2007). Anthocyanins and Anthocyanin-Rich Extracts: Role in Diabetes and Eye Function. Asia Pac J Clin Nutr, 16(2):200-208.
- [9] Giusti, M.M. and Wrolstad, R.E., (2001). Characterization and Measurement of Anthocyanins by UV-visible Spectroscopy. Current Protocols in Food Analytical Chemistry, F1.2.
- [10] Gülçin, İ., Sat, İ.G., Beydemir, S., Elmastas, M., and Küfrevioğlu, Ö.İ., (2004). Comparison of Antioxidant Activity of Clove (Eugenia caryophylata Thunb) Buds and Lavender (Lavandula stoechas L.). Food Chem., 87:393-400,
- [11] Gülçin, İ., (2012). Antioxidant Activity of Food Constituents: an Overview. Arch Toxicol, 86:345–391.
- [12] Karatas, İ., Elmastaş, M. ve Karataş, R., (2014). Siyah Havuç (Daucus carota ssp. sativus var. atrorubens Alef) Kallus Kültüründe Antosiyanin Üretimine Bazı Uygulamaların Etkisi. Gaziosmanpaşa Bilimsel Araştırma Dergisi Sayı:9, Sayfa:62-73.
[13] Karatas, İ., Elmastaş, M. ve Karataş, R., (2016). Antosiyaninlerin Kallus ve Hücre Süspansiyon Kültürüyle Üretimi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, Sayı:12, Sayfa:80-91.
- [14] Kırca, A., (2004). Siyah Havuç Antosiyaninlerinin Bazı Meyve Ürünlerinde Isıl Stabilitesi. Doktora Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
- [15] Kumaran, A. and Karunakaran, R.J., (2006). Antioxidant and Free Radical Scavenging Activity of an Aqueous Extract of Coleus aromaticus. Food Chem., 97:109-114.
- [16] Mazid, M., Khan, T.A., and Mohammad, F., (2011). Role of Secondary Metabolites in Defense Mechanisms of Plants. Biology and Medicine, 3(2):232-249.
- [17] Mazza, G., (2007). Anthocyanins and Heart Health. Ann. Ist. Super. Sanita, 43(4):369-374.
- [18] Montilla, E.C., Arzaba, M.R., Hillebrand, S., and Winterhalter, P., (2011). Anthocyanin Composition of Black Carrot (Daucus carota ssp. sativus var. Atrorubens Alef.) Cultivars Antonina, Beta Sweet, Deep Purple, and Purple Haze. Journal of Agricultural and Food Chemistry, (59):3385-3390.
- [19] Murashige, T. and Skoog, F., (1962). A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Physol. Plant., (15):473-497.
- [20] Murthy, H.N., Lee, E.J., and Paek, K.Y., (2014). Production of Secondary Metabolites from Cell and Organ Cultures: Strategies and Approaches for Biomass Improvement and Metabolite Accumulation. Plant Cell Tiss Organ Cult, 118:1–16.
- [21] Oyaizu, M., (1986). Studies on Product of Browning Reaction Prepared from Glucosamine. Japanese Journal of Nutrition, 44. 307-315.
- [22] Pekal, A. and Pyrzynska, K., (2014). Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods, 7:1776–1782.
- [23] Ramachandra, R.S. and Ravishankar, G.A., (2002). Plant Cell Cultures: Chemical Factories of Secondary Metabolites. Biotechnology Advances, (20):101-153.
- [24] Slinkard K. and Singleton, V.L., (1977). Total Phenol Analysis: Automation and Comparison with Manual Methods. Am J Enol Viticult, 28:49-55.
- [25] Vanisree, M., Lee, C.Y., Lo, S.F., Nalawade, S.M., Lin, C.Y., and Tsay, H.S., (2004). Studies on the Production of Some Important Secondary Metabolites from Medicinal Plants by Plant Tissue Cultures. Bot. Bull. Acad. Sin., (45):1-22.
- [26] Vermerris, W. and Nicholson, R., (2006). Phenolic Compound Biochemistry. Page 1-32.
- [27] Zhang, W., Curtin, C., Kikuchi, M., and Franco, C., (2002). Integration of Jasmonic Acid and Light Irradiation for Enhancement of Anthocyanin Biosynthesis in Vitis vinifera Suspension Cultures. Plant Science, (162):459-468.
- [28] Zhong, J.J., (2001). Advances in Biochemical Engineering/Biotechnology, Biochemical Engineering of the Production of Plant-Specific Secondary Metabolites by Cell Suspension Cultures. Edited: Scheper, T., (72):1-26.
DETERMINATION OF ANTIOXIDANT ACTIVITY AND PHENOLIC COMPOUND CONTENT OF BLACK CARROT CALLUS CULTURE
Year 2018,
Volume: 13 Issue: 2, 87 - 93, 21.04.2018
İlhami Karataş
,
Fatih Polat
,
Rahime Karataş
Tarık Dal
Mahfuz Elmastaş
Abstract
Callus culture, a method of plant tissue culture, is an alternative technique for the production of phenolic compounds that many industries need. In this study, antioxidant capacity, total phenolic, flavonoid and anthocyanin content of callus obtained from black carrot (Daucus carota ssp. Sativus var. Atrorubens alef.) were investigated. The antioxidant capacities of the extracts were determined by the free radical scavenging activity (DPPH) and the ferric reducing antioxidant power (FRAP) methods. The callus was derived from the MS medium (Murashige ve Skoog containing 2 mg/L 2.4-D, 0.2mg/L BAP, 30g/L sucrose and 2g/L phytagel using hypocotyl segments of plants grown in sterile conditions. The black carrot calli exhibited high DPPH free radical scavenging activity and FRAP activity in addition to high phenolic compound contents.
References
- [1] Algarra, M., Fernandes, A., Mateus, N., Freitas, V., Silva, J. C.G.E., and Casado, J., (2014). Anthocyanin Profile and Antioxidant Capacity of Black Carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.) from Cuevas Bajas, Spain. Journal of Food Composition and Analysis, 33 71–76.
- [2] Bakowska-Barczak, A., (2005). Acylated Anthocyanins as Stable, Natural Food Colorants. Pol. J. Food Nutr. Sci., 14:55(2), 107-116.
- [3] Bilek, S.E., Yılmaz, F.M., and Özkan, G., (2017). The Effects of Industrial Production on Black Carrot Concentrate Quality and Encapsulation of Anthocyanins in Whey Protein Hydrogels. Food and Bioproducts Processing, 102 72–80.
- [4] Blois, M.S., (1958). Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 26 1199-1200.
- [5] Delgado-Vargas, F., Jiménez, A.R., and Paredes-López, O., (2000). Natural Pigments: Carotenoids, Anthocyanins, and Betalains- Characteristics, Biosynthesis, Processing, and Stability. Critical Reviews in Food Science and Nutrition, 40(3)173-289.
- [6] Deroles, S., (2009). Anthocyanins, Biosynthesis, Functions, and Applications. Anthocyanin Biosynthesis in Plant Cell Cultures: A Potential Source of Natural Colourants. Editors: Gould, K., Davies, K., Winefield, C. (5):107-155.
- [7] Elmastaş, M., Telci, İ., Akşit, H., and Erenler, R., (2015). Comparison of Total Phenolic Contents and Antioxidant Capacities in Mint Genotypes Used as Spices. Turkish Journal of Biochemistry 40(6):456–462.
- [8] Ghosh, D. and Konishi, T., (2007). Anthocyanins and Anthocyanin-Rich Extracts: Role in Diabetes and Eye Function. Asia Pac J Clin Nutr, 16(2):200-208.
- [9] Giusti, M.M. and Wrolstad, R.E., (2001). Characterization and Measurement of Anthocyanins by UV-visible Spectroscopy. Current Protocols in Food Analytical Chemistry, F1.2.
- [10] Gülçin, İ., Sat, İ.G., Beydemir, S., Elmastas, M., and Küfrevioğlu, Ö.İ., (2004). Comparison of Antioxidant Activity of Clove (Eugenia caryophylata Thunb) Buds and Lavender (Lavandula stoechas L.). Food Chem., 87:393-400,
- [11] Gülçin, İ., (2012). Antioxidant Activity of Food Constituents: an Overview. Arch Toxicol, 86:345–391.
- [12] Karatas, İ., Elmastaş, M. ve Karataş, R., (2014). Siyah Havuç (Daucus carota ssp. sativus var. atrorubens Alef) Kallus Kültüründe Antosiyanin Üretimine Bazı Uygulamaların Etkisi. Gaziosmanpaşa Bilimsel Araştırma Dergisi Sayı:9, Sayfa:62-73.
[13] Karatas, İ., Elmastaş, M. ve Karataş, R., (2016). Antosiyaninlerin Kallus ve Hücre Süspansiyon Kültürüyle Üretimi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, Sayı:12, Sayfa:80-91.
- [14] Kırca, A., (2004). Siyah Havuç Antosiyaninlerinin Bazı Meyve Ürünlerinde Isıl Stabilitesi. Doktora Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
- [15] Kumaran, A. and Karunakaran, R.J., (2006). Antioxidant and Free Radical Scavenging Activity of an Aqueous Extract of Coleus aromaticus. Food Chem., 97:109-114.
- [16] Mazid, M., Khan, T.A., and Mohammad, F., (2011). Role of Secondary Metabolites in Defense Mechanisms of Plants. Biology and Medicine, 3(2):232-249.
- [17] Mazza, G., (2007). Anthocyanins and Heart Health. Ann. Ist. Super. Sanita, 43(4):369-374.
- [18] Montilla, E.C., Arzaba, M.R., Hillebrand, S., and Winterhalter, P., (2011). Anthocyanin Composition of Black Carrot (Daucus carota ssp. sativus var. Atrorubens Alef.) Cultivars Antonina, Beta Sweet, Deep Purple, and Purple Haze. Journal of Agricultural and Food Chemistry, (59):3385-3390.
- [19] Murashige, T. and Skoog, F., (1962). A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Physol. Plant., (15):473-497.
- [20] Murthy, H.N., Lee, E.J., and Paek, K.Y., (2014). Production of Secondary Metabolites from Cell and Organ Cultures: Strategies and Approaches for Biomass Improvement and Metabolite Accumulation. Plant Cell Tiss Organ Cult, 118:1–16.
- [21] Oyaizu, M., (1986). Studies on Product of Browning Reaction Prepared from Glucosamine. Japanese Journal of Nutrition, 44. 307-315.
- [22] Pekal, A. and Pyrzynska, K., (2014). Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods, 7:1776–1782.
- [23] Ramachandra, R.S. and Ravishankar, G.A., (2002). Plant Cell Cultures: Chemical Factories of Secondary Metabolites. Biotechnology Advances, (20):101-153.
- [24] Slinkard K. and Singleton, V.L., (1977). Total Phenol Analysis: Automation and Comparison with Manual Methods. Am J Enol Viticult, 28:49-55.
- [25] Vanisree, M., Lee, C.Y., Lo, S.F., Nalawade, S.M., Lin, C.Y., and Tsay, H.S., (2004). Studies on the Production of Some Important Secondary Metabolites from Medicinal Plants by Plant Tissue Cultures. Bot. Bull. Acad. Sin., (45):1-22.
- [26] Vermerris, W. and Nicholson, R., (2006). Phenolic Compound Biochemistry. Page 1-32.
- [27] Zhang, W., Curtin, C., Kikuchi, M., and Franco, C., (2002). Integration of Jasmonic Acid and Light Irradiation for Enhancement of Anthocyanin Biosynthesis in Vitis vinifera Suspension Cultures. Plant Science, (162):459-468.
- [28] Zhong, J.J., (2001). Advances in Biochemical Engineering/Biotechnology, Biochemical Engineering of the Production of Plant-Specific Secondary Metabolites by Cell Suspension Cultures. Edited: Scheper, T., (72):1-26.