Research Article
BibTex RIS Cite

Modification of PVDF Membranes Using Dopamine/Zinc Oxide for Lead Removal from Aqueous Media

Year 2022, Volume: 7 Issue: 2, 53 - 73, 31.12.2022
https://doi.org/10.56171/ojn.1058222

Abstract

Ultrafiltration (UF) have long been a leading separation technology with a strong historic track record for a wide range of applications such as the treatment of groundwater and wastewater. The fast development of techniques for producing nanostructured materials and nanoparticles has led to breakthroughs in a membrane preparation. In the present work, polyvinylidene fluoride (PVDF) based nanocomposite membranes modified with zinc oxide (ZnO), polydopamine (PDA), and ZnO/PDA powders were fabricated using phase inversion technique. ZnO/PDA nanoparticles, which were synthesized via sol-gel method, were incorporated into the membrane matrix by blending and PDA powders were incorporated into the PVDF membrane matrix by coating methods. Surface and cross-sectional morphology, thermal behavior, and mechanical strength of the membranes were characterized using both analytical techniques and instruments. Filtration performance of nanocomposite membranes was tested in terms of water flux, sodium alginate (SA) rejection, and antifouling properties in comparison to those of pristine PVDF membrane. Moreover, lead (Pb+2) removal of the prepared membranes from aqueous solutions complexed with chitosan was thoroughly investigated. Although modification of pristine PVDF membrane using different powders could not improve water flux and SA rejections substantially, anti-fouling properties could be enhanced markedly. PVDF/ZnO/PDA membrane was found to exhibit the best performance in filtration experiments with 92% flux recovery ratio and 97% SA rejection and had the highest lead removal (88.5%) from aqueous solutions.

Thanks

We would like to thank Sakhavat Dadashov for his help with XRD, FTIR and TGA analyses.

References

  • [1] Hosseini, S. M., Alibakhshi, H., Jashni, E., Parvizian, F., Shen, J. N., Taheri, M., & Rafiei, N. (2020). A novel layer-by-layer heterogeneous cation Exchange membrane for heavy metal ions removal from water. Journal of hazardous materials, 381, 120884.
  • [2] Naz, S., Rasheed, T., Naqvi, S. T. R., Hussain, D., Fatima, B., ul Haq, M. N., & Ibrahim, M. (2020). Polyvinylpropyllidone decorated manganese ferrite-based cues for the efficient removal of heavy metals ions from wastewater. Physica B: Condensed Matter, 599, 412559.
  • [3] Zhou, Q., Yang, N., Li, Y., Ren, B., Ding, X., Bian, H., & Yao, X. (2020). Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Global Ecology and Conservation, 22, e00925.
  • [4] Zhou, D., Zhu, L., Fu, Y., Zhu, M., & Xue, L. (2015). Development of lower cost seawater desalination processes using nanofiltration technologies. Desalination, 376, 109- 116.
  • [5] Fasaee, M. A. K., Berglund, E., Pieper, K. J., Ling, E., Benham, B., & Edwards, M. (2021). Developing a framework for classifying water lead levels at private drinking water systems: A Bayesian Belief Network approach. Water Research,189, 116641.
  • [6] Fang, X., Li, J., Li, X., Pan, S., Zhang, X., Sun, X., ... & Wang, L. (2017). Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal. Chemical Engineering Journal, 314, 38-49.
  • [7] Hajdu, I., Bodnár, M., Csikós, Z., Wei, S., Daróczi, L., Kovács, B., ... & Borbély, J. (2012). Combined nano-membrane technology for removal of lead ions. Journal of Membrane Science, 409, 44-53.
  • [8] Sheng, P. X., Ting, Y. P., Chen, J. P., & Hong, L. (2004). Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Journal of colloid and interface science, 275(1), 131-141.
  • [9] He, J., Xiong, D., Zhou, P., Xiao, X., Ni, F., Deng, S., & Luo, L. (2020). A novel homogenous in-situ generated ferrihydrite nanoparticles/polyethersulfone composite membrane for removal of lead from water: Development, characterization, performance, and mechanism. Chemical Engineering Journal, 393, 124696.
  • [10] Wang, K., Abdalla, A. A., Khaleel, M. A., Hilal, N. Khraisheh, M. K. (2017). Mechanical Properties of Water Desalination and Wastewater Treatment Membranes. Desalination. 401, 190-205.
  • [11] Xu, W., Sun, X., Huang, M., Pan, X., Huang, X., & Zhuang, H. (2020). Novel covalent organic framework/PVDF ultrafiltration membranes with antifouling and lead removal performance. Journal of Environmental Management, 269, 110758.
  • [12] Ali, H., & Khan, E. (2019). Bioaccumulation of Cr, Ni, Cd, and Pb in the economically important freshwater fish Schizothorax plagiostomus from three rivers of Malakand Division, Pakistan: risk assessment for human health. Bulletin of environmental contamination and toxicology, 102(1), 77-83.
  • [13] Mulder, M., & Mulder, J. (1996). Basic principles of membrane technology. Springer Science & Business Media.
  • [14] Aslan, M. (2016). Membran Teknolojileri. T.C. Çevre ve Şehircilik Bakanlığı. 57-218.
  • [15] Gebru, K. A., & Das, C. (2018). Removal of chromium (VI) ions from aqueous solutions using amine impregnated TiO2 nanoparticles modified cellulose acetate membranes. Chemosphere, 191, 673-684.
  • [16] Ursino, C., Castro-Muñoz, R., Drioli, E., Gzara, L., Albeirutty, M. H., & Figoli, A. (2018). Progress of nanocomposite membranes for water treatment. Membranes, 8(2), 18.
  • [17] Bai, H., Wang, X., Zhou, Y., & Zhang, L. (2012). Preparation and characterization of poly (vinylidene fluoride) composite membranes blended with nano-crystalline cellulose. Progress in Natural Science: Materials International, 22(3), 250-257.
  • [18] Hong, J., & He, Y. (2012). Effects of nano-sized zinc oxide on the performance of PVDF microfiltration membranes. Desalination, 302, 71-79.
  • [19] Shi, H., He, Y., Pan, Y., Di, H., Zeng, G., Zhang, L., & Zhang, C. (2016). A modified mussel-inspired method to fabricate TiO2 decorated superhydrophobic PVDF membrane for oil/water separation. Journal of Membrane Science, 506, 60-70.
  • [20] Zhang, Q., Cui, Z., & Li, W. (2020). High permeability poly (vinylidene fluoride) ultrafiltration membrane doped with polydopamine modified TiO2 nanoparticles. Chinese Journal of Chemical Engineering, 28(12), 3152-3158.
  • [21] Liebscher, J. (2019). Chemistry of polydopamine–scope, variation, and limitation. European Journal of Organic Chemistry, 2019(31-32), 4976-4994.
  • [22] Tavakoli, S., Kharaziha, M., & Nemati, S. (2021). Polydopamine coated ZnO rod-shaped nanoparticles with noticeable biocompatibility, hemostatic and antibacterial activity. Nanostructures & Nano-Objects, 25, 100639.
  • [23] Ma, F. F., Zhang, N., Wei, X., Yang, J. H., Wang, Y., & Zhou, Z. W. (2017). Blend-electrospun poly (vinylidene fluoride)/polydopamine membranes: self-polymerization of dopamine and the excellent adsorption/separation abilities. Journal of Materials Chemistry A, 5(27), 14430-14443.
  • [24] Gu, X., Zhang, Y., Sun, H., Song, X., Fu, C., & Dong, P. (2015). Mussel-inspired polydopamine coated iron oxide nanoparticles for biomedical application. Journal of Nanomaterials, Article ID 154592.
  • [25] Demirel, E., Zhang, B., Papakyriakou, M., Xia, S., & Chen, Y. (2017). Fe2O3 nanocomposite PVC membrane with enhanced properties and separation performance. Journal of membrane science, 529, 170-184.
  • [26] Wu, G., Gan, S., Cui, L., & Xu, Y. (2008). Preparation and characterization of PES/TiO2 composite membranes. Applied Surface Science, 254(21), 7080-7086.
  • [27] Vatanpour, V., Madaeni, S. S., Moradian, R., Zinadini, S., & Astinchap, B. (2012). Novel antifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Separation and purification technology, 90, 69-82.
  • [28] Mahmoudi, C., Demirel, E., & Chen, Y. (2020). Investigation of characteristics and performance of polyvinyl chloride ultrafiltration membranes modified with silica‐oriented multi-walled carbon nanotubes. Journal of Applied Polymer Science, 137(45), 49397.
  • [29] Llorens, J., Pujola, M., & Sabaté, J. (2004). Separation of cadmium from aqueous streams by polymer enhanced ultrafiltration: a two-phase model for complexation binding. Journal of Membrane Science, 239(2), 173-181.
  • [30] Juang, R. S., & Chiou, C. H. (2000). Ultrafiltration rejection of dissolved ions using various weakly basic water-soluble polymers. Journal of Membrane Science, 177(1-2), 207-214.
  • [31] Zhang, X., Wang, Y., Liu, Y., Xu, J., Han, Y., & Xu, X. (2014). Preparation, performances of PVDF/ZnO hybrid membranes and their applications in the removal of copper ions. Applied Surface Science, 316, 333-340.
  • [32] Fedorenko, V., Viter, R., Mrówczyński, R., Damberga, D., Coy, E., & Iatsunskyi, I. (2020). Synthesis and photoluminescence properties of hybrid 1D core–shell structured nanocomposites based on ZnO/polydopamine. RSC Advances, 10(50), 29751-29758.
  • [33] Muhammad, W., Ullah, N., Haroon, M., & Abbasi, B. H. (2019). Optical, morphological, and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L. RSC advances, 9(51), 29541-29548.
  • [34] Cheng, G., & Zheng, S. Y. (2014). Construction of a high-performance magnetic enzyme nanosystem for rapid tryptic digestion. Scientific reports, 4(1), 1-10.
  • [35] Popa, A., Toloman, D., Stan, M., Stefan, M., Radu, T., Vlad, G., & Pana, O. (2021). Tailoring the RhB removal rate by modifying the PVDF membrane surface through ZnO particles deposition. Journal of Inorganic and Organometallic Polymers and Materials, 31(4), 1642-1652.
  • [36] Syawaliah, S., Arahman, N., Riza, M., & Mulyati, S. (2018). The influences of polydopamine immersion time on characteristics and performance of polyvinylidene fluoride ultrafiltration membrane. In MATEC Web of Conferences (Vol. 197, p. 09007). EDP Sciences.
  • [37] Muchtar, S., Wahab, M. Y., Fang, L. F., Jeon, S., Rajabzadeh, S., Takagi, R., & Matsuyama, H. (2019). Polydopamine‐coated poly (vinylidene fluoride) membranes with high ultraviolet resistance and antifouling properties for a photocatalytic membrane reactor. Journal of Applied Polymer Science, 136(14), 47312.
  • [38] Li, N., Tian, Y., Zhang, J., Sun, Z., Zhao, J., Zhang, J., & Zuo, W. (2017). Precisely controlled modification of PVDF membranes with 3D TiO2/ZnO nanolayer: enhanced anti-fouling performance by changing hydrophilicity and photocatalysis under visible light irradiation. Journal of Membrane Science, 528, 359-368.
  • [39] Meng, R., Chen, Y., Zhang, X., Dong, X., Ma, H., & Wang, G. (2017). Synthesis of a hydrophilic α-sulfur/PDA composite as a metal-free photocatalyst with enhanced photocatalytic performance under visible light. Journal of Macromolecular Science, Part A, 54(5), 334-338.
  • [40] Moazeni, N., Sadrjahani, M., Merati, A. A., Latifi, M., & Rouhani, S. (2019). Effect of stimuli-responsive polydiacetylene on the crystallization and mechanical properties of PVDF nanofibers. Polymer Bulletin, 1-16.
  • [41] Li, J. H., Ni, X. X., Zhang, D. B., Zheng, H., Wang, J. B., & Zhang, Q. Q. (2018). Engineering self-driven PVDF/PDA hybrid membranes based on membrane micro-reactor effect to achieve super-hydrophilicity, excellent antifouling properties, and hemocompatibility. Applied Surface Science, 444, 672-690.
  • [42] Manawi, Y. M., Wang, K., Kochkodan, V., Johnson, D. J., Atieh, M. A., & Khraisheh, M. K. (2018). Engineering the surface and mechanical properties of water desalination membranes using ultralong carbon nanotubes. Membranes, 8(4), 106.
  • [43] Jiang, J. H., Zhu, L. P., Zhang, H. T., Zhu, B. K., & Xu, Y. Y. (2014). Improved hydrodynamic permeability and antifouling properties of poly (vinylidene fluoride) membranes using polydopamine nanoparticles as additives. Journal of Membrane Science, 457, 73-81.
  • [44] Breite, D., Went, M., Prager, A., Schulze, A. (2015). Tailoring Membrane Surface Charges: A Novel Study on Electrostatic Interactions during Membrane Fouling. Polymers, 7(10), 2017–2030.
  • [45] Rana, D., & Matsuura, T. (2010). Surface modifications for antifouling membranes. Chemical Reviews, 110(4), 2448-2471.
  • [46] Lalia, B. S., Kochkodan, V., Hashaikeh, R., & Hilal, N. (2013). A review on membrane fabrication: Structure, properties, and performance relationship. Desalination, 326, 77-95.
  • [47] Kumar, R., & Ismail, A. F. (2015). Fouling control on microfiltration/ultrafiltration membranes: Effects of morphology, hydrophilicity, and charge. Journal of Applied Polymer Science, 132(21).
  • [48] Krajewska, B. (2001). Diffusion of metal ions through gel chitosan membranes. Reactive and Functional Polymers, 47(1), 37-47.
  • [49] Wang, X., Du, Y., Fan, L., Liu, H., & Hu, Y. (2005). Chitosan-metal complexes as antimicrobial agent: synthesis, characterization, and structure-activity study. Polymer Bulletin, 55(1), 105-113.
  • [50] Garba, M. D., Usman, M., Mazumder, M. A. J., & Al-Ahmed, A. (2019). Complexing agents for metal removal using ultrafiltration membranes: Environmental Chemistry Letters, 1-14.

Modification of PVDF Membranes Using Dopamine/Zinc Oxide for Lead Removal from Aqueous Media

Year 2022, Volume: 7 Issue: 2, 53 - 73, 31.12.2022
https://doi.org/10.56171/ojn.1058222

Abstract

Ultrafiltration (UF) have long been a leading separation technology with a strong historic track record for a wide range of applications such as the treatment of groundwater and wastewater. The fast development of techniques for producing nanostructured materials and nanoparticles has led to breakthroughs in a membrane preparation. In the present work, polyvinylidene fluoride (PVDF) based nanocomposite membranes modified with zinc oxide (ZnO), polydopamine (PDA), and ZnO/PDA powders were fabricated using phase inversion technique. ZnO/PDA nanoparticles, which were synthesized via sol-gel method, were incorporated into the membrane matrix by blending and PDA powders were incorporated into the PVDF membrane matrix by coating methods. Surface and cross-sectional morphology, thermal behavior, and mechanical strength of the membranes were characterized using both analytical techniques and instruments. Filtration performance of nanocomposite membranes was tested in terms of water flux, sodium alginate (SA) rejection, and antifouling properties in comparison to those of pristine PVDF membrane. Moreover, lead (Pb+2) removal of the prepared membranes from aqueous solutions complexed with chitosan was thoroughly investigated. Although modification of pristine PVDF membrane using different powders could not improve water flux and SA rejections substantially, anti-fouling properties could be enhanced markedly. PVDF/ZnO/PDA membrane was found to exhibit the best performance in filtration experiments with 92% flux recovery ratio and 97% SA rejection and had the highest lead removal (88.5%) from aqueous solutions.

References

  • [1] Hosseini, S. M., Alibakhshi, H., Jashni, E., Parvizian, F., Shen, J. N., Taheri, M., & Rafiei, N. (2020). A novel layer-by-layer heterogeneous cation Exchange membrane for heavy metal ions removal from water. Journal of hazardous materials, 381, 120884.
  • [2] Naz, S., Rasheed, T., Naqvi, S. T. R., Hussain, D., Fatima, B., ul Haq, M. N., & Ibrahim, M. (2020). Polyvinylpropyllidone decorated manganese ferrite-based cues for the efficient removal of heavy metals ions from wastewater. Physica B: Condensed Matter, 599, 412559.
  • [3] Zhou, Q., Yang, N., Li, Y., Ren, B., Ding, X., Bian, H., & Yao, X. (2020). Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Global Ecology and Conservation, 22, e00925.
  • [4] Zhou, D., Zhu, L., Fu, Y., Zhu, M., & Xue, L. (2015). Development of lower cost seawater desalination processes using nanofiltration technologies. Desalination, 376, 109- 116.
  • [5] Fasaee, M. A. K., Berglund, E., Pieper, K. J., Ling, E., Benham, B., & Edwards, M. (2021). Developing a framework for classifying water lead levels at private drinking water systems: A Bayesian Belief Network approach. Water Research,189, 116641.
  • [6] Fang, X., Li, J., Li, X., Pan, S., Zhang, X., Sun, X., ... & Wang, L. (2017). Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal. Chemical Engineering Journal, 314, 38-49.
  • [7] Hajdu, I., Bodnár, M., Csikós, Z., Wei, S., Daróczi, L., Kovács, B., ... & Borbély, J. (2012). Combined nano-membrane technology for removal of lead ions. Journal of Membrane Science, 409, 44-53.
  • [8] Sheng, P. X., Ting, Y. P., Chen, J. P., & Hong, L. (2004). Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Journal of colloid and interface science, 275(1), 131-141.
  • [9] He, J., Xiong, D., Zhou, P., Xiao, X., Ni, F., Deng, S., & Luo, L. (2020). A novel homogenous in-situ generated ferrihydrite nanoparticles/polyethersulfone composite membrane for removal of lead from water: Development, characterization, performance, and mechanism. Chemical Engineering Journal, 393, 124696.
  • [10] Wang, K., Abdalla, A. A., Khaleel, M. A., Hilal, N. Khraisheh, M. K. (2017). Mechanical Properties of Water Desalination and Wastewater Treatment Membranes. Desalination. 401, 190-205.
  • [11] Xu, W., Sun, X., Huang, M., Pan, X., Huang, X., & Zhuang, H. (2020). Novel covalent organic framework/PVDF ultrafiltration membranes with antifouling and lead removal performance. Journal of Environmental Management, 269, 110758.
  • [12] Ali, H., & Khan, E. (2019). Bioaccumulation of Cr, Ni, Cd, and Pb in the economically important freshwater fish Schizothorax plagiostomus from three rivers of Malakand Division, Pakistan: risk assessment for human health. Bulletin of environmental contamination and toxicology, 102(1), 77-83.
  • [13] Mulder, M., & Mulder, J. (1996). Basic principles of membrane technology. Springer Science & Business Media.
  • [14] Aslan, M. (2016). Membran Teknolojileri. T.C. Çevre ve Şehircilik Bakanlığı. 57-218.
  • [15] Gebru, K. A., & Das, C. (2018). Removal of chromium (VI) ions from aqueous solutions using amine impregnated TiO2 nanoparticles modified cellulose acetate membranes. Chemosphere, 191, 673-684.
  • [16] Ursino, C., Castro-Muñoz, R., Drioli, E., Gzara, L., Albeirutty, M. H., & Figoli, A. (2018). Progress of nanocomposite membranes for water treatment. Membranes, 8(2), 18.
  • [17] Bai, H., Wang, X., Zhou, Y., & Zhang, L. (2012). Preparation and characterization of poly (vinylidene fluoride) composite membranes blended with nano-crystalline cellulose. Progress in Natural Science: Materials International, 22(3), 250-257.
  • [18] Hong, J., & He, Y. (2012). Effects of nano-sized zinc oxide on the performance of PVDF microfiltration membranes. Desalination, 302, 71-79.
  • [19] Shi, H., He, Y., Pan, Y., Di, H., Zeng, G., Zhang, L., & Zhang, C. (2016). A modified mussel-inspired method to fabricate TiO2 decorated superhydrophobic PVDF membrane for oil/water separation. Journal of Membrane Science, 506, 60-70.
  • [20] Zhang, Q., Cui, Z., & Li, W. (2020). High permeability poly (vinylidene fluoride) ultrafiltration membrane doped with polydopamine modified TiO2 nanoparticles. Chinese Journal of Chemical Engineering, 28(12), 3152-3158.
  • [21] Liebscher, J. (2019). Chemistry of polydopamine–scope, variation, and limitation. European Journal of Organic Chemistry, 2019(31-32), 4976-4994.
  • [22] Tavakoli, S., Kharaziha, M., & Nemati, S. (2021). Polydopamine coated ZnO rod-shaped nanoparticles with noticeable biocompatibility, hemostatic and antibacterial activity. Nanostructures & Nano-Objects, 25, 100639.
  • [23] Ma, F. F., Zhang, N., Wei, X., Yang, J. H., Wang, Y., & Zhou, Z. W. (2017). Blend-electrospun poly (vinylidene fluoride)/polydopamine membranes: self-polymerization of dopamine and the excellent adsorption/separation abilities. Journal of Materials Chemistry A, 5(27), 14430-14443.
  • [24] Gu, X., Zhang, Y., Sun, H., Song, X., Fu, C., & Dong, P. (2015). Mussel-inspired polydopamine coated iron oxide nanoparticles for biomedical application. Journal of Nanomaterials, Article ID 154592.
  • [25] Demirel, E., Zhang, B., Papakyriakou, M., Xia, S., & Chen, Y. (2017). Fe2O3 nanocomposite PVC membrane with enhanced properties and separation performance. Journal of membrane science, 529, 170-184.
  • [26] Wu, G., Gan, S., Cui, L., & Xu, Y. (2008). Preparation and characterization of PES/TiO2 composite membranes. Applied Surface Science, 254(21), 7080-7086.
  • [27] Vatanpour, V., Madaeni, S. S., Moradian, R., Zinadini, S., & Astinchap, B. (2012). Novel antifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Separation and purification technology, 90, 69-82.
  • [28] Mahmoudi, C., Demirel, E., & Chen, Y. (2020). Investigation of characteristics and performance of polyvinyl chloride ultrafiltration membranes modified with silica‐oriented multi-walled carbon nanotubes. Journal of Applied Polymer Science, 137(45), 49397.
  • [29] Llorens, J., Pujola, M., & Sabaté, J. (2004). Separation of cadmium from aqueous streams by polymer enhanced ultrafiltration: a two-phase model for complexation binding. Journal of Membrane Science, 239(2), 173-181.
  • [30] Juang, R. S., & Chiou, C. H. (2000). Ultrafiltration rejection of dissolved ions using various weakly basic water-soluble polymers. Journal of Membrane Science, 177(1-2), 207-214.
  • [31] Zhang, X., Wang, Y., Liu, Y., Xu, J., Han, Y., & Xu, X. (2014). Preparation, performances of PVDF/ZnO hybrid membranes and their applications in the removal of copper ions. Applied Surface Science, 316, 333-340.
  • [32] Fedorenko, V., Viter, R., Mrówczyński, R., Damberga, D., Coy, E., & Iatsunskyi, I. (2020). Synthesis and photoluminescence properties of hybrid 1D core–shell structured nanocomposites based on ZnO/polydopamine. RSC Advances, 10(50), 29751-29758.
  • [33] Muhammad, W., Ullah, N., Haroon, M., & Abbasi, B. H. (2019). Optical, morphological, and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L. RSC advances, 9(51), 29541-29548.
  • [34] Cheng, G., & Zheng, S. Y. (2014). Construction of a high-performance magnetic enzyme nanosystem for rapid tryptic digestion. Scientific reports, 4(1), 1-10.
  • [35] Popa, A., Toloman, D., Stan, M., Stefan, M., Radu, T., Vlad, G., & Pana, O. (2021). Tailoring the RhB removal rate by modifying the PVDF membrane surface through ZnO particles deposition. Journal of Inorganic and Organometallic Polymers and Materials, 31(4), 1642-1652.
  • [36] Syawaliah, S., Arahman, N., Riza, M., & Mulyati, S. (2018). The influences of polydopamine immersion time on characteristics and performance of polyvinylidene fluoride ultrafiltration membrane. In MATEC Web of Conferences (Vol. 197, p. 09007). EDP Sciences.
  • [37] Muchtar, S., Wahab, M. Y., Fang, L. F., Jeon, S., Rajabzadeh, S., Takagi, R., & Matsuyama, H. (2019). Polydopamine‐coated poly (vinylidene fluoride) membranes with high ultraviolet resistance and antifouling properties for a photocatalytic membrane reactor. Journal of Applied Polymer Science, 136(14), 47312.
  • [38] Li, N., Tian, Y., Zhang, J., Sun, Z., Zhao, J., Zhang, J., & Zuo, W. (2017). Precisely controlled modification of PVDF membranes with 3D TiO2/ZnO nanolayer: enhanced anti-fouling performance by changing hydrophilicity and photocatalysis under visible light irradiation. Journal of Membrane Science, 528, 359-368.
  • [39] Meng, R., Chen, Y., Zhang, X., Dong, X., Ma, H., & Wang, G. (2017). Synthesis of a hydrophilic α-sulfur/PDA composite as a metal-free photocatalyst with enhanced photocatalytic performance under visible light. Journal of Macromolecular Science, Part A, 54(5), 334-338.
  • [40] Moazeni, N., Sadrjahani, M., Merati, A. A., Latifi, M., & Rouhani, S. (2019). Effect of stimuli-responsive polydiacetylene on the crystallization and mechanical properties of PVDF nanofibers. Polymer Bulletin, 1-16.
  • [41] Li, J. H., Ni, X. X., Zhang, D. B., Zheng, H., Wang, J. B., & Zhang, Q. Q. (2018). Engineering self-driven PVDF/PDA hybrid membranes based on membrane micro-reactor effect to achieve super-hydrophilicity, excellent antifouling properties, and hemocompatibility. Applied Surface Science, 444, 672-690.
  • [42] Manawi, Y. M., Wang, K., Kochkodan, V., Johnson, D. J., Atieh, M. A., & Khraisheh, M. K. (2018). Engineering the surface and mechanical properties of water desalination membranes using ultralong carbon nanotubes. Membranes, 8(4), 106.
  • [43] Jiang, J. H., Zhu, L. P., Zhang, H. T., Zhu, B. K., & Xu, Y. Y. (2014). Improved hydrodynamic permeability and antifouling properties of poly (vinylidene fluoride) membranes using polydopamine nanoparticles as additives. Journal of Membrane Science, 457, 73-81.
  • [44] Breite, D., Went, M., Prager, A., Schulze, A. (2015). Tailoring Membrane Surface Charges: A Novel Study on Electrostatic Interactions during Membrane Fouling. Polymers, 7(10), 2017–2030.
  • [45] Rana, D., & Matsuura, T. (2010). Surface modifications for antifouling membranes. Chemical Reviews, 110(4), 2448-2471.
  • [46] Lalia, B. S., Kochkodan, V., Hashaikeh, R., & Hilal, N. (2013). A review on membrane fabrication: Structure, properties, and performance relationship. Desalination, 326, 77-95.
  • [47] Kumar, R., & Ismail, A. F. (2015). Fouling control on microfiltration/ultrafiltration membranes: Effects of morphology, hydrophilicity, and charge. Journal of Applied Polymer Science, 132(21).
  • [48] Krajewska, B. (2001). Diffusion of metal ions through gel chitosan membranes. Reactive and Functional Polymers, 47(1), 37-47.
  • [49] Wang, X., Du, Y., Fan, L., Liu, H., & Hu, Y. (2005). Chitosan-metal complexes as antimicrobial agent: synthesis, characterization, and structure-activity study. Polymer Bulletin, 55(1), 105-113.
  • [50] Garba, M. D., Usman, M., Mazumder, M. A. J., & Al-Ahmed, A. (2019). Complexing agents for metal removal using ultrafiltration membranes: Environmental Chemistry Letters, 1-14.
There are 50 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials
Journal Section Research Article
Authors

İrem Sevim Üçel 0000-0002-8859-3917

Elif Demirel 0000-0002-6368-3174

Early Pub Date March 13, 2022
Publication Date December 31, 2022
Submission Date January 15, 2022
Published in Issue Year 2022 Volume: 7 Issue: 2

Cite

APA Üçel, İ. S., & Demirel, E. (2022). Modification of PVDF Membranes Using Dopamine/Zinc Oxide for Lead Removal from Aqueous Media. Open Journal of Nano, 7(2), 53-73. https://doi.org/10.56171/ojn.1058222
AMA Üçel İS, Demirel E. Modification of PVDF Membranes Using Dopamine/Zinc Oxide for Lead Removal from Aqueous Media. OJN. December 2022;7(2):53-73. doi:10.56171/ojn.1058222
Chicago Üçel, İrem Sevim, and Elif Demirel. “Modification of PVDF Membranes Using Dopamine/Zinc Oxide for Lead Removal from Aqueous Media”. Open Journal of Nano 7, no. 2 (December 2022): 53-73. https://doi.org/10.56171/ojn.1058222.
EndNote Üçel İS, Demirel E (December 1, 2022) Modification of PVDF Membranes Using Dopamine/Zinc Oxide for Lead Removal from Aqueous Media. Open Journal of Nano 7 2 53–73.
IEEE İ. S. Üçel and E. Demirel, “Modification of PVDF Membranes Using Dopamine/Zinc Oxide for Lead Removal from Aqueous Media”, OJN, vol. 7, no. 2, pp. 53–73, 2022, doi: 10.56171/ojn.1058222.
ISNAD Üçel, İrem Sevim - Demirel, Elif. “Modification of PVDF Membranes Using Dopamine/Zinc Oxide for Lead Removal from Aqueous Media”. Open Journal of Nano 7/2 (December 2022), 53-73. https://doi.org/10.56171/ojn.1058222.
JAMA Üçel İS, Demirel E. Modification of PVDF Membranes Using Dopamine/Zinc Oxide for Lead Removal from Aqueous Media. OJN. 2022;7:53–73.
MLA Üçel, İrem Sevim and Elif Demirel. “Modification of PVDF Membranes Using Dopamine/Zinc Oxide for Lead Removal from Aqueous Media”. Open Journal of Nano, vol. 7, no. 2, 2022, pp. 53-73, doi:10.56171/ojn.1058222.
Vancouver Üçel İS, Demirel E. Modification of PVDF Membranes Using Dopamine/Zinc Oxide for Lead Removal from Aqueous Media. OJN. 2022;7(2):53-7.

23830

The Open Journal of Nano(OJN) deals with information related to (but not limited to) physical, chemical and biological phenomena and processes ranging from molecular to microscale structures.

All publications in The Open Journal of Nano are licensed under the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.