Review
BibTex RIS Cite

Use of Bacillus Strains Producing Lichenase and Laminarinase Enzymes as Fish Feed Additives

Year 2022, Volume: 5 Issue: 3, 1855 - 1871, 12.12.2022
https://doi.org/10.47495/okufbed.1100047

Abstract

To obtain high efficiency from animals, it is necessary to maximize the ability to benefit from feed, as well as to protect animal health. One of the important applications in this direction is feed additives. Feed additives are plant and animal products and microorganisms that increase fish production and welfare, improve digestion and digestive system microflora and contribute to the preservation of nutrients and feed. Although plant and animal tissues are used in enzyme production, the use of microorganisms is in the first place. After the use of molecular genetic techniques, the genes responsible for enzyme production were cloned in microorganisms, making it possible to produce enzymes more purely and cheaply on an industrial scale.

References

  • Adıyaman E., Ayhan, V.. Etlik piliçlerin beslenmesinde aromatik bitkilerin kullanımı. Hayvansal Üretim 2010; 51(1):57-63.
  • Ai Q., Mai K., Zhang L., Tan B., Zhang W., Xu W., Li H. Effects of Dietary β-(1,3)-Glucan on innate immune response of large yellow croaker, Pseudosciena crocea. Fish & Shellfish Immunology 2007; 22(4):394-402.
  • Alp M., Kahraman R. Probiyotiklerin hayvan beslemede kullanılması. İstanbul Üniversitesi Veterinerlik Fakültesi Dergisi1996; 22(1):1-8.
  • Aydın G., Koçak D. Bazı antibiyotiklerin kanatlı yemlerinde yem katkı maddesi olarak kullanımlarındaki sakıncalar ve Avrupa birliği’nin bu konuda aldığı kararlar, Viv. Poultry Yutav’99 Uluslar Arası Tavukçuluk Fuarı ve Konferansı, 3-6 Haziran 1999; 316-320, İstanbul.
  • Bagni M., Archetti L., Amadori M., Marino G. Effect of long-term administration of an immunostimulant diet on immunity in Sea bass (Dicentrarchus labrax). Journal of Veterinary Medicine 2000; 47(10):745-751.
  • Barman D., Nen P., Mandal S.C., Kumar V. Aquaculture health management: A New approach. Journal of Marine Science: Research & Development 2013; 3(4):1-11.
  • Beckmann L., Simon O., Vahjen W. Isolation and identification of mixed linked β-glucan egrading bacteria in the intestine of broiler chickens and partial characteriation of respective 1,3-1,4-glucanase activities. Journal of Basic Microbiology 2006;46(3):175-185.
  • Bhat M.K., Bhat S. Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances 1997; 15:583-620.
  • Borriss R., Manteuffel R., Hofemeister J. Molecular cloning of a gene coding for thermostable beta-glucanase from Bacillus macerans. Journal of Basic Microbiology 1988; 28:1-10.
  • Buchanan J., Sarac H.Z., Poppi D., Cowan R.T. Effects of enzyme addition to canola meal in prawn diets. Aquaculture 1997;151:29-35.
  • Bueno A., Vazquez D., Aldana C.R., Correa J., Del R.F. Nucleotide sequence of a 1,3-1,4-β-glucanase-encoding gene in Bacillus circulans WL-12. Nucleic Acids Research 1990a;18(14):4248.
  • Bueno A., Vazquez D., Aldana C.R., Correa J., Del, R.F. Synthesis and secretion of a Bacillus circulans WL-12 1,3-1,4-β-D-glucanase in Escherichia coli. Journal of Bacteriology 1990b;172(4):2160-2167.
  • Cantwell B.A., McConnell M.J. Molecular Cloning and Expression of a Bacillus subtilis β-Glucanase Gene in Escherichia coli. Gene 1983; 23(2):211-219.
  • Carrasco P., Beltrán J.P., Peretó G., Granell A. 1,3-β-Glucan hydrolase from citrus, phytochemistry 1983;22(12):2699-2701.
  • Cavazzoni V., Adami A., Castrovilli, C. Performance of broiler chickens supplemented with Bacillus coagulans as probiotic. British Poultry Science 1998; 39(4):526-529.
  • Chattopadhyay M.K. Use of antibiotics as feed additives: A burning question. Frontiers in Microbiology 2014; 334(5):1-3.
  • Chen H., Li X.L., Ljungdahl L.G. Sequencing of a 1,3-1,4-beta-D-glucanase (lichenase) from the anaerobic fungus Orpinomyces strain PC-2 properties of the enzyme expressed in Escherichia coli and evidence that the gene has a bacterial origin. Journal of Bacteriology 1997; 179(19):6028-6034.
  • Coutinho P.M., Henrissat B. Carbohydrate-active enzymes: an integrated database approach. Cambridge: In: Gilbert H, Davies G, Henrissat B, Svensson B., Editor. Recent advances in carbohydrate bioengineering. The Royal Society of Chemistry 1999; 3-12.
  • Çiftçi İ. Yem katkı maddesi olarak enzimler, çiftlik hayvanlarının beslenmesinde temel prensipler ve karma yem üretiminde bazı bilimsel yaklaşımlar. İstanbul: Farmavet Ilaç Sanayi ve Ticaret A.Ş. 2001;543-583.
  • Dafwang I.I., Bird H.R., Sunde M.L. Broiler chick growth response to antibiotics. Poultry Science 1984; 63:1027-1032.
  • Dalmo R.A., Bogwald J. β-Glucans as conducturs of immune symphonies. Fish & ShellFish Immunology 2008; 25(4):384-396.
  • Dalmo R.A., Martinsen B., Horsberg T.E., Ramstad A., Syvertsen C., Seljelid R., Ingebrigtsen K. Prophylactic effect of beta-1,3-d-glucan (laminaran) against experimental Aeromonas salmonicida and Vibrio salmonicida infections, Journal of Fish Disaeses 1998;21(6):459-462.
  • Deguara S., Jauncey K., Feord J., López J. Growth and feed utilization of gilthead sea bream, Sparus aurata, fed diets with supplementary enzyme. Ciheam-Options Mediterraneennes 1999; p:195-215.
  • Demirel R., Gürbüz, Y. Karma yemlerde enzim kullanımı. Viv. Poultry Yutav’99 Uluslararası Tavukçuluk Fuarı ve Konferansı, 3-6 Haziran 1999; 489-495.İstanbul,
  • Drew M.D., Racz V.J., Gauthier R., Thiessen D.L. Effect of adding protease to coextruded flax: pea or canola: pea products on nutrient digestibility and growth performance of rainbow trout (Oncorhynchus mykiss), Animal Feed Science and Technology 2005;119:117-128.
  • Erdoğan Z. Broyler rasyonlarında antibiyotik ve probiyotik kullanılması. Lalahan Hayvancılık Araştırma Enstitüsü Dergisi 1999; 39(2):57-69.
  • Erfle J.D., Teather R.M., Wood P.J., Irvın J.E. Purification and Properties of a 1,3-1,4-beta-D-glucanase (lichanase, 1,3-1,4-beta-D-glucan 4-glucanohydrolase, E.C. 3.2.1.73) from Bacteroides succinogenes cloned in Escherichia coli. Biochemical Journal 1988; 255(3):833-841.
  • Ferrer P. Revisiting the Cellulosimicrobium cellulans yeast-lytic β-1,3-glucanases toolbox: A review. Microbial Cell Factories 2006;5(10):1-8.
  • Ferrer P., Halkier T., Hedegaard L., Savva D., Diers I., Asenjo J.A. Nucleotide sequence of a β-1,3-glucanase isoenzyme IIA gene of Oerskovia xanthineolytica LL G109 (Cellulomonas cellulans) and initial characterization of the recombinant enzyme expressed in Bacillus subtilis. Journal of Bacteriology 1996; 178(15):4751-4757.
  • Flint H.J., Martin J., Mcpherson C.A., Daniel A.S., Zhang J.X. A Bifunctional enzyme, with separate xylanase and β-(1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. Journal of Bacteriology 1993;175:2943-2951.
  • Fritze D., Pukall R. Reclassification of bioindicator strains Bacillus subtilis DSM 675 and Bacillus subtilis DSM 2277 as Bacillus atrophaeus. International Journal of Systematic and Evolutionary Microbiology 2001;51:35-37.
  • Genta F.A., Bragatto I., Terra W.R., Ferreira C. Purification, characterization and sequencing of the major beta-1,3-glucanase from the midgut of Tenebrio molitor larvae. Insect Biochemistry and Molecular Biology 2009;39(12):861-874.
  • Glazer A.N., Nikaido H. Microbial Enzymes. Microbial Biotechnology: Fundamentals of Applied Microbiology, W.H. Freeman and Company1995; 662 USA. Godfrey T., Reınchelt J. Industrial enzymology. London: McMillian 1983.
  • Gosalbes M.J., Perez-Gonzalez J.A., Gonzalez R., Navarro A. Two beta-glycanase genes are clustered in Bacillus polymyxa: molecular cloning, expression, and sequence analysis of genes encoding a xylanase and an endo-beta-(1,3)-(1,4)-glucanase. Journal of Bacteriology 1991; 173(23):7705-7710.
  • Gueguen Y., Voorhorst W.G.B., Oost J.V.D., Vos W.M.D. Molecular and biochemical characterization of an endo-beta-1,3- glucanase of the hyperthermophilic archaeon Pyrococcus furiosus. Journal of Biological Chemistry 1997; 272(50):31258-31264.
  • Hartl L., Gastebois A., Aimanianda V., Latge J.P. Characterization of the GPI-anchored endo beta-1,3-glucanase Eng2 of Aspergillus fumigatus. Fungal Genetics and Biology 2011; 48(2):185-191.
  • Henrissat B. A Clasification of glycoside hydrolases based on amino acid sequence similarities. The Biochemical Journal 1991; 280(2):309-316.
  • Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolyses based on amino acid similarities. Biochemical Journal 1993;293:781-788. Henrissat B., Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochemical Journal 1996;316:695-696.
  • Hien N.H., Fleet G.H. Separation and characterization of six (1 leads to 3) beta glucanases from Saccharomyces cerevisiae. Journal of Bacteriology 1983;156(3):1204-1213.
  • Hinchliffe E., Box W.G. expression of the cloned endo-1,3-1,4-β-glucanase gene of Bacillus subtilis in Saccharomyces cerevisiae. Current Genetics 1984; 8:471-475.
  • Hofemeister J., Kurtz A., Borris R., Knowles J. The beta-glucanase gene from Bacillus amyloliquefaciens shows extensive homology with that of Bacillus subtilis. Gene 1986; 49(2):177-187.
  • Horikoshi K. Alkaliphiles: some applications of their products for biotechnolgy. Microbiology and Molecular Biology Reviews 1999; 63(4):735- 750. Hughes P., Heritage J. Antibiotic growth promoters. Feed Technology 2002;6(8):20-22.
  • Jaafar N.R., Khoiri N.M., Ismail N.F., Nik Mahmood N.A., Murad,A.M.A., Bakar F.D.A., Yajit N.L.M., Illia R.M. Functional characterisation and product specificity of endo-β-1,3-glucanase from alkalophilic bacterium, Bacillus lehensis G1. Enzyme and Microbial Technology 2020;140:109625.
  • Ji Y.B., Ji C.F., Zhang H. Laminarin induces apoptosis of human colon cancer lovo cells through a mitochondrial pathway. Molecules 2012;17(8):9947-9960.
  • Jirku V., Kraxnerova B., Krumphanzl V. The Extracellular system of beta-1,3-glucanases of Alternaria tenuissima and Aspergillus vesicolor. Folia Microbiology 1980; 25(1):24-31.
  • Kadam S.U., O’Donnell C.P., Rai D.K., Hossain M.B., Burgess C.M., Walsh D., Tiwari B.K. Laminarin from irish brown seaweeds Ascophyllum nodosum and Laminaria hyperborea: Ultrasound assisted extraction, characterization and bioactivity. Marine Drugs 2015;13(7):4270-4780.
  • Karademir G., Karademir B. Yem katkı maddesi olarak kullanılan biyoteknolojik ürünler. Lalahan Hayvancılık Araştırma Enstitüsü Dergisi 2003; 43(1):61-74.
  • Keser O., Bilal T. Beta-glukan’ın hayvan beslemede bağışıklık sistemi ve performans üzerine etkisi. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 2008;5(2):107-119.
  • Kim K.H., Kim Y.W., Kim H.B., Lee B.J., Lee D.S. Anti-apoptotic activity of laminarin polysaccharides and their enzymatically hydrolyzed oligosaccharides from Laminaria japonica. Biotechnology Letters 2006;28(6):439-446.
  • Kovalchuk S.N., Sundukova E.V., Kusaykin M.I., Guzev K.V., Anastiuk S.D., Kuda T., Yano T., Matsuda N., Nishizawa M. Inhibitory effects of laminaran and low molecular alginate against the putrefactive compounds produced by ıntestinal microflora ın-vitro and in rats. Food Chemistry 2005; 91:745-749.
  • Kutlu H.R., Çelik L. Yemler Bilgisi ve Yem Teknolojisi. Adana: Ç.Ü. Ziraat Fak., Ders Kitapları 2005.
  • Kutlu H.R., Serbester U. Ruminant beslemede son gelişmeler. Türk Tarım Gıda Bilim ve Teknoloji Dergisi 2014;2(1):18-37.
  • Labourel A., Jam M., Jeudy A., Hehemann J.H., Czjzek M., Michel G. The Beta-glucanase ZgLamA from Zobellia galactanivorans evolved a bent active site adapted for efficient degradation of algal laminarin. Journal of Biological Chemistry 2014;289(4):2027-2042.
  • Likhatskaya G.N., Trifonov E.V., Nurminski E.A., Kozhemyako V.B., Zvyagintseva T.N., Rasskazov V.A. Purification, cDNA cloning and homology modeling of endo-1,3-beta-d-glucanase from scallop Mizuhopecten yessoensis. Comparative Biochemistry and Physiology, Part B 2006; 143(4):473-485.
  • Liu W.C., Lin Y.S., Jeng W.Y., Chen J.H., Wang A.H., Shyur L.F. Engineering of dual functional hybrid glucanases. Protein Engineering, Design and Selection 2012;25(11):771-780.
  • Lloberas J., Perez-Pons J.A., Querol E. Molecular cloning, expression and nucleotide sequence of the endo-β-1,3-1,4-d-glucanase gene from Bacillus licheniformis. European Journal of Biochemistry 1991; 197(2):337-343.
  • Louw M.E., Reid S.J., Watson T.G. Characterization, cloning and sequencing of a thermostable endo-(1,3-1,4) beta-glucanase encoding gene from alkalophilic Bacillus brevis. Applied Genetics and Regulation 1993;38:507-513.
  • Manners D.J., Wilson G. Studies on beta-glucanases. some properties of a bacterial endo-beta-(1,3)-glucanase system. Biochemical Journal 1973;135(1):11-18.
  • Miao H.Q., Ishai-Michaeli R., Peretz T., Vlodavsky I. Laminarin sulfate mimics the effects of heparin on smooth muscle cell proliferation and basic fibroblast growth factor-receptor binding and mitogenic activity. Journal of Cellular Physiology 1995; 164(3):482-490.
  • Murphy N., Mcconnell, D.J., and Cantwell B.A. The dna sequence of the gene and genetic control sites for the excreted B. subtilis enzyme β-glucan hydrolase. Nucleic Acids Research1984; 12(13):5355-5367.
  • Ng,, W.K., Koh C.B. The utilization and mode of action of organic acids in the feeds of cultured aquatic animals. Reviews in Aquaculture 2017; 9:342-368. Nir İ., Şenköylü N. Sindirimi destekleyen yem katkı maddeleri. Tekirdağ: Roche 2000.
  • Nogi Y., Horikoshi K. A thermostable alkaline β-1,3-glucanase produced by alkalophilic Bacillus sp. AG-430. Applied Microbiology Biotechnology 1990; 32:704-707.
  • Palic D., Andreasen C.B., Herolt D.M., Menzel B.W., Roth J.A. Immunomodulatory effects of β-glucan on neutrophil function in fathead minnows (Pimephales promelas Rafinesque, 1820). Development and Comparative Immunology 2006; 30(9):817-830.
  • Park J.H., Ahn J.H., Lee T.K., Park C.W., Kim B., Lee J.C., Won M.H. Laminarin pretreatment provides neuroprotection against forebrain ıschemia/reperfusion ınjury by reducing oxidative stress and neuroinflammation in aged gerbils. Marine Drugs 2020;18(4):1-14.
  • Planas A. Bacterial 1,3-1,4-β-glucanases: structure, function and protein engineering (Review). Biochimica et Biophysica Acta 2000; 1543(2):361-382. Prescott L.M., Harley J.P., Klein D.A. Microbiology. New York: USA.Fourth Edition, McGraw-Hill Companies 1999;
  • Priest F.G. Extracellular enzyme synthesis in the genus Bacillus. Bacteriology Reviews 1977;41(3):711-753.
  • Reichelt B.Y., Fleet G.H. Isolation, properties, function, and regulation of endo-(1,3)-beta-glucanases in Schizosaccharomyces pombe. Journal of Bacteriology 1981; 147(3):1085-1094.
  • Robertsen B., Roerstand G., Engstad R.E., Raa, J. Enhancement of Non-Spesific Disease Resistance in Atlantic Salmon, Salmo salar L., by a Glucan from Saccharomyces cerevisiae Cell Walls. Journal of Fish Diseases 1990; 13(5):391-400.
  • Rosen G.D. Antibacterials in poultry and pig nutrition. Germany: Biotechnology in Animal Feeds and Animal Feeding; VCH press 1995; 225-257.
  • Saeki K., Iwata J., Yamazaki S., Watanabe Y., Tamai Y. Purification and characterization of a yeast lytic β-1,3-glucanase from Oerskovia xanthineolytica TK-1. Journal of Fermentation and Bioengineering 1994;78(6):407-412.
  • Sakamoto Y., Nakade K., Konno, N. Endo-beta-1,3-glucanase GLU1, from the fruiting body of lentinula edodes, belongs to a new glycoside hydrolase family. Applied and Environmental Microbiology 2011;77(23):8350-8354.
  • Schimming S., Schwarz W.H. Staudenbauer W.L. Properties of a thermoactive beta-1,3-1,4-glucanase (lichenase) from Clostridium thermocellum expressed in Escherichia coli. Biochemical and Biophysical Research Communications 1991;177(1):447-452.
  • Srivastava N. Production of food-processing enzymes from recombinant microorganisms. In: Kuddus M., eds. Enzymes in Food Biotechnology: Academic Press 2019; 739-767.
  • Stone B.A., Clarke A.E. Chemistry and biology of 1,3-β-Glucans. Bundoora, Australia: La Trobe Univ. Press 1992.
  • Sullivan A., Nord C.E. The Place of probiotics in human intestinal infection. International Journal of Antimicrobial Agents 2002;20(5):313-319.
  • Sutay Kocabaş D. Gıda endüstrisinde enzimlerin rolü ve ilgili yasal düzenlemeler. Ankara: Ögel ZB, Editör. Gıda Biyoteknolojisi 1. Baskı. Türkiye Klinikleri 2021; p:29-38.
  • Szilagyi M., Kwon N.J., Dorogi C., Pocsi I., Yu J.H., Emri T. The Extracellular Beta-1,3-Endo-Glucanase EngA is Involved in Autolysis of Aspergillus nidulans. Journal of Applied Microbiology 2010;109(5):1498-1508.
  • Tabernero C., Coll P.M., Fernandez-Abalos J.M., Perez P., Santamaria R.I. Cloning and dna sequencing of bgaA, a gene encoding an endo-β-1,3-1,4-glucanase, from an alkalophilic Bacillus strain (N137). Applied and Environmental Microbiology 1994;60(4):1213-1220.
  • Takeda T., Nakano Y., Takahashi M., Konno N., Sakamoto Y., Arashida R., Marukawa Y., Yoshida E., Ishikawa T., Suzuki K. Identification and enzymatic characterization of an endo-1,3-beta-glucanase from Euglena gracilis. Phytochemistry 2015;116:21-27.
  • Uhlig H. Industrial Enzymes and their applications. New York: John Wiley&Sons, Inc. 1998.
  • Usoltseva R.V., Belik A.A., Kusaykin M.I., Malyarenko O.S., Zvyagintsevа T.N. Ermakova S.P. Laminarans and 1,3-β-D-glucanases. International Journal of Biological Macromolecules 2020; 163:1010-1025.
  • Usui T., Totani K., Totsuka A., Oguchi M. Purification of endo-(1,3)-β-D-glucanases lysing yeast cell walls from Rhizoctonia solani, Biochimica et Biophysica Acta (BBA)-General Subject 1985; 840(2):255-263.
  • Wiseman A. Handbook of enzyme biotechnology. Second Edition. Chapter 3. Biochemical Education 1987; 5(3):274-373.
  • Yıldırım Ö., Acar Ü., Çantaş İ.B. Balık yemlerinde kullanılan yem katkı maddeleri. Journal of Fisheries Sciences 2014; 8(4):278-290.
  • Yiğit N.Ö., Koca S.B. Balık yemlerinde enzim kullanımı. Journal of Fisheries Sciences 2011;5(3):205-212.
  • Zargarzadeh M., Amaral A.J.R., Custodio C.A., Mano J.F. Biomedical applications of laminarin. Carbohydrate Polymers 2020; 232:115774.
  • Zhang Z., Chi H., Dalmo R.A. Trained innate immunity of fish is a viable approach in larval aquaculture, Frontiers in Immunology 2019;10:42.

Likenaz ve Laminarinaz Enzimlerini Üreten Bacillus Suşlarının Balık Yem Katkısı Olarak Kullanımı

Year 2022, Volume: 5 Issue: 3, 1855 - 1871, 12.12.2022
https://doi.org/10.47495/okufbed.1100047

Abstract

Hayvanlardan yüksek verim elde etmek için hayvan sağlığını korumanın yanında yemden yararlanma yeteneğini de üst düzeye çıkarmak gerekmektedir. Bu yöndeki önemli uygulamalardan biri yem katkı maddeleridir. Yem katkı maddeleri balık üretimini ve refah düzeyini yükselten, sindirimi ve sindirim sistemi mikroflorasını iyileştiren, besin maddelerinin ve yemin korunmasına katkıda bulunan, bitkisel ve hayvansal ürünler ve mikroorganizmalardır. Her ne kadar enzim üretiminde bitkisel ve hayvansal dokular kullanılsa da, enzim üretiminde mikroorganizmaların kullanımı ilk sıralardadır. Moleküler genetik tekniklerinin kullanılmaya başlamasından sonra enzim üretiminde sorumlu genler mikroorganizmalarda klonlanarak, enzimlerin endüstriyel boyutta daha saf ve daha ucuz bir şekilde üretilmeleri mümkün hale gelmiştir.

References

  • Adıyaman E., Ayhan, V.. Etlik piliçlerin beslenmesinde aromatik bitkilerin kullanımı. Hayvansal Üretim 2010; 51(1):57-63.
  • Ai Q., Mai K., Zhang L., Tan B., Zhang W., Xu W., Li H. Effects of Dietary β-(1,3)-Glucan on innate immune response of large yellow croaker, Pseudosciena crocea. Fish & Shellfish Immunology 2007; 22(4):394-402.
  • Alp M., Kahraman R. Probiyotiklerin hayvan beslemede kullanılması. İstanbul Üniversitesi Veterinerlik Fakültesi Dergisi1996; 22(1):1-8.
  • Aydın G., Koçak D. Bazı antibiyotiklerin kanatlı yemlerinde yem katkı maddesi olarak kullanımlarındaki sakıncalar ve Avrupa birliği’nin bu konuda aldığı kararlar, Viv. Poultry Yutav’99 Uluslar Arası Tavukçuluk Fuarı ve Konferansı, 3-6 Haziran 1999; 316-320, İstanbul.
  • Bagni M., Archetti L., Amadori M., Marino G. Effect of long-term administration of an immunostimulant diet on immunity in Sea bass (Dicentrarchus labrax). Journal of Veterinary Medicine 2000; 47(10):745-751.
  • Barman D., Nen P., Mandal S.C., Kumar V. Aquaculture health management: A New approach. Journal of Marine Science: Research & Development 2013; 3(4):1-11.
  • Beckmann L., Simon O., Vahjen W. Isolation and identification of mixed linked β-glucan egrading bacteria in the intestine of broiler chickens and partial characteriation of respective 1,3-1,4-glucanase activities. Journal of Basic Microbiology 2006;46(3):175-185.
  • Bhat M.K., Bhat S. Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances 1997; 15:583-620.
  • Borriss R., Manteuffel R., Hofemeister J. Molecular cloning of a gene coding for thermostable beta-glucanase from Bacillus macerans. Journal of Basic Microbiology 1988; 28:1-10.
  • Buchanan J., Sarac H.Z., Poppi D., Cowan R.T. Effects of enzyme addition to canola meal in prawn diets. Aquaculture 1997;151:29-35.
  • Bueno A., Vazquez D., Aldana C.R., Correa J., Del R.F. Nucleotide sequence of a 1,3-1,4-β-glucanase-encoding gene in Bacillus circulans WL-12. Nucleic Acids Research 1990a;18(14):4248.
  • Bueno A., Vazquez D., Aldana C.R., Correa J., Del, R.F. Synthesis and secretion of a Bacillus circulans WL-12 1,3-1,4-β-D-glucanase in Escherichia coli. Journal of Bacteriology 1990b;172(4):2160-2167.
  • Cantwell B.A., McConnell M.J. Molecular Cloning and Expression of a Bacillus subtilis β-Glucanase Gene in Escherichia coli. Gene 1983; 23(2):211-219.
  • Carrasco P., Beltrán J.P., Peretó G., Granell A. 1,3-β-Glucan hydrolase from citrus, phytochemistry 1983;22(12):2699-2701.
  • Cavazzoni V., Adami A., Castrovilli, C. Performance of broiler chickens supplemented with Bacillus coagulans as probiotic. British Poultry Science 1998; 39(4):526-529.
  • Chattopadhyay M.K. Use of antibiotics as feed additives: A burning question. Frontiers in Microbiology 2014; 334(5):1-3.
  • Chen H., Li X.L., Ljungdahl L.G. Sequencing of a 1,3-1,4-beta-D-glucanase (lichenase) from the anaerobic fungus Orpinomyces strain PC-2 properties of the enzyme expressed in Escherichia coli and evidence that the gene has a bacterial origin. Journal of Bacteriology 1997; 179(19):6028-6034.
  • Coutinho P.M., Henrissat B. Carbohydrate-active enzymes: an integrated database approach. Cambridge: In: Gilbert H, Davies G, Henrissat B, Svensson B., Editor. Recent advances in carbohydrate bioengineering. The Royal Society of Chemistry 1999; 3-12.
  • Çiftçi İ. Yem katkı maddesi olarak enzimler, çiftlik hayvanlarının beslenmesinde temel prensipler ve karma yem üretiminde bazı bilimsel yaklaşımlar. İstanbul: Farmavet Ilaç Sanayi ve Ticaret A.Ş. 2001;543-583.
  • Dafwang I.I., Bird H.R., Sunde M.L. Broiler chick growth response to antibiotics. Poultry Science 1984; 63:1027-1032.
  • Dalmo R.A., Bogwald J. β-Glucans as conducturs of immune symphonies. Fish & ShellFish Immunology 2008; 25(4):384-396.
  • Dalmo R.A., Martinsen B., Horsberg T.E., Ramstad A., Syvertsen C., Seljelid R., Ingebrigtsen K. Prophylactic effect of beta-1,3-d-glucan (laminaran) against experimental Aeromonas salmonicida and Vibrio salmonicida infections, Journal of Fish Disaeses 1998;21(6):459-462.
  • Deguara S., Jauncey K., Feord J., López J. Growth and feed utilization of gilthead sea bream, Sparus aurata, fed diets with supplementary enzyme. Ciheam-Options Mediterraneennes 1999; p:195-215.
  • Demirel R., Gürbüz, Y. Karma yemlerde enzim kullanımı. Viv. Poultry Yutav’99 Uluslararası Tavukçuluk Fuarı ve Konferansı, 3-6 Haziran 1999; 489-495.İstanbul,
  • Drew M.D., Racz V.J., Gauthier R., Thiessen D.L. Effect of adding protease to coextruded flax: pea or canola: pea products on nutrient digestibility and growth performance of rainbow trout (Oncorhynchus mykiss), Animal Feed Science and Technology 2005;119:117-128.
  • Erdoğan Z. Broyler rasyonlarında antibiyotik ve probiyotik kullanılması. Lalahan Hayvancılık Araştırma Enstitüsü Dergisi 1999; 39(2):57-69.
  • Erfle J.D., Teather R.M., Wood P.J., Irvın J.E. Purification and Properties of a 1,3-1,4-beta-D-glucanase (lichanase, 1,3-1,4-beta-D-glucan 4-glucanohydrolase, E.C. 3.2.1.73) from Bacteroides succinogenes cloned in Escherichia coli. Biochemical Journal 1988; 255(3):833-841.
  • Ferrer P. Revisiting the Cellulosimicrobium cellulans yeast-lytic β-1,3-glucanases toolbox: A review. Microbial Cell Factories 2006;5(10):1-8.
  • Ferrer P., Halkier T., Hedegaard L., Savva D., Diers I., Asenjo J.A. Nucleotide sequence of a β-1,3-glucanase isoenzyme IIA gene of Oerskovia xanthineolytica LL G109 (Cellulomonas cellulans) and initial characterization of the recombinant enzyme expressed in Bacillus subtilis. Journal of Bacteriology 1996; 178(15):4751-4757.
  • Flint H.J., Martin J., Mcpherson C.A., Daniel A.S., Zhang J.X. A Bifunctional enzyme, with separate xylanase and β-(1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. Journal of Bacteriology 1993;175:2943-2951.
  • Fritze D., Pukall R. Reclassification of bioindicator strains Bacillus subtilis DSM 675 and Bacillus subtilis DSM 2277 as Bacillus atrophaeus. International Journal of Systematic and Evolutionary Microbiology 2001;51:35-37.
  • Genta F.A., Bragatto I., Terra W.R., Ferreira C. Purification, characterization and sequencing of the major beta-1,3-glucanase from the midgut of Tenebrio molitor larvae. Insect Biochemistry and Molecular Biology 2009;39(12):861-874.
  • Glazer A.N., Nikaido H. Microbial Enzymes. Microbial Biotechnology: Fundamentals of Applied Microbiology, W.H. Freeman and Company1995; 662 USA. Godfrey T., Reınchelt J. Industrial enzymology. London: McMillian 1983.
  • Gosalbes M.J., Perez-Gonzalez J.A., Gonzalez R., Navarro A. Two beta-glycanase genes are clustered in Bacillus polymyxa: molecular cloning, expression, and sequence analysis of genes encoding a xylanase and an endo-beta-(1,3)-(1,4)-glucanase. Journal of Bacteriology 1991; 173(23):7705-7710.
  • Gueguen Y., Voorhorst W.G.B., Oost J.V.D., Vos W.M.D. Molecular and biochemical characterization of an endo-beta-1,3- glucanase of the hyperthermophilic archaeon Pyrococcus furiosus. Journal of Biological Chemistry 1997; 272(50):31258-31264.
  • Hartl L., Gastebois A., Aimanianda V., Latge J.P. Characterization of the GPI-anchored endo beta-1,3-glucanase Eng2 of Aspergillus fumigatus. Fungal Genetics and Biology 2011; 48(2):185-191.
  • Henrissat B. A Clasification of glycoside hydrolases based on amino acid sequence similarities. The Biochemical Journal 1991; 280(2):309-316.
  • Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolyses based on amino acid similarities. Biochemical Journal 1993;293:781-788. Henrissat B., Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochemical Journal 1996;316:695-696.
  • Hien N.H., Fleet G.H. Separation and characterization of six (1 leads to 3) beta glucanases from Saccharomyces cerevisiae. Journal of Bacteriology 1983;156(3):1204-1213.
  • Hinchliffe E., Box W.G. expression of the cloned endo-1,3-1,4-β-glucanase gene of Bacillus subtilis in Saccharomyces cerevisiae. Current Genetics 1984; 8:471-475.
  • Hofemeister J., Kurtz A., Borris R., Knowles J. The beta-glucanase gene from Bacillus amyloliquefaciens shows extensive homology with that of Bacillus subtilis. Gene 1986; 49(2):177-187.
  • Horikoshi K. Alkaliphiles: some applications of their products for biotechnolgy. Microbiology and Molecular Biology Reviews 1999; 63(4):735- 750. Hughes P., Heritage J. Antibiotic growth promoters. Feed Technology 2002;6(8):20-22.
  • Jaafar N.R., Khoiri N.M., Ismail N.F., Nik Mahmood N.A., Murad,A.M.A., Bakar F.D.A., Yajit N.L.M., Illia R.M. Functional characterisation and product specificity of endo-β-1,3-glucanase from alkalophilic bacterium, Bacillus lehensis G1. Enzyme and Microbial Technology 2020;140:109625.
  • Ji Y.B., Ji C.F., Zhang H. Laminarin induces apoptosis of human colon cancer lovo cells through a mitochondrial pathway. Molecules 2012;17(8):9947-9960.
  • Jirku V., Kraxnerova B., Krumphanzl V. The Extracellular system of beta-1,3-glucanases of Alternaria tenuissima and Aspergillus vesicolor. Folia Microbiology 1980; 25(1):24-31.
  • Kadam S.U., O’Donnell C.P., Rai D.K., Hossain M.B., Burgess C.M., Walsh D., Tiwari B.K. Laminarin from irish brown seaweeds Ascophyllum nodosum and Laminaria hyperborea: Ultrasound assisted extraction, characterization and bioactivity. Marine Drugs 2015;13(7):4270-4780.
  • Karademir G., Karademir B. Yem katkı maddesi olarak kullanılan biyoteknolojik ürünler. Lalahan Hayvancılık Araştırma Enstitüsü Dergisi 2003; 43(1):61-74.
  • Keser O., Bilal T. Beta-glukan’ın hayvan beslemede bağışıklık sistemi ve performans üzerine etkisi. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 2008;5(2):107-119.
  • Kim K.H., Kim Y.W., Kim H.B., Lee B.J., Lee D.S. Anti-apoptotic activity of laminarin polysaccharides and their enzymatically hydrolyzed oligosaccharides from Laminaria japonica. Biotechnology Letters 2006;28(6):439-446.
  • Kovalchuk S.N., Sundukova E.V., Kusaykin M.I., Guzev K.V., Anastiuk S.D., Kuda T., Yano T., Matsuda N., Nishizawa M. Inhibitory effects of laminaran and low molecular alginate against the putrefactive compounds produced by ıntestinal microflora ın-vitro and in rats. Food Chemistry 2005; 91:745-749.
  • Kutlu H.R., Çelik L. Yemler Bilgisi ve Yem Teknolojisi. Adana: Ç.Ü. Ziraat Fak., Ders Kitapları 2005.
  • Kutlu H.R., Serbester U. Ruminant beslemede son gelişmeler. Türk Tarım Gıda Bilim ve Teknoloji Dergisi 2014;2(1):18-37.
  • Labourel A., Jam M., Jeudy A., Hehemann J.H., Czjzek M., Michel G. The Beta-glucanase ZgLamA from Zobellia galactanivorans evolved a bent active site adapted for efficient degradation of algal laminarin. Journal of Biological Chemistry 2014;289(4):2027-2042.
  • Likhatskaya G.N., Trifonov E.V., Nurminski E.A., Kozhemyako V.B., Zvyagintseva T.N., Rasskazov V.A. Purification, cDNA cloning and homology modeling of endo-1,3-beta-d-glucanase from scallop Mizuhopecten yessoensis. Comparative Biochemistry and Physiology, Part B 2006; 143(4):473-485.
  • Liu W.C., Lin Y.S., Jeng W.Y., Chen J.H., Wang A.H., Shyur L.F. Engineering of dual functional hybrid glucanases. Protein Engineering, Design and Selection 2012;25(11):771-780.
  • Lloberas J., Perez-Pons J.A., Querol E. Molecular cloning, expression and nucleotide sequence of the endo-β-1,3-1,4-d-glucanase gene from Bacillus licheniformis. European Journal of Biochemistry 1991; 197(2):337-343.
  • Louw M.E., Reid S.J., Watson T.G. Characterization, cloning and sequencing of a thermostable endo-(1,3-1,4) beta-glucanase encoding gene from alkalophilic Bacillus brevis. Applied Genetics and Regulation 1993;38:507-513.
  • Manners D.J., Wilson G. Studies on beta-glucanases. some properties of a bacterial endo-beta-(1,3)-glucanase system. Biochemical Journal 1973;135(1):11-18.
  • Miao H.Q., Ishai-Michaeli R., Peretz T., Vlodavsky I. Laminarin sulfate mimics the effects of heparin on smooth muscle cell proliferation and basic fibroblast growth factor-receptor binding and mitogenic activity. Journal of Cellular Physiology 1995; 164(3):482-490.
  • Murphy N., Mcconnell, D.J., and Cantwell B.A. The dna sequence of the gene and genetic control sites for the excreted B. subtilis enzyme β-glucan hydrolase. Nucleic Acids Research1984; 12(13):5355-5367.
  • Ng,, W.K., Koh C.B. The utilization and mode of action of organic acids in the feeds of cultured aquatic animals. Reviews in Aquaculture 2017; 9:342-368. Nir İ., Şenköylü N. Sindirimi destekleyen yem katkı maddeleri. Tekirdağ: Roche 2000.
  • Nogi Y., Horikoshi K. A thermostable alkaline β-1,3-glucanase produced by alkalophilic Bacillus sp. AG-430. Applied Microbiology Biotechnology 1990; 32:704-707.
  • Palic D., Andreasen C.B., Herolt D.M., Menzel B.W., Roth J.A. Immunomodulatory effects of β-glucan on neutrophil function in fathead minnows (Pimephales promelas Rafinesque, 1820). Development and Comparative Immunology 2006; 30(9):817-830.
  • Park J.H., Ahn J.H., Lee T.K., Park C.W., Kim B., Lee J.C., Won M.H. Laminarin pretreatment provides neuroprotection against forebrain ıschemia/reperfusion ınjury by reducing oxidative stress and neuroinflammation in aged gerbils. Marine Drugs 2020;18(4):1-14.
  • Planas A. Bacterial 1,3-1,4-β-glucanases: structure, function and protein engineering (Review). Biochimica et Biophysica Acta 2000; 1543(2):361-382. Prescott L.M., Harley J.P., Klein D.A. Microbiology. New York: USA.Fourth Edition, McGraw-Hill Companies 1999;
  • Priest F.G. Extracellular enzyme synthesis in the genus Bacillus. Bacteriology Reviews 1977;41(3):711-753.
  • Reichelt B.Y., Fleet G.H. Isolation, properties, function, and regulation of endo-(1,3)-beta-glucanases in Schizosaccharomyces pombe. Journal of Bacteriology 1981; 147(3):1085-1094.
  • Robertsen B., Roerstand G., Engstad R.E., Raa, J. Enhancement of Non-Spesific Disease Resistance in Atlantic Salmon, Salmo salar L., by a Glucan from Saccharomyces cerevisiae Cell Walls. Journal of Fish Diseases 1990; 13(5):391-400.
  • Rosen G.D. Antibacterials in poultry and pig nutrition. Germany: Biotechnology in Animal Feeds and Animal Feeding; VCH press 1995; 225-257.
  • Saeki K., Iwata J., Yamazaki S., Watanabe Y., Tamai Y. Purification and characterization of a yeast lytic β-1,3-glucanase from Oerskovia xanthineolytica TK-1. Journal of Fermentation and Bioengineering 1994;78(6):407-412.
  • Sakamoto Y., Nakade K., Konno, N. Endo-beta-1,3-glucanase GLU1, from the fruiting body of lentinula edodes, belongs to a new glycoside hydrolase family. Applied and Environmental Microbiology 2011;77(23):8350-8354.
  • Schimming S., Schwarz W.H. Staudenbauer W.L. Properties of a thermoactive beta-1,3-1,4-glucanase (lichenase) from Clostridium thermocellum expressed in Escherichia coli. Biochemical and Biophysical Research Communications 1991;177(1):447-452.
  • Srivastava N. Production of food-processing enzymes from recombinant microorganisms. In: Kuddus M., eds. Enzymes in Food Biotechnology: Academic Press 2019; 739-767.
  • Stone B.A., Clarke A.E. Chemistry and biology of 1,3-β-Glucans. Bundoora, Australia: La Trobe Univ. Press 1992.
  • Sullivan A., Nord C.E. The Place of probiotics in human intestinal infection. International Journal of Antimicrobial Agents 2002;20(5):313-319.
  • Sutay Kocabaş D. Gıda endüstrisinde enzimlerin rolü ve ilgili yasal düzenlemeler. Ankara: Ögel ZB, Editör. Gıda Biyoteknolojisi 1. Baskı. Türkiye Klinikleri 2021; p:29-38.
  • Szilagyi M., Kwon N.J., Dorogi C., Pocsi I., Yu J.H., Emri T. The Extracellular Beta-1,3-Endo-Glucanase EngA is Involved in Autolysis of Aspergillus nidulans. Journal of Applied Microbiology 2010;109(5):1498-1508.
  • Tabernero C., Coll P.M., Fernandez-Abalos J.M., Perez P., Santamaria R.I. Cloning and dna sequencing of bgaA, a gene encoding an endo-β-1,3-1,4-glucanase, from an alkalophilic Bacillus strain (N137). Applied and Environmental Microbiology 1994;60(4):1213-1220.
  • Takeda T., Nakano Y., Takahashi M., Konno N., Sakamoto Y., Arashida R., Marukawa Y., Yoshida E., Ishikawa T., Suzuki K. Identification and enzymatic characterization of an endo-1,3-beta-glucanase from Euglena gracilis. Phytochemistry 2015;116:21-27.
  • Uhlig H. Industrial Enzymes and their applications. New York: John Wiley&Sons, Inc. 1998.
  • Usoltseva R.V., Belik A.A., Kusaykin M.I., Malyarenko O.S., Zvyagintsevа T.N. Ermakova S.P. Laminarans and 1,3-β-D-glucanases. International Journal of Biological Macromolecules 2020; 163:1010-1025.
  • Usui T., Totani K., Totsuka A., Oguchi M. Purification of endo-(1,3)-β-D-glucanases lysing yeast cell walls from Rhizoctonia solani, Biochimica et Biophysica Acta (BBA)-General Subject 1985; 840(2):255-263.
  • Wiseman A. Handbook of enzyme biotechnology. Second Edition. Chapter 3. Biochemical Education 1987; 5(3):274-373.
  • Yıldırım Ö., Acar Ü., Çantaş İ.B. Balık yemlerinde kullanılan yem katkı maddeleri. Journal of Fisheries Sciences 2014; 8(4):278-290.
  • Yiğit N.Ö., Koca S.B. Balık yemlerinde enzim kullanımı. Journal of Fisheries Sciences 2011;5(3):205-212.
  • Zargarzadeh M., Amaral A.J.R., Custodio C.A., Mano J.F. Biomedical applications of laminarin. Carbohydrate Polymers 2020; 232:115774.
  • Zhang Z., Chi H., Dalmo R.A. Trained innate immunity of fish is a viable approach in larval aquaculture, Frontiers in Immunology 2019;10:42.
There are 87 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section REVIEWS
Authors

Makbule Baylan 0000-0003-0549-0662

Gamze Mazı

Publication Date December 12, 2022
Submission Date April 8, 2022
Acceptance Date July 5, 2022
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

APA Baylan, M., & Mazı, G. (2022). Use of Bacillus Strains Producing Lichenase and Laminarinase Enzymes as Fish Feed Additives. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(3), 1855-1871. https://doi.org/10.47495/okufbed.1100047
AMA Baylan M, Mazı G. Use of Bacillus Strains Producing Lichenase and Laminarinase Enzymes as Fish Feed Additives. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. December 2022;5(3):1855-1871. doi:10.47495/okufbed.1100047
Chicago Baylan, Makbule, and Gamze Mazı. “Use of Bacillus Strains Producing Lichenase and Laminarinase Enzymes As Fish Feed Additives”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, no. 3 (December 2022): 1855-71. https://doi.org/10.47495/okufbed.1100047.
EndNote Baylan M, Mazı G (December 1, 2022) Use of Bacillus Strains Producing Lichenase and Laminarinase Enzymes as Fish Feed Additives. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 3 1855–1871.
IEEE M. Baylan and G. Mazı, “Use of Bacillus Strains Producing Lichenase and Laminarinase Enzymes as Fish Feed Additives”, Osmaniye Korkut Ata University Journal of Natural and Applied Sciences, vol. 5, no. 3, pp. 1855–1871, 2022, doi: 10.47495/okufbed.1100047.
ISNAD Baylan, Makbule - Mazı, Gamze. “Use of Bacillus Strains Producing Lichenase and Laminarinase Enzymes As Fish Feed Additives”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/3 (December 2022), 1855-1871. https://doi.org/10.47495/okufbed.1100047.
JAMA Baylan M, Mazı G. Use of Bacillus Strains Producing Lichenase and Laminarinase Enzymes as Fish Feed Additives. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2022;5:1855–1871.
MLA Baylan, Makbule and Gamze Mazı. “Use of Bacillus Strains Producing Lichenase and Laminarinase Enzymes As Fish Feed Additives”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 3, 2022, pp. 1855-71, doi:10.47495/okufbed.1100047.
Vancouver Baylan M, Mazı G. Use of Bacillus Strains Producing Lichenase and Laminarinase Enzymes as Fish Feed Additives. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2022;5(3):1855-71.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.