Research Article
BibTex RIS Cite

Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad

Year 2022, Volume: 7 Issue: 2, 74 - 80, 31.12.2022
https://doi.org/10.56171/ojn.1053225

Abstract

The treatment of boron(III) subphthalocyanine chloride (SubPcCl) with borondipyrromethene (BODIPY) derivative consisting one pyrene group in toluene gave the corresponding axially substituted boron(III) subphthalocyanine dyad (SubPcBodiPy). Novel compound has been fully characterized by FTIR, mass, NMR (1H and 13C) spectroscopy and elemental analysis. Photophysical properties of SubPcBodiPy was investigated and compared with its precursors by fluorescence and absorption spectroscopy in THF. Accordingly, fluorescence lifetimes were measured directly by single exponential calculation.

References

  • Ward M. D., (1997) “Photo-induced electron and energy transfer in non-covalently bonded supramolecular assemblies”, Chemical Society Reviews, vol.26, pp.365-375.
  • Balzani V., Bergamini G., Ceroni P., (2008) “From the photochemistry of coordination compounds to light-powered nanoscale devices and machines”, Coordination Chemistry Reviews, vol. 252, pp.2456-2469.
  • Holten D., Bocian D. F., Lindsey J. S., (2002) “Probing electronic communication in covalently linked multiporphyrin arrays. A guide to the rational design of molecular photonic devices” Accounts of Chemical Research, vol.35, pp.57-69.
  • Loudet A., Burgess K., (2007) “BODIPY dyes and their derivatives: syntheses and spectroscopic properties” Chemical Reviews, vol.107, pp.4891-4932.
  • Claessens C. G., González-Rodríguez D., Torres T., (2002) “Subphthalocyanines: singular nonplanar aromatic compounds synthesis, reactivity, and physical properties” Chemical Reviews, vol.102, pp.835-854.
  • Mutolo K.L., Mayo E.I., Rand B.P., Forrest S.R., Thompson M.E., (2006) “Enhanced opencircuit voltage in subphthalocyanine/C60 organic photovoltaic cells” Journal of American Chemical Society, vol.128, pp.8108-8109.
  • Xu S., Chen K., Tian H., (2005) “A colorimetric and fluorescent chemodosimeter: fluoride ion sensing by an axial-substituted subphthalocyanine” Journal of Materials Chemistry A, vol.15, pp.2676-2680.
  • Morse G. E., Helander M. G., Maka J. F., Lu Z. H., Bender T. P., (2010) “Fluorinated phenoxy boron subphthalocyanines in organic light-emitting diodes” ACS Applied Materials & Interfaces, vol.2(7), pp.1934-1944.
  • Renshaw K. C., Xu X., Forrest S. R., (2010) “A monolithically integrated organic photodetector and thin film transistor” Organic Electronics, vol.11, pp.175-178.
  • Li J. Y., Yeung H. S., Xu W., Li X., Ng D. K. P. (2008) “Highly Efficient Energy Transfer in Subphthalocyanine−BODIPY Conjugates” Organic Letters, vol.10, 23, pp.5421–5424.

Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad

Year 2022, Volume: 7 Issue: 2, 74 - 80, 31.12.2022
https://doi.org/10.56171/ojn.1053225

Abstract

The treatment of boron(III) subphthalocyanine chloride (SubPcCl) with borondipyrromethene (BODIPY) derivative consisting one pyrene group in toluene gave the corresponding axially substituted boron(III) subphthalocyanine dyad (SubPcBodiPy). Novel compound has been fully characterized by FTIR, mass, NMR (1H and 13C) spectroscopy and elemental analysis. Photophysical properties of SubPcBodiPy was investigated and compared with its precursors by fluorescence and absorption spectroscopy in THF. Accordingly, fluorescence lifetimes were measured directly by single exponential calculation.

References

  • Ward M. D., (1997) “Photo-induced electron and energy transfer in non-covalently bonded supramolecular assemblies”, Chemical Society Reviews, vol.26, pp.365-375.
  • Balzani V., Bergamini G., Ceroni P., (2008) “From the photochemistry of coordination compounds to light-powered nanoscale devices and machines”, Coordination Chemistry Reviews, vol. 252, pp.2456-2469.
  • Holten D., Bocian D. F., Lindsey J. S., (2002) “Probing electronic communication in covalently linked multiporphyrin arrays. A guide to the rational design of molecular photonic devices” Accounts of Chemical Research, vol.35, pp.57-69.
  • Loudet A., Burgess K., (2007) “BODIPY dyes and their derivatives: syntheses and spectroscopic properties” Chemical Reviews, vol.107, pp.4891-4932.
  • Claessens C. G., González-Rodríguez D., Torres T., (2002) “Subphthalocyanines: singular nonplanar aromatic compounds synthesis, reactivity, and physical properties” Chemical Reviews, vol.102, pp.835-854.
  • Mutolo K.L., Mayo E.I., Rand B.P., Forrest S.R., Thompson M.E., (2006) “Enhanced opencircuit voltage in subphthalocyanine/C60 organic photovoltaic cells” Journal of American Chemical Society, vol.128, pp.8108-8109.
  • Xu S., Chen K., Tian H., (2005) “A colorimetric and fluorescent chemodosimeter: fluoride ion sensing by an axial-substituted subphthalocyanine” Journal of Materials Chemistry A, vol.15, pp.2676-2680.
  • Morse G. E., Helander M. G., Maka J. F., Lu Z. H., Bender T. P., (2010) “Fluorinated phenoxy boron subphthalocyanines in organic light-emitting diodes” ACS Applied Materials & Interfaces, vol.2(7), pp.1934-1944.
  • Renshaw K. C., Xu X., Forrest S. R., (2010) “A monolithically integrated organic photodetector and thin film transistor” Organic Electronics, vol.11, pp.175-178.
  • Li J. Y., Yeung H. S., Xu W., Li X., Ng D. K. P. (2008) “Highly Efficient Energy Transfer in Subphthalocyanine−BODIPY Conjugates” Organic Letters, vol.10, 23, pp.5421–5424.
There are 10 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Seda Çetindere 0000-0001-7599-8491

Early Pub Date March 13, 2022
Publication Date December 31, 2022
Submission Date January 4, 2022
Published in Issue Year 2022 Volume: 7 Issue: 2

Cite

APA Çetindere, S. (2022). Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad. Open Journal of Nano, 7(2), 74-80. https://doi.org/10.56171/ojn.1053225
AMA Çetindere S. Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad. Open J. Nano. December 2022;7(2):74-80. doi:10.56171/ojn.1053225
Chicago Çetindere, Seda. “Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad”. Open Journal of Nano 7, no. 2 (December 2022): 74-80. https://doi.org/10.56171/ojn.1053225.
EndNote Çetindere S (December 1, 2022) Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad. Open Journal of Nano 7 2 74–80.
IEEE S. Çetindere, “Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad”, Open J. Nano, vol. 7, no. 2, pp. 74–80, 2022, doi: 10.56171/ojn.1053225.
ISNAD Çetindere, Seda. “Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad”. Open Journal of Nano 7/2 (December 2022), 74-80. https://doi.org/10.56171/ojn.1053225.
JAMA Çetindere S. Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad. Open J. Nano. 2022;7:74–80.
MLA Çetindere, Seda. “Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad”. Open Journal of Nano, vol. 7, no. 2, 2022, pp. 74-80, doi:10.56171/ojn.1053225.
Vancouver Çetindere S. Synthesis and Photophysical Properties of Pyrene-BODIPY Functionalized Subphthalocyanine Dyad. Open J. Nano. 2022;7(2):74-80.

23830

The Open Journal of Nano(OJN) deals with information related to (but not limited to) physical, chemical and biological phenomena and processes ranging from molecular to microscale structures.

All publications in The Open Journal of Nano are licensed under the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.