Research Article
BibTex RIS Cite

Yarı-Katkılı La0.5Ba0.5MnO3 Perovskit Nanoparçacıklarının Yapısal, Morfolojik ve Manyetik Özelliklerinin İncelenmesi

Year 2024, Volume: 9 Issue: 1, 22 - 34
https://doi.org/10.56171/ojn.1434647

Abstract

Bu çalışma La0.5Ba0.5MnO3 (LBMO) yarı katkılı perovskit manganit bileşiğinde lantan (La) yerine baryum (Ba) yer değişiminin manyetik özellikleri üzerindeki etkisi araştırıldı. Numune sol-jel yöntemi kullanılarak hazırlandı ve 1000°C'de 24 saat ısıl işleme tabi tutuldu. Taramalı elektron mikroskobu (SEM)-enerji dağılım spektroskopi (EDS) analizi LBMO yüzeyinde rastgele BaMnO3 nano çubuk oluşumunu ortaya çıkardı. LBMO perovskit bileşiğinin parçacık boyutu dağılımının yaklaşık 60 nm olduğu bulundu. Ayrıca, analizler sonucunda BaMnO3 nano çubukların genişliği 100-250 nm ve uzunluğu 5-20 μm aralığında değiştiği gözlendi. X-ışını kırınımı (XRD) analizi, ana perovskit bileşiğinin (LBMO) kübik kristal yapıda (a= 3.9108 Å) olup, nano çubukların ise altıgen (a=5.6454 Å, c=4.8224 Å) kristal yapıya sahip olduğu gösterildi. Manyetik özelliklerin ortaya konabilmesi için sıfır alan soğutma (ZFC) ve alan altında soğutma (FC) eğrilerinden yararlanarak Curie sıcaklığını oda sıcaklığına yakın (TC) 323 K olduğu tespit edildi. Mıknatıslanma ölçümleri verileri kullanılarak hesaplanan manyetik entropi değişiminin (−ΔSM), 1 T'de 0,62 J/kgK ve 6 T'de 2,25 J/kgK olduğu bulundu.

Project Number

BAP Project No: 15/145

References

  • Keshri, S., Kumar, V., Wiśniewski P. & Kamzin, A.S. (2014). Synthesis and characterization of LSMO manganite-based biocomposite. Phase Transitions, 87 (5), 468-476.
  • Coşkun, A.T., Çetin, S. K. & Ekicibil, A. (2022). The investigation of the effect of K doping on the structural, magnetic, and magnetocaloric properties of La1.4−xKxCa1.6Mn2O7 (0.0 ≤ x ≤ 0.4) double perovskite manganite. J Mater Sci: Mater Electron, 33, 10990–11001.
  • Autreta, C., Martina, C., Hervieua, M., Maignana, A., Raveaua, B., Andreb, G., Bouree, F. & Jirakc, Z. (2003) From A-type antiferromagnetism to ferromagnetism in half-doped perovskite manganites. Journal of Magnetism and Magnetic Materials, 270, 194–202.
  • Trukhanov, S.V., Trukhanov, A.V., Stepin, S.G., Szymczak, H. & Botez, C.E. (2008). Effect of the Size Factor on the Magnetic Proeperties of Manganite La0.5Ba0.5MnO3. Physics of the Solid State-Magnetism and Ferroelectricity, 50, 5, 886-893.
  • Gan, J., Hou, N., Yao, T., Fan, L., Gan, T., Huang, Z., Zhao, Y. & Li, Y. (2020). A high performing perovskite cathode with in situ exsolved Co nanoparticles for H2O and CO2 solid oxide electrolysis cell. Catalysis Today, 364, 89–96.
  • Liang, S., Xu, T., Teng, F., Zong, R. & Zhu, Y. (2010). The high activity and stability of La0.5Ba0.5MnO3 nanocubes in the oxidation of CO and CH4. Applied Catalysis B: Environmental, 96, 267–275.
  • Spooren, J., Walton, R.I. & Millange, F. (2005). A study of the manganites La0.5M0.5MnO3 (M= Ca, Sr, Ba) prepared by hydrothermal synthesis. J. Mater. Chem., 15, 1542–1551.
  • Millange, F., Caignaert, V., Domenge`s, B. & Raveau, B. (1983). Order-Disorder Phenomena in New LaBaMn2O6-x CMR Perovskites. Crystal and Magnetic Structure. Chem. Mater. 10, 1977.
  • Pȩkała, M., Drozd, V., Fagnard, J. F., Vanderbemden, P., & Ausloos, M. (2009). Magnetotransport of La0.5Ba0.5MnO3. Journal of Applied Physics, 105(1).
  • Trukhanov, S.V., Trukhanov, A.V., Botez, C.E. & Szymczak, H. (2009). Magnetic Properties of the La0.5Ba0.5MnO3 Nanomanganites. Solid State Phenomena, 152/153, 135-138.
  • Millange, F., Suard, E., Caignaert, V. & Raveau, B. (1999). YBaMn2O5: crystal and magnetic structure reinvestigation. Materials Research Bulletin, 34, 1, 1-9.
  • Trukhanov, S. V., Trukhanov, A. V., Botez, C. E., & Szymczak, H. (2009). Magnetic properties of the La0. 50Ba0. 50MnO3 nanomanganites. Solid State Phenomena, 152, 135-138.
  • Zhou, R., Yin, Y., Dai, H., Yang, X., Gu, Y., & Bi, L. (2023). Attempted preparation of La0.5Ba0.5MnO3-δ leading to an in-situ formation of manganate nanocomposites as a cathode for proton-conducting solid oxide fuel cells. Journal of Advanced Ceramics, 12(6).
  • Xia, W., Leng, K., Tang, Q., Yang, L., Xie, Y., Wu, Z., & Zhu, X. (2021). Structural characterization and magnetic properties of single‐crystalline (La0.6Pr0.4)0.67Ca0.33MnO3 nanowires. Journal of the American Ceramic Society, 104(10), 5402-5410.
  • Modeshia, D. R., & Walton, R. I. (2010). Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chemical Society Reviews, 39(11), 4303-4325. [16] Zhu, D., Zhu, H., & Zhang, Y. (2002). Hydrothermal synthesis of La0.5Ba0.5MnO3 nanowires. Applied physics letters, 80(9), 1634-1636.
  • Chai, P., Liu, X., Wang, Z., Lu, M., Cao, X. & Meng, J. (2007). Tunable synthesis, growth mechanism, and magnetic properties of La0.5Ba0.5MnO3. Crystal Growth and Design, 7(12), 2568-2575.
  • Hu C.G., Liu H., Lao C.S., Zhang L.Y., Davidovic D. & Wang Z.L. (2006). Size-manipulable synthesis of single-crystalline BaMnO3 and BaTi1/2Mn1/2O3 nanorods/nanowires. J Phys Chem B., 110(29):14050-4.
  • Rondinelli, J. M., Eidelson, A. S. & Spaldin, N. A. (2009). Non-d 0 Mn-driven ferroelectricity in antiferromagnetic BaMnO 3. Physical Review B, 79(20), 205119.
  • Kandemir, A., Akça, G., Kılıç Çetin, S., Ayaş, A. O., Akyol, M. & Ekicibil, A. (2023) Effects of Ca substitution on magnetic and magnetocaloric properties in PrBa1-xCaxMn2O6 system. Journal of Solid State Chemistry, 324, 124086.
  • Thakur, P., Kumari, S., Chaudhary, S., Sharma, N., & Lal, M. (2024). Multifunctional tuning of structural, dielectric, and magnetic properties of Ti-doped BaMnO3 ceramics. Emergent Materials, 1-20.
  • Roisnel, T. & Rodriguez-Carvajal, J. (2003) Computer Program FULLPROF, LLB-LCSIM.
  • Terenti, N., Melnic, E., Fruth, V., Nedelko, N., Aleshkevych, P., Lewińska, S., Ślawska-Waniewska, A., Kravtsov, V. Ch., Lazarescu, A. & Lozan, V. (2023). Synthesis and microstructure of BaMnO3 oxide obtained from coordination precursor, Journal of Solid State Chemistry, 324.
  • Razmara, Z. (2019) Lanthanum (III) complex as ferromagnetic supraprecursor for preparation of La2O3 nanoparticles by thermal decomposition method. Research on Chemical Intermediates, 45, 2887-2901.
  • Pathan, A. A., Desai, K. R., Vajapara, S. & Bhasin, C. P. (2018) Conditional Optimization of Solution Combustion Synthesis for Pioneered La2O3 Nanostructures to Application as Future CMOS and NVMS Generations. Advances in Nanoparticles 7, 1, 28-35.
  • Mustofa, K., Yulizar, Y., Saefumillah, A. & Apriandanu, D.O.B. (2020). La2O3 nanoparticles formation using Nothopanax scutellarium leaf extract in two-phase system and photocatalytic activity under UV light irradiation. IOP Conference Series: Materials Science and Engineering, 902, 1, 012018.
  • Hu, C. G., Liu, H., Dong, W. T., Zhang,Y. Y., Bao, G., Lao, C. S. & Wang, Z. L. (2007). La(OH)3 and La2O3 Nanobelts- Synthesis and Physical Properties. Advanced Materials, 19, 3, 470-474.
  • Hu, C., Liu, H. & Wang, Z. L. (2008). Synthesis of Oxide Nanostructures. BioNanofluidic MEMS, 11-36.
  • Chau, N., Hanh, D. T., Tho, N. D. & Luong, N. H. (2006). Spin glass-like behavior, giant magnetocaloric and giant magnetoresistance effect in PrPb manganites. Journal of Magnetism and Magnetic Materials, 303(2), e335-e338.
  • Munazat, D. R., Kurniawan, B., Razaq, D. S., Manawan, M., Shon, W. H., Rhyee, J. S. & Nanto, D. (2024). Effect of Zn substitution on magnetic properties and magnetic entropy change in La0. 7Ba0. 25Nd0. 05Mn1-xZnxO3 (x= 0.03 and 0.05) synthesized by using sol-gel method. Physica B: Condensed Matter, 415800.
  • Al‑Shahumi, T. M., Al‑Omari, I. A., Al‑Harthi, S.H. & Myint, M. T. Z. (2023) Synthesis, structure, morphology, magnetism, and magnetocaloric‑effect studies of (La1−xPrx)0.7Sr0.3MnO3 nanocrystalline perovskites. SN Applied Sciences, 5, 121.
  • Iqbal, M., Nasir Khan, M., A.Khan, A., Zaka, I., Mehmood, A. & Ahmad, I. (2018). Investigation of Magnetic, Magnetocaloric, and Critical Properties of La0.5Ba0.5MnO3 Manganite. Journal of Superconductivity and Novel Magnetism, 31, 3535–3544.
  • Zhu, D., Zhu, H., & Zhang, Y. (2003). Microstructure and magnetization of single-crystal perovskite manganites nanowires prepared by hydrothermal method. Journal of Crystal Growth, 249(1-2), 172-175.
  • Dinçer, İ. (2005). PrMn1.6Fe0.4Ge2 Alaşımının Curie Sıcaklığı Üzerindeki Antiferromanyetik Yapısı. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 1(26), 33-42.
  • Nakajima, T., Yoshizawa, H., & Ueda, Y. (2004). A-site randomness effect on structural and physical properties of Ba-based perovskite manganites. Journal of the Physical Society of Japan, 73(8), 2283-2291.
  • Kawasaki, Y., Minami, T., Fujishima, M., Kishimoto, Y., Ohno, T., Zenmyo, K., & Ueda, Y. (2006). Ground state properties of the A-site ordered/disordered manganites LaBaMn2O6/La0. 5Ba0. 5MnO3 probed by NMR. Physica B: Condensed Matter, 378, 525-526.
  • Nagao, M., So, Y. G., Yoshida, H., Isobe, M., Hara, T., Ishizuka, K., & Kimoto, K. (2013). Direct observation and dynamics of spontaneous skyrmion-like magnetic domains in a ferromagnet. Nature nanotechnology, 8(5), 325-328.

Structural, Morphological and Magnetic Investigation of Half-Doped La0.5Ba0.5MnO3 Perovskite Nanoparticles

Year 2024, Volume: 9 Issue: 1, 22 - 34
https://doi.org/10.56171/ojn.1434647

Abstract

This study investigated the effect of barium (Ba) substitution for lanthanum (La) on the magnetic properties of the half-doped perovskite manganite compound La0.5Ba0.5MnO3 (LBMO). The LBMO sample was prepared via the sol-gel method and sintered in air at 1000°C for 24 hours. Scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDS) analysis revealed random formation of BaMnO3 nanorods on the LBMO surface. The LBMO perovskite exhibited a particle size distribution of approximately 60 nm, while the BaMnO3 nanorods possessed widths ranging from 100-250 nm and lengths between 5-20 μm. X-ray diffraction (XRD) analysis found that the main perovskite compound (LBMO) exhibits a cubic crystal structure (a = 3.9108 Å), while the nanorods (BaMnO3) possess a hexagonal crystal structure (a = 5.6454 Å, c = 4.8224 Å). The Curie temperature (TC) was determined to be approximately 323 K, close to room temperature, zero field cooling (ZFC) and field cooling (FC) curves to elucidate the magnetic properties. Furthermore, magnetization measurements yielded a magnetic entropy change (ΔSM) of 0.62 J/kgK at 1 T and 2.25 J/kgK at 6 T.

Supporting Institution

Muğla Sıtkı Koçman University-Scientific Research Projects Coordination Unit (BAP)

Project Number

BAP Project No: 15/145

References

  • Keshri, S., Kumar, V., Wiśniewski P. & Kamzin, A.S. (2014). Synthesis and characterization of LSMO manganite-based biocomposite. Phase Transitions, 87 (5), 468-476.
  • Coşkun, A.T., Çetin, S. K. & Ekicibil, A. (2022). The investigation of the effect of K doping on the structural, magnetic, and magnetocaloric properties of La1.4−xKxCa1.6Mn2O7 (0.0 ≤ x ≤ 0.4) double perovskite manganite. J Mater Sci: Mater Electron, 33, 10990–11001.
  • Autreta, C., Martina, C., Hervieua, M., Maignana, A., Raveaua, B., Andreb, G., Bouree, F. & Jirakc, Z. (2003) From A-type antiferromagnetism to ferromagnetism in half-doped perovskite manganites. Journal of Magnetism and Magnetic Materials, 270, 194–202.
  • Trukhanov, S.V., Trukhanov, A.V., Stepin, S.G., Szymczak, H. & Botez, C.E. (2008). Effect of the Size Factor on the Magnetic Proeperties of Manganite La0.5Ba0.5MnO3. Physics of the Solid State-Magnetism and Ferroelectricity, 50, 5, 886-893.
  • Gan, J., Hou, N., Yao, T., Fan, L., Gan, T., Huang, Z., Zhao, Y. & Li, Y. (2020). A high performing perovskite cathode with in situ exsolved Co nanoparticles for H2O and CO2 solid oxide electrolysis cell. Catalysis Today, 364, 89–96.
  • Liang, S., Xu, T., Teng, F., Zong, R. & Zhu, Y. (2010). The high activity and stability of La0.5Ba0.5MnO3 nanocubes in the oxidation of CO and CH4. Applied Catalysis B: Environmental, 96, 267–275.
  • Spooren, J., Walton, R.I. & Millange, F. (2005). A study of the manganites La0.5M0.5MnO3 (M= Ca, Sr, Ba) prepared by hydrothermal synthesis. J. Mater. Chem., 15, 1542–1551.
  • Millange, F., Caignaert, V., Domenge`s, B. & Raveau, B. (1983). Order-Disorder Phenomena in New LaBaMn2O6-x CMR Perovskites. Crystal and Magnetic Structure. Chem. Mater. 10, 1977.
  • Pȩkała, M., Drozd, V., Fagnard, J. F., Vanderbemden, P., & Ausloos, M. (2009). Magnetotransport of La0.5Ba0.5MnO3. Journal of Applied Physics, 105(1).
  • Trukhanov, S.V., Trukhanov, A.V., Botez, C.E. & Szymczak, H. (2009). Magnetic Properties of the La0.5Ba0.5MnO3 Nanomanganites. Solid State Phenomena, 152/153, 135-138.
  • Millange, F., Suard, E., Caignaert, V. & Raveau, B. (1999). YBaMn2O5: crystal and magnetic structure reinvestigation. Materials Research Bulletin, 34, 1, 1-9.
  • Trukhanov, S. V., Trukhanov, A. V., Botez, C. E., & Szymczak, H. (2009). Magnetic properties of the La0. 50Ba0. 50MnO3 nanomanganites. Solid State Phenomena, 152, 135-138.
  • Zhou, R., Yin, Y., Dai, H., Yang, X., Gu, Y., & Bi, L. (2023). Attempted preparation of La0.5Ba0.5MnO3-δ leading to an in-situ formation of manganate nanocomposites as a cathode for proton-conducting solid oxide fuel cells. Journal of Advanced Ceramics, 12(6).
  • Xia, W., Leng, K., Tang, Q., Yang, L., Xie, Y., Wu, Z., & Zhu, X. (2021). Structural characterization and magnetic properties of single‐crystalline (La0.6Pr0.4)0.67Ca0.33MnO3 nanowires. Journal of the American Ceramic Society, 104(10), 5402-5410.
  • Modeshia, D. R., & Walton, R. I. (2010). Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chemical Society Reviews, 39(11), 4303-4325. [16] Zhu, D., Zhu, H., & Zhang, Y. (2002). Hydrothermal synthesis of La0.5Ba0.5MnO3 nanowires. Applied physics letters, 80(9), 1634-1636.
  • Chai, P., Liu, X., Wang, Z., Lu, M., Cao, X. & Meng, J. (2007). Tunable synthesis, growth mechanism, and magnetic properties of La0.5Ba0.5MnO3. Crystal Growth and Design, 7(12), 2568-2575.
  • Hu C.G., Liu H., Lao C.S., Zhang L.Y., Davidovic D. & Wang Z.L. (2006). Size-manipulable synthesis of single-crystalline BaMnO3 and BaTi1/2Mn1/2O3 nanorods/nanowires. J Phys Chem B., 110(29):14050-4.
  • Rondinelli, J. M., Eidelson, A. S. & Spaldin, N. A. (2009). Non-d 0 Mn-driven ferroelectricity in antiferromagnetic BaMnO 3. Physical Review B, 79(20), 205119.
  • Kandemir, A., Akça, G., Kılıç Çetin, S., Ayaş, A. O., Akyol, M. & Ekicibil, A. (2023) Effects of Ca substitution on magnetic and magnetocaloric properties in PrBa1-xCaxMn2O6 system. Journal of Solid State Chemistry, 324, 124086.
  • Thakur, P., Kumari, S., Chaudhary, S., Sharma, N., & Lal, M. (2024). Multifunctional tuning of structural, dielectric, and magnetic properties of Ti-doped BaMnO3 ceramics. Emergent Materials, 1-20.
  • Roisnel, T. & Rodriguez-Carvajal, J. (2003) Computer Program FULLPROF, LLB-LCSIM.
  • Terenti, N., Melnic, E., Fruth, V., Nedelko, N., Aleshkevych, P., Lewińska, S., Ślawska-Waniewska, A., Kravtsov, V. Ch., Lazarescu, A. & Lozan, V. (2023). Synthesis and microstructure of BaMnO3 oxide obtained from coordination precursor, Journal of Solid State Chemistry, 324.
  • Razmara, Z. (2019) Lanthanum (III) complex as ferromagnetic supraprecursor for preparation of La2O3 nanoparticles by thermal decomposition method. Research on Chemical Intermediates, 45, 2887-2901.
  • Pathan, A. A., Desai, K. R., Vajapara, S. & Bhasin, C. P. (2018) Conditional Optimization of Solution Combustion Synthesis for Pioneered La2O3 Nanostructures to Application as Future CMOS and NVMS Generations. Advances in Nanoparticles 7, 1, 28-35.
  • Mustofa, K., Yulizar, Y., Saefumillah, A. & Apriandanu, D.O.B. (2020). La2O3 nanoparticles formation using Nothopanax scutellarium leaf extract in two-phase system and photocatalytic activity under UV light irradiation. IOP Conference Series: Materials Science and Engineering, 902, 1, 012018.
  • Hu, C. G., Liu, H., Dong, W. T., Zhang,Y. Y., Bao, G., Lao, C. S. & Wang, Z. L. (2007). La(OH)3 and La2O3 Nanobelts- Synthesis and Physical Properties. Advanced Materials, 19, 3, 470-474.
  • Hu, C., Liu, H. & Wang, Z. L. (2008). Synthesis of Oxide Nanostructures. BioNanofluidic MEMS, 11-36.
  • Chau, N., Hanh, D. T., Tho, N. D. & Luong, N. H. (2006). Spin glass-like behavior, giant magnetocaloric and giant magnetoresistance effect in PrPb manganites. Journal of Magnetism and Magnetic Materials, 303(2), e335-e338.
  • Munazat, D. R., Kurniawan, B., Razaq, D. S., Manawan, M., Shon, W. H., Rhyee, J. S. & Nanto, D. (2024). Effect of Zn substitution on magnetic properties and magnetic entropy change in La0. 7Ba0. 25Nd0. 05Mn1-xZnxO3 (x= 0.03 and 0.05) synthesized by using sol-gel method. Physica B: Condensed Matter, 415800.
  • Al‑Shahumi, T. M., Al‑Omari, I. A., Al‑Harthi, S.H. & Myint, M. T. Z. (2023) Synthesis, structure, morphology, magnetism, and magnetocaloric‑effect studies of (La1−xPrx)0.7Sr0.3MnO3 nanocrystalline perovskites. SN Applied Sciences, 5, 121.
  • Iqbal, M., Nasir Khan, M., A.Khan, A., Zaka, I., Mehmood, A. & Ahmad, I. (2018). Investigation of Magnetic, Magnetocaloric, and Critical Properties of La0.5Ba0.5MnO3 Manganite. Journal of Superconductivity and Novel Magnetism, 31, 3535–3544.
  • Zhu, D., Zhu, H., & Zhang, Y. (2003). Microstructure and magnetization of single-crystal perovskite manganites nanowires prepared by hydrothermal method. Journal of Crystal Growth, 249(1-2), 172-175.
  • Dinçer, İ. (2005). PrMn1.6Fe0.4Ge2 Alaşımının Curie Sıcaklığı Üzerindeki Antiferromanyetik Yapısı. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 1(26), 33-42.
  • Nakajima, T., Yoshizawa, H., & Ueda, Y. (2004). A-site randomness effect on structural and physical properties of Ba-based perovskite manganites. Journal of the Physical Society of Japan, 73(8), 2283-2291.
  • Kawasaki, Y., Minami, T., Fujishima, M., Kishimoto, Y., Ohno, T., Zenmyo, K., & Ueda, Y. (2006). Ground state properties of the A-site ordered/disordered manganites LaBaMn2O6/La0. 5Ba0. 5MnO3 probed by NMR. Physica B: Condensed Matter, 378, 525-526.
  • Nagao, M., So, Y. G., Yoshida, H., Isobe, M., Hara, T., Ishizuka, K., & Kimoto, K. (2013). Direct observation and dynamics of spontaneous skyrmion-like magnetic domains in a ferromagnet. Nature nanotechnology, 8(5), 325-328.
There are 36 citations in total.

Details

Primary Language English
Subjects Material Characterization, Materials Engineering (Other)
Journal Section Research Article
Authors

Yusuf Samancıoğlu 0000-0002-3540-5011

Project Number BAP Project No: 15/145
Publication Date
Submission Date February 9, 2024
Acceptance Date May 17, 2024
Published in Issue Year 2024 Volume: 9 Issue: 1

Cite

APA Samancıoğlu, Y. (n.d.). Structural, Morphological and Magnetic Investigation of Half-Doped La0.5Ba0.5MnO3 Perovskite Nanoparticles. Open Journal of Nano, 9(1), 22-34. https://doi.org/10.56171/ojn.1434647
AMA Samancıoğlu Y. Structural, Morphological and Magnetic Investigation of Half-Doped La0.5Ba0.5MnO3 Perovskite Nanoparticles. OJN. 9(1):22-34. doi:10.56171/ojn.1434647
Chicago Samancıoğlu, Yusuf. “Structural, Morphological and Magnetic Investigation of Half-Doped La0.5Ba0.5MnO3 Perovskite Nanoparticles”. Open Journal of Nano 9, no. 1 n.d.: 22-34. https://doi.org/10.56171/ojn.1434647.
EndNote Samancıoğlu Y Structural, Morphological and Magnetic Investigation of Half-Doped La0.5Ba0.5MnO3 Perovskite Nanoparticles. Open Journal of Nano 9 1 22–34.
IEEE Y. Samancıoğlu, “Structural, Morphological and Magnetic Investigation of Half-Doped La0.5Ba0.5MnO3 Perovskite Nanoparticles”, OJN, vol. 9, no. 1, pp. 22–34, doi: 10.56171/ojn.1434647.
ISNAD Samancıoğlu, Yusuf. “Structural, Morphological and Magnetic Investigation of Half-Doped La0.5Ba0.5MnO3 Perovskite Nanoparticles”. Open Journal of Nano 9/1 (n.d.), 22-34. https://doi.org/10.56171/ojn.1434647.
JAMA Samancıoğlu Y. Structural, Morphological and Magnetic Investigation of Half-Doped La0.5Ba0.5MnO3 Perovskite Nanoparticles. OJN.;9:22–34.
MLA Samancıoğlu, Yusuf. “Structural, Morphological and Magnetic Investigation of Half-Doped La0.5Ba0.5MnO3 Perovskite Nanoparticles”. Open Journal of Nano, vol. 9, no. 1, pp. 22-34, doi:10.56171/ojn.1434647.
Vancouver Samancıoğlu Y. Structural, Morphological and Magnetic Investigation of Half-Doped La0.5Ba0.5MnO3 Perovskite Nanoparticles. OJN. 9(1):22-34.

23830

The Open Journal of Nano(OJN) deals with information related to (but not limited to) physical, chemical and biological phenomena and processes ranging from molecular to microscale structures.

All publications in The Open Journal of Nano are licensed under the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.