Research Article
BibTex RIS Cite

BIOACCUMULATOR CHARACTERISTICS FOR Pb-Zn OF PRUNUS ARMENIACA L. PLANT (YEŞİLYURT-GÖRGÜ), TURKEY

Year 2018, Volume: 13 Issue: 1, 53 - 63, 19.01.2018

Abstract

Biogeochemical
studies have been carried out on Prunus armeniaca L. plant grown in and around
Pb-Zn deposits in Gorgu village and on the soil samples grown on this plant.
Chemical analyzes of plant and soil samples taken in the study area were carried
out in the ACME analytical laboratory in Canada by ICP-MS method. The average
Pb concentration of branch, leaf, fruit and soil of Prunus Armeniaca L. (P.
Armeniaca) plant was (mg/kg), respectively; 15.1, 13.7, 3.5 and 1495.5, and Zn
concentration, respectively (mg/kg); 29, 44.3, 36.4 and 1831.7. The average BAC
(
Bioaccumulation Coefficient) values calculated for the Pb element of the
P. Armeniaca plant were BAC (branch/soil):0.01, BAC (leaf/soil):0.01 and BAC (fruit/soil):0.004
and the average BAC values calculated for the Zn element, BAC (branch/soil):0.04,
BAC (leaf/soil):0.05 and BAC (fruit/soil):0.07. For this reason,    this plant is a medium accumulator plant in
the locations determined for Cu, Mo and Zn elements.

References

  • 1. Adriano, D.C., Wenzel, W.W., Vangronsveld, J., and Bolan, N.S., (2004). Role of Assisted Natural Remediation in Environmental Cleanup, Geoderma. J., Vol. 122, no. 2-4, 121–142.
  • 2. Raicevic, S., Kaludjerovic-Radoicic, T., and Zouboulis, A.I., (2005). In Situ Stabilization of Toxic Metals in Polluted Soils Using Phosphates: Theoretical Prediction and Experimental Verification, J. Hazard, Mat. J., vol. 117, no. 1, pp, 41–53.
  • 3. Cheraghi, M., Lorestani, B., Khorasani, N., Yousefi, N., and Karami, M., (2011). Findings on the Phytoextraction and Phytostabilization of Soils Contaminated with Heavy Metals, Biol. Trace Elem. Res. 144:1133-1141.
  • 4. Nazır, R., Khan, M., Masab, M., Rehman, H.U., Rauf, N.U., Shahab, S., Ameer, N., Sajed, M., Ullah, M., Rafeeq, M., and Shaheen, Z., (2015). Accumulation of Heavy Metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the Soil, Water and Plants and Analysis of Physico-chemical Parameters of Soil and Water Collected from Tanda Dam Kohat, J. Pharm. Sci. & Res. Vol. 7(3), 89-97.
  • 5. Hall, J., (2002). Cellular Mechanisms for Heavy Metal Detoxification and Tolerance, J. Exp. Bot., 53, 1-11.
  • 6. Mehes-Smith, M., Nkongolo, K., and Cholewa, E., (2013). Coping Mechanisms of Plants to Metal Contaminated Soil, Environmental Change and Sustainability. http://dx.doi.org/10.5772/55124.
  • 7. Akın, E.V., Karabulut, I., and Topçu, A., (2008). Some Compositional Properties of Main Malatya Apricot (Prunus armeniaca L.) varieties, Food Chemistry, 107, 939-948.
  • 8. https://en.wikipedia.org/wiki/Apricot.
  • 9. http://tr.wikipedia.org/wiki/ Kayısı.
  • 10. Ozgul, N., (1976). Some Geological Aspects of the Taunts Orogenic Belt, Bulletin of the Geological Society of Turkey, v. 19, 65 – 78.
  • 11. Onal, M., Tuzcu, N. and Helvacı, C., 1990, Geological Setting, Mineralogy an Origin of the Cafana (Malatya) Zn-Pb Sulfide and Carbonate Deposit, E Anatolia, Turkey, in: Int. Earth Sci. Congress on Aegean Regions, Proceedings, ed: M.Y. Savasçın and A.H. Eronat, Izmir, D.E. University, v. 1, 52-58.
  • 12. Cengiz, R., Yılmaz, H., and Türkyılmaz, B., (1991). In the Near Malatya–Yeşilyurt–Cafana (Görgü) Interim Report License Areas Number ÖİR:671 and ÖİR:1714 Belonging Çinkur. Mineral Research & Exploration General Directorate, Ankara.
  • 13. Sagiroglu, A., (1988). Cafana (Gorgu) Malatya Carbonated Pb–Zn Deposit. C.Ü. Faculty of Engineering Journal, Series A Geosciences, C. 5(1), 3-13.
  • 14. Ceyhan, N., (2003). Lead Isotope Geochemistry of Pb-Zn Deposits from Eastern Taurides, Turkey. Middle East Technical University, Msc Thesis, pp., 105.
  • 15. Reichman, S.M., Asher, C.J., Mulligan, D.R., and Menzies, N.W., (2001). Seedling Responses of Three Australian Tree Species to Toxic Concentrations of Zinc in Solution Culture, Plant and Soil, 235, 151-158.
  • 16. Ernst, WHO., (1974). Schwermetallvegetation der Erde. Gustav Fischer, Stuttgart.
  • 17. Ernst, WHO., (1982). Schwermetallpflanzen. In: Kinzel H (ed) Pflanzen€okologie und Mineral-Stoffwechsel. Ulmer, Stuttgart, 472–506.
  • 18. Bothe, H., (2011). Plants in Heavy Metal Soils. Chapter 2, 35-57.
  • 19. Hassan, Z., Anwar, Z. Khattak, K.U., Islam, M., Khan, R.U., Khattak, J.Z.K.; et al., (2002). Civic Pollution and Its Effect on Water Quality of River Toi at District Kohat, NWFP, Research Journal of Environmental and Earth Sciences, Volume: 4, p.5.
Year 2018, Volume: 13 Issue: 1, 53 - 63, 19.01.2018

Abstract

References

  • 1. Adriano, D.C., Wenzel, W.W., Vangronsveld, J., and Bolan, N.S., (2004). Role of Assisted Natural Remediation in Environmental Cleanup, Geoderma. J., Vol. 122, no. 2-4, 121–142.
  • 2. Raicevic, S., Kaludjerovic-Radoicic, T., and Zouboulis, A.I., (2005). In Situ Stabilization of Toxic Metals in Polluted Soils Using Phosphates: Theoretical Prediction and Experimental Verification, J. Hazard, Mat. J., vol. 117, no. 1, pp, 41–53.
  • 3. Cheraghi, M., Lorestani, B., Khorasani, N., Yousefi, N., and Karami, M., (2011). Findings on the Phytoextraction and Phytostabilization of Soils Contaminated with Heavy Metals, Biol. Trace Elem. Res. 144:1133-1141.
  • 4. Nazır, R., Khan, M., Masab, M., Rehman, H.U., Rauf, N.U., Shahab, S., Ameer, N., Sajed, M., Ullah, M., Rafeeq, M., and Shaheen, Z., (2015). Accumulation of Heavy Metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the Soil, Water and Plants and Analysis of Physico-chemical Parameters of Soil and Water Collected from Tanda Dam Kohat, J. Pharm. Sci. & Res. Vol. 7(3), 89-97.
  • 5. Hall, J., (2002). Cellular Mechanisms for Heavy Metal Detoxification and Tolerance, J. Exp. Bot., 53, 1-11.
  • 6. Mehes-Smith, M., Nkongolo, K., and Cholewa, E., (2013). Coping Mechanisms of Plants to Metal Contaminated Soil, Environmental Change and Sustainability. http://dx.doi.org/10.5772/55124.
  • 7. Akın, E.V., Karabulut, I., and Topçu, A., (2008). Some Compositional Properties of Main Malatya Apricot (Prunus armeniaca L.) varieties, Food Chemistry, 107, 939-948.
  • 8. https://en.wikipedia.org/wiki/Apricot.
  • 9. http://tr.wikipedia.org/wiki/ Kayısı.
  • 10. Ozgul, N., (1976). Some Geological Aspects of the Taunts Orogenic Belt, Bulletin of the Geological Society of Turkey, v. 19, 65 – 78.
  • 11. Onal, M., Tuzcu, N. and Helvacı, C., 1990, Geological Setting, Mineralogy an Origin of the Cafana (Malatya) Zn-Pb Sulfide and Carbonate Deposit, E Anatolia, Turkey, in: Int. Earth Sci. Congress on Aegean Regions, Proceedings, ed: M.Y. Savasçın and A.H. Eronat, Izmir, D.E. University, v. 1, 52-58.
  • 12. Cengiz, R., Yılmaz, H., and Türkyılmaz, B., (1991). In the Near Malatya–Yeşilyurt–Cafana (Görgü) Interim Report License Areas Number ÖİR:671 and ÖİR:1714 Belonging Çinkur. Mineral Research & Exploration General Directorate, Ankara.
  • 13. Sagiroglu, A., (1988). Cafana (Gorgu) Malatya Carbonated Pb–Zn Deposit. C.Ü. Faculty of Engineering Journal, Series A Geosciences, C. 5(1), 3-13.
  • 14. Ceyhan, N., (2003). Lead Isotope Geochemistry of Pb-Zn Deposits from Eastern Taurides, Turkey. Middle East Technical University, Msc Thesis, pp., 105.
  • 15. Reichman, S.M., Asher, C.J., Mulligan, D.R., and Menzies, N.W., (2001). Seedling Responses of Three Australian Tree Species to Toxic Concentrations of Zinc in Solution Culture, Plant and Soil, 235, 151-158.
  • 16. Ernst, WHO., (1974). Schwermetallvegetation der Erde. Gustav Fischer, Stuttgart.
  • 17. Ernst, WHO., (1982). Schwermetallpflanzen. In: Kinzel H (ed) Pflanzen€okologie und Mineral-Stoffwechsel. Ulmer, Stuttgart, 472–506.
  • 18. Bothe, H., (2011). Plants in Heavy Metal Soils. Chapter 2, 35-57.
  • 19. Hassan, Z., Anwar, Z. Khattak, K.U., Islam, M., Khan, R.U., Khattak, J.Z.K.; et al., (2002). Civic Pollution and Its Effect on Water Quality of River Toi at District Kohat, NWFP, Research Journal of Environmental and Earth Sciences, Volume: 4, p.5.
There are 19 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Güllü Kırat 0000-0002-1167-0574

Cemal Bolucek This is me

Publication Date January 19, 2018
Published in Issue Year 2018 Volume: 13 Issue: 1

Cite

APA Kırat, G., & Bolucek, C. (2018). BIOACCUMULATOR CHARACTERISTICS FOR Pb-Zn OF PRUNUS ARMENIACA L. PLANT (YEŞİLYURT-GÖRGÜ), TURKEY. Engineering Sciences, 13(1), 53-63.
AMA Kırat G, Bolucek C. BIOACCUMULATOR CHARACTERISTICS FOR Pb-Zn OF PRUNUS ARMENIACA L. PLANT (YEŞİLYURT-GÖRGÜ), TURKEY. Engineering Sciences. January 2018;13(1):53-63.
Chicago Kırat, Güllü, and Cemal Bolucek. “BIOACCUMULATOR CHARACTERISTICS FOR Pb-Zn OF PRUNUS ARMENIACA L. PLANT (YEŞİLYURT-GÖRGÜ), TURKEY”. Engineering Sciences 13, no. 1 (January 2018): 53-63.
EndNote Kırat G, Bolucek C (January 1, 2018) BIOACCUMULATOR CHARACTERISTICS FOR Pb-Zn OF PRUNUS ARMENIACA L. PLANT (YEŞİLYURT-GÖRGÜ), TURKEY. Engineering Sciences 13 1 53–63.
IEEE G. Kırat and C. Bolucek, “BIOACCUMULATOR CHARACTERISTICS FOR Pb-Zn OF PRUNUS ARMENIACA L. PLANT (YEŞİLYURT-GÖRGÜ), TURKEY”, Engineering Sciences, vol. 13, no. 1, pp. 53–63, 2018.
ISNAD Kırat, Güllü - Bolucek, Cemal. “BIOACCUMULATOR CHARACTERISTICS FOR Pb-Zn OF PRUNUS ARMENIACA L. PLANT (YEŞİLYURT-GÖRGÜ), TURKEY”. Engineering Sciences 13/1 (January 2018), 53-63.
JAMA Kırat G, Bolucek C. BIOACCUMULATOR CHARACTERISTICS FOR Pb-Zn OF PRUNUS ARMENIACA L. PLANT (YEŞİLYURT-GÖRGÜ), TURKEY. Engineering Sciences. 2018;13:53–63.
MLA Kırat, Güllü and Cemal Bolucek. “BIOACCUMULATOR CHARACTERISTICS FOR Pb-Zn OF PRUNUS ARMENIACA L. PLANT (YEŞİLYURT-GÖRGÜ), TURKEY”. Engineering Sciences, vol. 13, no. 1, 2018, pp. 53-63.
Vancouver Kırat G, Bolucek C. BIOACCUMULATOR CHARACTERISTICS FOR Pb-Zn OF PRUNUS ARMENIACA L. PLANT (YEŞİLYURT-GÖRGÜ), TURKEY. Engineering Sciences. 2018;13(1):53-6.