Research Article
BibTex RIS Cite

Yeşil Mutabakatı Destekleyen Sürdürülebilir Çimento Esaslı Kompozitlerin Agresif Ortam ve Karbonatlaşma Direnci

Year 2022, Volume: 5 Issue: 2, 943 - 957, 18.07.2022
https://doi.org/10.47495/okufbed.1012497

Abstract

Çalışma kapsamında sürdürülebilir ve yeşil mutabakatı destekleyen çimento esaslı kompozitlerin mekanik ve durabilite performanslarını değerlendirmek için Granüle Yüksek Fırın Cürufu (GYFC), Uçucu Kül (UK) ve Silis Dumanı (SD)’nın tekli, ikili ve üçlü kompozisyonlarının çimento ile ağırlıkça %15, %30 ve %45 oranında ikame edilmesi ile sekiz farklı beton üretilmiştir. Numunelerin 28 ve 90 günlük dört noktadan eğilme dayanımı ve basınç dayanımının yanı sıra 30 gün boyunca %5 konsantrasyonda hazırlanan sülfürik asit ve sodyum sülfat içeren ortamlara maruz kalan betonların performans değerlendirilmesi ağırlık ve dayanım değişimleri dikkate alınarak belirlenmiştir. Çimento miktarının %30 azaltılması ile üretilen kompozit numuneler kontrol numunesine göre daha üstün mekanik ve durabilite özelliği sergilemiştir. Laboratuvar ortamında bekletilen numunelerin 60 ve 120 günlük karbonatlaşma derinlikleri (KD) de ölçülmüş ve KD’yi sınırlayan en ideal kompozisyon %15 GYFC+ %15 UK’dir.

References

  • Afroz, M., Venkatesan, S., Patnaikuni, I., Effects of hybrid fibers on the development of high volume fly ash cement composite. Construction and Building Materials, 2019; 215, 984-99.
  • Ahmad, W., Ahmad, A., Ostrowski, K. A., Aslam, F., Joyklad, P., A scientometric review of waste material utilization in concrete for sustainable construction. Case Studies in Construction Materials, 2021; 15, e00683.
  • ASTM C 39, 1994. Standard test method for compressive strength of cylindrical concrete specimens. Annual Book of ASTM Standards.
  • ASTM Standard C1161-18, Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature, West Conshohocken, PA, USA.
  • Aydın, P. Lastik Atığın Kompozit Yapımında Değerlendirilmesi. Yüksek Lisans Tezi, 2015, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Aygörmez, Y., ve Canpolat, O. Long-term sulfuric and hydrochloric acid resistance of silica fume and colemanite waste reinforced metakaolin-based geopolymers. Revista de la construcción, 2021; 20(2), 291-307.
  • Bankir, M. B., Sevim, U. K., Performance optimization of hybrid fiber concrete according to mechanical properties. Construction and Building Materials, 2020; 261, 119952.
  • Bankir, M. B., Sevim, U. K., Performance optimization of hybrid fiber concretes against acid and sulfate attack. Journal of Building Engineering, 2020; 32, 101443.
  • Chen, Y., Gao, J., Tang, L., Li, X., Resistance of concrete against combined attack of chloride and sulfate under drying–wetting cycles. Construction and Building Materials, 2016; 106, 650-658.
  • Chen, J. J., Ng, P. L., Chu, S. H., Guan, G. X., Kwan, A. K. H. Ternary blending with metakaolin and silica fume to improve packing density and performance of binder paste. Construction and Building Materials, 2020; 252, 119031
  • Elyamany, H. E., Abd Elmoaty, M., Diab, A. R. A., Sulphuric Acid Resistance of Slag Geopolymer Concrete Modified with Fly Ash and Silica Fume. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2020; 1-19.
  • Gupta, S., Effect of content and fineness of slag as high volume cement replacement on strength and durability of ultra-high performance mortar. Journal of Building Materials and Structures, 2016; 3(2), 43-54.
  • Gupta, A., Gupta, N., ve Saxena, K. K. Experimental study of the mechanical and durability properties of Slag and Calcined Clay based geopolymer composite. Advances in Materials and Processing Technologies, 2021; 1-15.
  • Gürsel, A. P., Meral, Ç., Türkiye’de Çimento Üretiminin Karşılaştırmalı Yaşam Döngüsü Analizi. 2. Proje ve Yapım Yönetimi Kongresi, İzmir Yüksek Teknoloji Enstitüsü, 2012; 1-13.
  • Hadigheh, S. A., Gravina, R. J., Smith, S. T., Effect of acid attack on FRP-to-concrete bonded interfaces. Construction and building materials, 2017; 152, 285-303.
  • Haynes, H., ve Bassuoni, M. T., Physical salt attack on concrete. Concrete international, 2011; 33(11), 38-42.
  • Horoz, A. Şanlıurfa yöresinde bulunan kalker ocaklarında atıl durumdaki elenmiş malzemelerin (Taş unu) taze ve sertleşmiş betona etkisi, Harran Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2020.
  • Hossain, M. U., Dong, Y., Ng, S. T., Influence of supplementary cementitious materials in sustainability performance of concrete industry: A case study in Hong Kong. Case Studies in Construction Materials, 2021; 15, e00659.
  • Hsu, S., Chi, M., Huang, R., Effect of fineness and replacement ratio of ground fly ash on properties of blended cement mortar. Construction and Building Materials, 2018; 176, 250-258.
  • Hwang, C. L., Lin, C. Y., Strength development of blended blast‐furnace slag‐cement mortars. Journal of the Chinese Institute of Engineers, 1986; 9(3), 233-239.
  • Jena, S., Panigrahi, R., Evaluation of Durability and Microstructural Properties of Geopolymer Concrete with Ferrochrome Slag as Coarse Aggregate. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2021; 1-10.
  • Jeong, Y., Kang, S. H., Kim, M. O., Moon, J., Acceleration of cement hydration from supplementary cementitious materials: Performance comparison between silica fume and hydrophobic silica. Cement and Concrete Composites, 2020; 112, 103688.
  • Jiang, H., Yi, H., Yilmaz, E., Liu, S., Qiu, J., Ultrasonic evaluation of strength properties of cemented paste backfill: effects of mineral admixture and curing temperature. Ultrasonics, 2020; 100, 105983.
  • Kara, C. & Yazicioglu, S., Mermer tozu atığı ve silis dumanının betonun karbonatlaşma özelliğine etkisi. Journal of Science, 2016; 5(2), 191-202.
  • Kumar, S., Mucsi, G., Kristály, F., Pekker, P., Mechanical activation of fly ash and its influence on micro and nano-structural behaviour of resulting geopolymers. Advanced powder technology, 2017; 28(3), 805-813.
  • Kumar, R., Goyal, S., Srivastava, A. A., comprehensive study on the influence of supplementary cementitious materials on physico-mechanical, microstructural and durability properties of low carbon cement composites. Powder Technology, 2021.
  • Malhotra, V. M., Reducing CO2 emissions. Concrete international, 2006; 28(9), 42-45.
  • Mironyuk, I., Tatarchuk, T., Paliychuk, N., Heviuk, I., Horpynko, A., Yarema, O., Mykytyn, I., Effect of surface-modified fly ash on compressive strength of cement mortar. Materials Today: Proceedings, 2019.
  • Ramezanianpour, A. A., Moeini, M. A. Mechanical and durability properties of alkali activated slag coating mortars containing nanosilica and silica fume. Construction and Building Materials, 2018; 163, 611-621.
  • Reynolds, S. The Future of Ferrous Slag, Market Forecasts to 2020. Pira International Ltd., Cleeve Road, Surrey KT227RU, Leatherhead, UK, 2009.
  • Sabzi, J., Asadi Shamsabadi, E., Ghalehnovi, M., Hadigheh, S. A., Khodabakhshian, A., Brito, J. D., Mechanical and Durability Properties of Mortars Incorporating Red Mud, Ground Granulated Blast Furnace Slag, and Electric Arc Furnace Dust. Applied Sciences, 2021; 11(9), 4110.
  • Sadique, M., Al-Nageim, H., Hydration kinetics of a low carbon cementitious material produced by physico-chemical activation of high calcium fly ash. Journal of Advanced Concrete Technology, 2012; 10(8), 254-263.
  • Saillio, M., Baroghel-Bouny, V., Bertin, M., Pradelle, S., Vincent, J., Phase assemblage of cement pastes with SCM at different ages. Construction and Building Materials, 2019; 224, 144-157.
  • Sezer, G.İ., Compressive strength and sulfate resistance of limestone and/or silica fume mortars. Construction and Building Materials, 2012; 26(1), 613-618.
  • Şahin, Ö.G.D.G., Önder, Ö.G.D.H.G. Atık Yönetimi, Sera Gazı Emisyonları ve Türkiye: Avrupa Yeşil Mutabakatı Çerçevesinde Bir Değerlendirme, 2021.
  • Tekin, İ., Sülfat Etkisine Maruz Farklı Çimento Harçlarındaki Makro Boşluk Yapısı Gelişiminin Bilgisayarlı Tomografi Yöntemi İle İncelenmesi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, 2010.
  • Verbeck, G., Carbonation of hydrated Portland cement. In Cement and Concrete. ASTM International. 1958.
  • Zhang, S., Yang, L., Ren, F., Qiu, J., Ding, H. Rheological and mechanical properties of cemented foam backfill: Effect of mineral admixture type and dosage. Cement and Concrete Composites, 2020; 112, 103689.
  • Zhang, T., Ma, B., Jiang, D., Jiang, Q., Jin, Z. Comparative research on the effect of various mineral admixtures on the early hydration process of cement. Construction and Building Materials, 2021; 301, 124372.

Aggressive Environment and Carbonation Resistance of Sustainable Cement-Based Composites Supporting the Green Deal

Year 2022, Volume: 5 Issue: 2, 943 - 957, 18.07.2022
https://doi.org/10.47495/okufbed.1012497

Abstract

Within the scope of the study, in order to evaluate the mechanical and durability performances of cement-based composites that support sustainable production and green deal, single, double and triple compositions of Granulated Blast Furnace Slag (GYFC), Fly Ash (UK) and Silica Fume (SD) were replaced with cement 15%, 30% and 45% by weight and so eight different concretes were produced. In addition to the four point flexural and compressive strength of the samples at 28 and 90 days, the concretes were exposed to sulfuric acid and sodium sulfate solutions prepared at 5% concentration for 30 days. Performance evaluation was made by considering weight and strength changes. Concrete samples produced by reducing the amount of cement by 30% showed superior mechanical and durability properties compared to the control sample. Carbonation depths (KD) of 60 and 120 days samples, kept in the laboratory, were measured and the ideal composition limiting the KD was 15% GYFC + 15% UK.

References

  • Afroz, M., Venkatesan, S., Patnaikuni, I., Effects of hybrid fibers on the development of high volume fly ash cement composite. Construction and Building Materials, 2019; 215, 984-99.
  • Ahmad, W., Ahmad, A., Ostrowski, K. A., Aslam, F., Joyklad, P., A scientometric review of waste material utilization in concrete for sustainable construction. Case Studies in Construction Materials, 2021; 15, e00683.
  • ASTM C 39, 1994. Standard test method for compressive strength of cylindrical concrete specimens. Annual Book of ASTM Standards.
  • ASTM Standard C1161-18, Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature, West Conshohocken, PA, USA.
  • Aydın, P. Lastik Atığın Kompozit Yapımında Değerlendirilmesi. Yüksek Lisans Tezi, 2015, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Aygörmez, Y., ve Canpolat, O. Long-term sulfuric and hydrochloric acid resistance of silica fume and colemanite waste reinforced metakaolin-based geopolymers. Revista de la construcción, 2021; 20(2), 291-307.
  • Bankir, M. B., Sevim, U. K., Performance optimization of hybrid fiber concrete according to mechanical properties. Construction and Building Materials, 2020; 261, 119952.
  • Bankir, M. B., Sevim, U. K., Performance optimization of hybrid fiber concretes against acid and sulfate attack. Journal of Building Engineering, 2020; 32, 101443.
  • Chen, Y., Gao, J., Tang, L., Li, X., Resistance of concrete against combined attack of chloride and sulfate under drying–wetting cycles. Construction and Building Materials, 2016; 106, 650-658.
  • Chen, J. J., Ng, P. L., Chu, S. H., Guan, G. X., Kwan, A. K. H. Ternary blending with metakaolin and silica fume to improve packing density and performance of binder paste. Construction and Building Materials, 2020; 252, 119031
  • Elyamany, H. E., Abd Elmoaty, M., Diab, A. R. A., Sulphuric Acid Resistance of Slag Geopolymer Concrete Modified with Fly Ash and Silica Fume. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2020; 1-19.
  • Gupta, S., Effect of content and fineness of slag as high volume cement replacement on strength and durability of ultra-high performance mortar. Journal of Building Materials and Structures, 2016; 3(2), 43-54.
  • Gupta, A., Gupta, N., ve Saxena, K. K. Experimental study of the mechanical and durability properties of Slag and Calcined Clay based geopolymer composite. Advances in Materials and Processing Technologies, 2021; 1-15.
  • Gürsel, A. P., Meral, Ç., Türkiye’de Çimento Üretiminin Karşılaştırmalı Yaşam Döngüsü Analizi. 2. Proje ve Yapım Yönetimi Kongresi, İzmir Yüksek Teknoloji Enstitüsü, 2012; 1-13.
  • Hadigheh, S. A., Gravina, R. J., Smith, S. T., Effect of acid attack on FRP-to-concrete bonded interfaces. Construction and building materials, 2017; 152, 285-303.
  • Haynes, H., ve Bassuoni, M. T., Physical salt attack on concrete. Concrete international, 2011; 33(11), 38-42.
  • Horoz, A. Şanlıurfa yöresinde bulunan kalker ocaklarında atıl durumdaki elenmiş malzemelerin (Taş unu) taze ve sertleşmiş betona etkisi, Harran Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2020.
  • Hossain, M. U., Dong, Y., Ng, S. T., Influence of supplementary cementitious materials in sustainability performance of concrete industry: A case study in Hong Kong. Case Studies in Construction Materials, 2021; 15, e00659.
  • Hsu, S., Chi, M., Huang, R., Effect of fineness and replacement ratio of ground fly ash on properties of blended cement mortar. Construction and Building Materials, 2018; 176, 250-258.
  • Hwang, C. L., Lin, C. Y., Strength development of blended blast‐furnace slag‐cement mortars. Journal of the Chinese Institute of Engineers, 1986; 9(3), 233-239.
  • Jena, S., Panigrahi, R., Evaluation of Durability and Microstructural Properties of Geopolymer Concrete with Ferrochrome Slag as Coarse Aggregate. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2021; 1-10.
  • Jeong, Y., Kang, S. H., Kim, M. O., Moon, J., Acceleration of cement hydration from supplementary cementitious materials: Performance comparison between silica fume and hydrophobic silica. Cement and Concrete Composites, 2020; 112, 103688.
  • Jiang, H., Yi, H., Yilmaz, E., Liu, S., Qiu, J., Ultrasonic evaluation of strength properties of cemented paste backfill: effects of mineral admixture and curing temperature. Ultrasonics, 2020; 100, 105983.
  • Kara, C. & Yazicioglu, S., Mermer tozu atığı ve silis dumanının betonun karbonatlaşma özelliğine etkisi. Journal of Science, 2016; 5(2), 191-202.
  • Kumar, S., Mucsi, G., Kristály, F., Pekker, P., Mechanical activation of fly ash and its influence on micro and nano-structural behaviour of resulting geopolymers. Advanced powder technology, 2017; 28(3), 805-813.
  • Kumar, R., Goyal, S., Srivastava, A. A., comprehensive study on the influence of supplementary cementitious materials on physico-mechanical, microstructural and durability properties of low carbon cement composites. Powder Technology, 2021.
  • Malhotra, V. M., Reducing CO2 emissions. Concrete international, 2006; 28(9), 42-45.
  • Mironyuk, I., Tatarchuk, T., Paliychuk, N., Heviuk, I., Horpynko, A., Yarema, O., Mykytyn, I., Effect of surface-modified fly ash on compressive strength of cement mortar. Materials Today: Proceedings, 2019.
  • Ramezanianpour, A. A., Moeini, M. A. Mechanical and durability properties of alkali activated slag coating mortars containing nanosilica and silica fume. Construction and Building Materials, 2018; 163, 611-621.
  • Reynolds, S. The Future of Ferrous Slag, Market Forecasts to 2020. Pira International Ltd., Cleeve Road, Surrey KT227RU, Leatherhead, UK, 2009.
  • Sabzi, J., Asadi Shamsabadi, E., Ghalehnovi, M., Hadigheh, S. A., Khodabakhshian, A., Brito, J. D., Mechanical and Durability Properties of Mortars Incorporating Red Mud, Ground Granulated Blast Furnace Slag, and Electric Arc Furnace Dust. Applied Sciences, 2021; 11(9), 4110.
  • Sadique, M., Al-Nageim, H., Hydration kinetics of a low carbon cementitious material produced by physico-chemical activation of high calcium fly ash. Journal of Advanced Concrete Technology, 2012; 10(8), 254-263.
  • Saillio, M., Baroghel-Bouny, V., Bertin, M., Pradelle, S., Vincent, J., Phase assemblage of cement pastes with SCM at different ages. Construction and Building Materials, 2019; 224, 144-157.
  • Sezer, G.İ., Compressive strength and sulfate resistance of limestone and/or silica fume mortars. Construction and Building Materials, 2012; 26(1), 613-618.
  • Şahin, Ö.G.D.G., Önder, Ö.G.D.H.G. Atık Yönetimi, Sera Gazı Emisyonları ve Türkiye: Avrupa Yeşil Mutabakatı Çerçevesinde Bir Değerlendirme, 2021.
  • Tekin, İ., Sülfat Etkisine Maruz Farklı Çimento Harçlarındaki Makro Boşluk Yapısı Gelişiminin Bilgisayarlı Tomografi Yöntemi İle İncelenmesi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, 2010.
  • Verbeck, G., Carbonation of hydrated Portland cement. In Cement and Concrete. ASTM International. 1958.
  • Zhang, S., Yang, L., Ren, F., Qiu, J., Ding, H. Rheological and mechanical properties of cemented foam backfill: Effect of mineral admixture type and dosage. Cement and Concrete Composites, 2020; 112, 103689.
  • Zhang, T., Ma, B., Jiang, D., Jiang, Q., Jin, Z. Comparative research on the effect of various mineral admixtures on the early hydration process of cement. Construction and Building Materials, 2021; 301, 124372.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section RESEARCH ARTICLES
Authors

Müzeyyen Balçıkanlı Bankir 0000-0001-5091-8766

Publication Date July 18, 2022
Submission Date October 20, 2021
Acceptance Date March 29, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Balçıkanlı Bankir, M. (2022). Yeşil Mutabakatı Destekleyen Sürdürülebilir Çimento Esaslı Kompozitlerin Agresif Ortam ve Karbonatlaşma Direnci. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(2), 943-957. https://doi.org/10.47495/okufbed.1012497
AMA Balçıkanlı Bankir M. Yeşil Mutabakatı Destekleyen Sürdürülebilir Çimento Esaslı Kompozitlerin Agresif Ortam ve Karbonatlaşma Direnci. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. July 2022;5(2):943-957. doi:10.47495/okufbed.1012497
Chicago Balçıkanlı Bankir, Müzeyyen. “Yeşil Mutabakatı Destekleyen Sürdürülebilir Çimento Esaslı Kompozitlerin Agresif Ortam Ve Karbonatlaşma Direnci”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, no. 2 (July 2022): 943-57. https://doi.org/10.47495/okufbed.1012497.
EndNote Balçıkanlı Bankir M (July 1, 2022) Yeşil Mutabakatı Destekleyen Sürdürülebilir Çimento Esaslı Kompozitlerin Agresif Ortam ve Karbonatlaşma Direnci. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 2 943–957.
IEEE M. Balçıkanlı Bankir, “Yeşil Mutabakatı Destekleyen Sürdürülebilir Çimento Esaslı Kompozitlerin Agresif Ortam ve Karbonatlaşma Direnci”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 5, no. 2, pp. 943–957, 2022, doi: 10.47495/okufbed.1012497.
ISNAD Balçıkanlı Bankir, Müzeyyen. “Yeşil Mutabakatı Destekleyen Sürdürülebilir Çimento Esaslı Kompozitlerin Agresif Ortam Ve Karbonatlaşma Direnci”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/2 (July 2022), 943-957. https://doi.org/10.47495/okufbed.1012497.
JAMA Balçıkanlı Bankir M. Yeşil Mutabakatı Destekleyen Sürdürülebilir Çimento Esaslı Kompozitlerin Agresif Ortam ve Karbonatlaşma Direnci. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2022;5:943–957.
MLA Balçıkanlı Bankir, Müzeyyen. “Yeşil Mutabakatı Destekleyen Sürdürülebilir Çimento Esaslı Kompozitlerin Agresif Ortam Ve Karbonatlaşma Direnci”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 2, 2022, pp. 943-57, doi:10.47495/okufbed.1012497.
Vancouver Balçıkanlı Bankir M. Yeşil Mutabakatı Destekleyen Sürdürülebilir Çimento Esaslı Kompozitlerin Agresif Ortam ve Karbonatlaşma Direnci. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2022;5(2):943-57.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.