Research Article
BibTex RIS Cite

Cloning, Expression, and Purification of Acinetobacter baumannii OccAB1 Porin Protein in Escherichia coli

Year 2023, Volume: 6 Issue: 2, 1529 - 1542, 05.07.2023

Abstract

Acinetobacter baumannii is a free-living gram-negative organism in different habitats such as soil, water, surfaces of human and animal bodies. However, adapting to a pathogenic lifestyle over time, it causes infections and deaths in intensive care units all over the world. Porin proteins play a fundamental role in antibiotic resistance in this bacterium. Overexpression of porins and efflux pumps have been identified as contributing factors in increasing drug resistance and inactivation of therapy. For this reason, to study antibiotic transitions in vitro, these proteins must be purified first. With this porin protein obtained after purification, the passage of antibiotics in bilayer lipid layers will be investigated. In this study, A. baumannii OccAB1 porin protein was cloned and expressed in E. coli. As a result, A. baumannii OccAB1 porin cloned into the expression vector was successfully expressed in E. coli.

Supporting Institution

TUBITAK

Project Number

117S114

Thanks

This work was supported by the TUBITAK project numbered 117S114. We thank TUBITAK for this support. The authors would like also to thank Araz N. Dizaji and Ikbal Agah İnce for helpful discussions during the preliminary studies.

References

  • Abbott, I., Cerqueira, G. M., Bhuiyan, S., & Peleg, A. Y. (2013). Carbapenem resistance in Acinetobacter baumannii: laboratory challenges, mechanistic insights, and therapeutic strategies. Expert Review of Anti-Infective Therapy, 11(4), 395–409. https://doi.org/10.1586/ERI.13.21
  • Assenberg, R., Wan, P. T., Geisse, S., & Mayr, L. M. (2013). Advances in recombinant protein expression for use in pharmaceutical research. Current Opinion in Structural Biology, 23(3), 393–402. https://doi.org/10.1016/J.SBI.2013.03.008
  • Bhamidimarri, S. P., Zahn, M., Prajapati, J. D., Schleberger, C., Söderholm, S., Hoover, J., West, J., Kleinekathöfer, U., Bumann, D., Winterhalter, M., & van den Berg, B. (2019). A Multidisciplinary Approach toward Identification of Antibiotic Scaffolds for Acinetobacter baumannii. Structure (London, England : 1993), 27(2), 268-280.e6. https://doi.org/10.1016/J.STR.2018.10.021
  • Blattner, F. R., Plunkett, G., Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B., & Shao, Y. (1997). The complete genome sequence of Escherichia coli K-12. Science (New York, N.Y.), 277(5331), 1453–1462. https://doi.org/10.1126/SCIENCE.277.5331.1453
  • Borneleit, P., & Kleber, H.-P. (1991). The Outer Membrane of : Structure-Function Relationships. The Biology of Acinetobacter, 259–271. https://doi.org/10.1007/978-1-4899-3553-3_18
  • Choi, U., & Lee, C. R. (2019). Distinct Roles of Outer Membrane Porins in Antibiotic Resistance and Membrane Integrity in Escherichia coli. Frontiers in Microbiology, 10(APR), 1–9. https://doi.org/10.3389/fmicb.2019.00953
  • Clark, T. J., Momany, C., & Neidle, E. L. (2002). The benPK operon, proposed to play a role in transport, is part of a regulon for benzoate catabolism in Acinetobacter sp. strain ADP1. Microbiology (Reading, England), 148(Pt 4), 1213–1223. https://doi.org/10.1099/00221287-148-4-1213 Darcan, C., Özkanca, R., İdil. Ö. (2009). The role of RpoS, H-NS and AcP on the pH-dependent OmpC and OmpF porin expressions of Escherichia coli at different pH, Afrıcan Journal of Bıotechnology 8(9):1845-1854.
  • Darcan, C. (2012). Expression of OmpC and OmpF porin proteins and survival of escherichia coli under photooxidative stress in black seawater. Aquatic Biology, 17(2), 97–105. https://doi.org/10.3354/AB00458
  • Darcan, C., & Aydin, E. (2012). Fur- mutation increases the survival time of Escherichia coli under photooxidative stress in aquatic environments. Acta Biologica Hungarica, 63(3), 399–409. https://doi.org/10.1556/ABIOL.63.2012.3.10
  • Darcan, C., Özkanca, R., & Flint, K. P. (2003). Survival of nonspecific porin-deficient mutants of Escherichia coli in black seawater. Letters in Applied Microbiology, 37(5), 380–385. https://doi.org/10.1046/j.1472-765X.2003.01418.x
  • Demain, A. L., & Vaishnav, P. (2009). Production of recombinant proteins by microbes and higher organisms. Biotechnology Advances, 27(3), 297–306. https://doi.org/10.1016/J.BIOTECHADV.2009.01.008
  • Dupont, M., Pagès, J. M., Lafitte, D., Siroy, A., & Bollet, C. (2005). Identification of an OprD homologue in Acinetobacter baumannii. Journal of Proteome Research, 4(6), 2386–2390. https://doi.org/10.1021/PR050143Q/ASSET/IMAGES/PR050143Q.SOCIAL.JPEG_V03
  • Esterly, J. S., Griffith, M., Qi, C., Malczynski, M., Postelnick, M. J., & Scheetz, M. H. (2011). Impact of carbapenem resistance and receipt of active antimicrobial therapy on clinical outcomes of Acinetobacter baumannii bloodstream infections. Antimicrobial Agents and Chemotherapy, 55(10), 4844–4849. https://doi.org/10.1128/AAC.01728-10
  • He, S., Wu, X., Ma, B., & Xu, Y. (2021). High specific immobilization of His-tagged recombinant Microbacterium esterase by Ni-NTA magnetic chitosan microspheres for efficient synthesis of key chiral intermediate of d-biotin. Bioprocess and Biosystems Engineering, 44(10), 2193–2204. https://doi.org/10.1007/S00449-021-02595-7
  • Huang, C. J., Lin, H., & Yang, X. (2012). Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. Journal of Industrial Microbiology and Biotechnology, 39(3), 383–399. https://doi.org/10.1007/S10295-011-1082-9
  • Joshi, H., & Jain, V. (2017). Novel method to rapidly and efficiently lyse Escherichia coli for the isolation of recombinant protein. Analytical Biochemistry, 528, 1–6. https://doi.org/10.1016/J.AB.2017.04.009
  • Lee, C. R., Cho, I. H., Jeong, B. C., & Lee, S. H. (2013). Strategies to Minimize Antibiotic Resistance. International Journal of Environmental Research and Public Health 2013, Vol. 10, Pages 4274-4305, 10(9), 4274–4305. https://doi.org/10.3390/IJERPH10094274
  • Lee, C. R., Lee, J. H., Park, M., Park, K. S., Bae, I. K., Kim, Y. B., Cha, C. J., Jeong, B. C., & Lee, S. H. (2017). Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Frontiers in Cellular and Infection Microbiology, 7(MAR). https://doi.org/10.3389/FCIMB.2017.00055
  • Mostachio, A. K., Levin, A. S., Rizek, C., Rossi, F., Zerbini, J., & Costa, S. F. (2012). High prevalence of OXA-143 and alteration of outer membrane proteins in carbapenem-resistant Acinetobacter spp. isolates in Brazil. International Journal of Antimicrobial Agents, 39(5), 396–401. https://doi.org/10.1016/J.IJANTIMICAG.2012.01.021
  • Nikaido, H. (2003). Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiology and Molecular Biology Reviews, 67(4), 593–656. https://doi.org/10.1128/MMBR.67.4.593-656.2003/FORMAT/EPUB
  • Nikaido, H., & Vaara, M. (1985). Molecular basis of bacterial outer membrane permeability. Microbiological Reviews, 49(1), 1–32. https://doi.org/10.1128/mmbr.49.1.1-32.1985
  • Nurjayadi, M., Setiyoto, T., Jinan, S. F., Hardianto, D., Sulfianti, A., Agustini, K., & El-Enshasy, H. A. (2021). Purification of Fim-C-Salmonella typhi recombinant protein with Ni-NTA resin as raw material for typhoid disease detection kit. Journal of Physics: Conference Series, 1869(1). https://doi.org/10.1088/1742-6596/1869/1/012033
  • Obara, M., & Nakae, T. (1991). Mechanisms of resistance to β-lactam antibiotics in Acinetobacter calcoaceticus. Journal of Antimicrobial Chemotherapy, 28(6), 791–800. https://doi.org/10.1093/JAC/28.6.791
  • Overton, T. W. (2014). Recombinant protein production in bacterial hosts. Drug Discovery Today, 19(5), 590–601. https://doi.org/10.1016/j.drudis.2013.11.008
  • Pagès, J. M., James, C. E., & Winterhalter, M. (2008). The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nature Reviews Microbiology 2008 6:12, 6(12), 893–903. https://doi.org/10.1038/nrmicro1994
  • Park, Y. K., Jung, S. I., Park, K. H., Kim, S. H., & Ko, K. S. (2012). Characteristics of carbapenem-resistant Acinetobacter spp. other than Acinetobacter baumannii in South Korea. International Journal of Antimicrobial Agents, 39(1), 81–85. https://doi.org/10.1016/J.IJANTIMICAG.2011.08.006
  • Peränen, J., Rikkonen, M., Hyvönen, M., & Kääriäinen, L. (1996). T7 vectors with modified T7lac promoter for expression of proteins in Escherichia coli. Analytical Biochemistry, 236(2), 371–373. https://doi.org/10.1006/ABIO.1996.0187
  • Rasooli, I., Abdolhamidi, R., Jahangiri, · Abolfazl, Darvish, S., & Astaneh, A. (2020). Outer Membrane Protein, Oma87 Prevents Acinetobacter baumannii Infection. International Journal of Peptide Research and Therapeutics, 26(3), 2653–2660. https://doi.org/10.1007/s10989-020-10056-0
  • Rice, L. B. (2008). Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. The Journal of Infectious Diseases, 197(8), 1079–1081. https://doi.org/10.1086/533452
  • Rice, L. B. (2010). Progress and challenges in implementing the research on ESKAPE pathogens. Infection Control and Hospital Epidemiology, 31 Suppl 1(S1), S7–S10. https://doi.org/10.1086/655995
  • Santajit, S., & Indrawattana, N. (2016). Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Research International, 2016. https://doi.org/10.1155/2016/2475067
  • Segura, A., Bünz, P. v., D’Argenio, D. A., & Ornston, L. N. (1999). Genetic analysis of a chromosomal region containing vanA and vanB, genes required for conversion of either ferulate or vanillate to protocatechuate in Acinetobacter. Journal of Bacteriology, 181(11), 3494–3504. https://doi.org/10.1128/jb.181.11.3494-3504.1999
  • Smith, M. A., Weaver, V. B., Young, D. M., & Ornston, L. N. (2003). Genes for chlorogenate and hydroxycinnamate catabolism (hca) are linked to functionally related genes in the dca-pca-qui-pob-hca chromosomal cluster of Acinetobacter sp. strain ADP1. Applied and Environmental Microbiology, 69(1), 524–532. https://doi.org/10.1128/AEM.69.1.524-532.2003
  • Srinivasan, V. B., Vaidyanathan, V., & Rajamohan, G. (2015). AbuO, a tolc-like outer membrane protein of Acinetobacter baumannii, is involved in antimicrobial and oxidative stress resistance. Antimicrobial Agents and Chemotherapy, 59(2), 1236–1245. https://doi.org/10.1128/AAC.03626-14
  • Studier, F. W. (1991). Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. Journal of Molecular Biology, 219(1), 37–44. https://doi.org/10.1016/0022-2836(91)90855-Z
  • Sugawara, E., & Nikaido, H. (2012). OmpA is the principal nonspecific slow porin of Acinetobacter baumannii. Journal of Bacteriology, 194(15), 4089–4096. https://doi.org/10.1128/JB.00435-12
  • Tokuda, H. (2014). Biogenesis of Outer Membranes in Gram-Negative Bacteria. OUP, 73(3), 465–473. https://doi.org/10.1271/BBB.80778 Uppalapati, S. R., Sett, A., & Pathania, R. (2020). The Outer Membrane Proteins OmpA, CarO, and OprD of Acinetobacter baumannii Confer a Two-Pronged Defense in Facilitating Its Success as a Potent Human Pathogen. Frontiers in Microbiology, 11, 2441. https://doi.org/10.3389/FMICB.2020.589234/BIBTEX
  • Vashist, J., Tiwari, V., Kapil, A., & Rajeswari, M. R. (2010). Quantitative profiling and identification of outer membrane proteins of beta-lactam resistant strain of Acinetobacter baumannii. Journal of Proteome Research, 9(2), 1121–1128. https://doi.org/10.1021/PR9011188
  • Vashistt, J., Tiwari, V., Kapil, A., & Moganty, R. R. (2011). Differential expression of outer membrane proteins in early stages of meropenem-resistance in Acinetobacter baumannii. Journal of Integrated OMICS, 1(2), 280. https://doi.org/10.5584/JIOMICS.V1I2.67
  • Verma, S. K., Gautam, V., Balakrishna, K., & Kumar, S. (2009). Overexpression, purification, and immunogenicity of recombinant porin proteins of Salmonella enterica serovar Typhi (S. Typhi). Journal of Microbiology and Biotechnology, 19(9), 1034–1040. https://doi.org/10.4014/JMB.0812.675
  • Vila, J., Martí, S., & Sánchez-Céspedes, J. (2007). Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. The Journal of Antimicrobial Chemotherapy, 59(6), 1210–1215. https://doi.org/10.1093/JAC/DKL509
  • Zahn, M., Bhamidimarri, S. P., Baslé, A., Winterhalter, M., & van den Berg, B. (2016). Structural Insights into Outer Membrane Permeability of Acinetobacter baumannii. Structure (London, England : 1993), 24(2), 221–231. https://doi.org/10.1016/J.STR.2015.12.009

Escherichia coli'de Acinetobacter baumannii OccAB1 Porin Proteininin Klonlanması, Ekspresyonu ve Saflaştırılması

Year 2023, Volume: 6 Issue: 2, 1529 - 1542, 05.07.2023

Abstract

Acinetobacter baumannii, toprakta, suda, insan ve hayvan vücutlarının yüzeyleri gibi farklı habitatlarda serbest yaşayan gram negatif bir organizmalardır. Ancak zamanla patojenik bir yaşam tarzına adapte olarak tüm dünyada yoğun bakım ünitelerinde enfeksiyonlara ve ölümlere neden olmaktadır. Antibiyotik direncinde porin proteinleri bu bakteride temel rol oynamaktadır. Porinler ve dışa akış pompalarının aşırı ekspresyonu, ilaç direncini artırmada ve tedavinin etkisiz hale getirilmesinde katkıda bulunan faktörler olarak tespit edilmiştir. Bu sebeple antibiyotik geçişlerinin in vitro olarak çalışılabilmesi için öncelikli olarak bu proteinlerin saflaştırılması gerekmektedir. Saflaştırma işleminin ardından elde edilen bu porin proteini ile çift katmanlı lipit tabakalarda antibiyotiklerin geçişleri araştırılacaktır. Bu çalışmada, A. baumannii OccAB1 porin proteini klonlandı ve E. coli'de eksprese edildi. Sonuç olarak, ekspresyon vektörüne klonlanan A. baumannii OccAB1 porini, E. coli'de başarıyla eksprese edildi.

Project Number

117S114

References

  • Abbott, I., Cerqueira, G. M., Bhuiyan, S., & Peleg, A. Y. (2013). Carbapenem resistance in Acinetobacter baumannii: laboratory challenges, mechanistic insights, and therapeutic strategies. Expert Review of Anti-Infective Therapy, 11(4), 395–409. https://doi.org/10.1586/ERI.13.21
  • Assenberg, R., Wan, P. T., Geisse, S., & Mayr, L. M. (2013). Advances in recombinant protein expression for use in pharmaceutical research. Current Opinion in Structural Biology, 23(3), 393–402. https://doi.org/10.1016/J.SBI.2013.03.008
  • Bhamidimarri, S. P., Zahn, M., Prajapati, J. D., Schleberger, C., Söderholm, S., Hoover, J., West, J., Kleinekathöfer, U., Bumann, D., Winterhalter, M., & van den Berg, B. (2019). A Multidisciplinary Approach toward Identification of Antibiotic Scaffolds for Acinetobacter baumannii. Structure (London, England : 1993), 27(2), 268-280.e6. https://doi.org/10.1016/J.STR.2018.10.021
  • Blattner, F. R., Plunkett, G., Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B., & Shao, Y. (1997). The complete genome sequence of Escherichia coli K-12. Science (New York, N.Y.), 277(5331), 1453–1462. https://doi.org/10.1126/SCIENCE.277.5331.1453
  • Borneleit, P., & Kleber, H.-P. (1991). The Outer Membrane of : Structure-Function Relationships. The Biology of Acinetobacter, 259–271. https://doi.org/10.1007/978-1-4899-3553-3_18
  • Choi, U., & Lee, C. R. (2019). Distinct Roles of Outer Membrane Porins in Antibiotic Resistance and Membrane Integrity in Escherichia coli. Frontiers in Microbiology, 10(APR), 1–9. https://doi.org/10.3389/fmicb.2019.00953
  • Clark, T. J., Momany, C., & Neidle, E. L. (2002). The benPK operon, proposed to play a role in transport, is part of a regulon for benzoate catabolism in Acinetobacter sp. strain ADP1. Microbiology (Reading, England), 148(Pt 4), 1213–1223. https://doi.org/10.1099/00221287-148-4-1213 Darcan, C., Özkanca, R., İdil. Ö. (2009). The role of RpoS, H-NS and AcP on the pH-dependent OmpC and OmpF porin expressions of Escherichia coli at different pH, Afrıcan Journal of Bıotechnology 8(9):1845-1854.
  • Darcan, C. (2012). Expression of OmpC and OmpF porin proteins and survival of escherichia coli under photooxidative stress in black seawater. Aquatic Biology, 17(2), 97–105. https://doi.org/10.3354/AB00458
  • Darcan, C., & Aydin, E. (2012). Fur- mutation increases the survival time of Escherichia coli under photooxidative stress in aquatic environments. Acta Biologica Hungarica, 63(3), 399–409. https://doi.org/10.1556/ABIOL.63.2012.3.10
  • Darcan, C., Özkanca, R., & Flint, K. P. (2003). Survival of nonspecific porin-deficient mutants of Escherichia coli in black seawater. Letters in Applied Microbiology, 37(5), 380–385. https://doi.org/10.1046/j.1472-765X.2003.01418.x
  • Demain, A. L., & Vaishnav, P. (2009). Production of recombinant proteins by microbes and higher organisms. Biotechnology Advances, 27(3), 297–306. https://doi.org/10.1016/J.BIOTECHADV.2009.01.008
  • Dupont, M., Pagès, J. M., Lafitte, D., Siroy, A., & Bollet, C. (2005). Identification of an OprD homologue in Acinetobacter baumannii. Journal of Proteome Research, 4(6), 2386–2390. https://doi.org/10.1021/PR050143Q/ASSET/IMAGES/PR050143Q.SOCIAL.JPEG_V03
  • Esterly, J. S., Griffith, M., Qi, C., Malczynski, M., Postelnick, M. J., & Scheetz, M. H. (2011). Impact of carbapenem resistance and receipt of active antimicrobial therapy on clinical outcomes of Acinetobacter baumannii bloodstream infections. Antimicrobial Agents and Chemotherapy, 55(10), 4844–4849. https://doi.org/10.1128/AAC.01728-10
  • He, S., Wu, X., Ma, B., & Xu, Y. (2021). High specific immobilization of His-tagged recombinant Microbacterium esterase by Ni-NTA magnetic chitosan microspheres for efficient synthesis of key chiral intermediate of d-biotin. Bioprocess and Biosystems Engineering, 44(10), 2193–2204. https://doi.org/10.1007/S00449-021-02595-7
  • Huang, C. J., Lin, H., & Yang, X. (2012). Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. Journal of Industrial Microbiology and Biotechnology, 39(3), 383–399. https://doi.org/10.1007/S10295-011-1082-9
  • Joshi, H., & Jain, V. (2017). Novel method to rapidly and efficiently lyse Escherichia coli for the isolation of recombinant protein. Analytical Biochemistry, 528, 1–6. https://doi.org/10.1016/J.AB.2017.04.009
  • Lee, C. R., Cho, I. H., Jeong, B. C., & Lee, S. H. (2013). Strategies to Minimize Antibiotic Resistance. International Journal of Environmental Research and Public Health 2013, Vol. 10, Pages 4274-4305, 10(9), 4274–4305. https://doi.org/10.3390/IJERPH10094274
  • Lee, C. R., Lee, J. H., Park, M., Park, K. S., Bae, I. K., Kim, Y. B., Cha, C. J., Jeong, B. C., & Lee, S. H. (2017). Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Frontiers in Cellular and Infection Microbiology, 7(MAR). https://doi.org/10.3389/FCIMB.2017.00055
  • Mostachio, A. K., Levin, A. S., Rizek, C., Rossi, F., Zerbini, J., & Costa, S. F. (2012). High prevalence of OXA-143 and alteration of outer membrane proteins in carbapenem-resistant Acinetobacter spp. isolates in Brazil. International Journal of Antimicrobial Agents, 39(5), 396–401. https://doi.org/10.1016/J.IJANTIMICAG.2012.01.021
  • Nikaido, H. (2003). Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiology and Molecular Biology Reviews, 67(4), 593–656. https://doi.org/10.1128/MMBR.67.4.593-656.2003/FORMAT/EPUB
  • Nikaido, H., & Vaara, M. (1985). Molecular basis of bacterial outer membrane permeability. Microbiological Reviews, 49(1), 1–32. https://doi.org/10.1128/mmbr.49.1.1-32.1985
  • Nurjayadi, M., Setiyoto, T., Jinan, S. F., Hardianto, D., Sulfianti, A., Agustini, K., & El-Enshasy, H. A. (2021). Purification of Fim-C-Salmonella typhi recombinant protein with Ni-NTA resin as raw material for typhoid disease detection kit. Journal of Physics: Conference Series, 1869(1). https://doi.org/10.1088/1742-6596/1869/1/012033
  • Obara, M., & Nakae, T. (1991). Mechanisms of resistance to β-lactam antibiotics in Acinetobacter calcoaceticus. Journal of Antimicrobial Chemotherapy, 28(6), 791–800. https://doi.org/10.1093/JAC/28.6.791
  • Overton, T. W. (2014). Recombinant protein production in bacterial hosts. Drug Discovery Today, 19(5), 590–601. https://doi.org/10.1016/j.drudis.2013.11.008
  • Pagès, J. M., James, C. E., & Winterhalter, M. (2008). The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nature Reviews Microbiology 2008 6:12, 6(12), 893–903. https://doi.org/10.1038/nrmicro1994
  • Park, Y. K., Jung, S. I., Park, K. H., Kim, S. H., & Ko, K. S. (2012). Characteristics of carbapenem-resistant Acinetobacter spp. other than Acinetobacter baumannii in South Korea. International Journal of Antimicrobial Agents, 39(1), 81–85. https://doi.org/10.1016/J.IJANTIMICAG.2011.08.006
  • Peränen, J., Rikkonen, M., Hyvönen, M., & Kääriäinen, L. (1996). T7 vectors with modified T7lac promoter for expression of proteins in Escherichia coli. Analytical Biochemistry, 236(2), 371–373. https://doi.org/10.1006/ABIO.1996.0187
  • Rasooli, I., Abdolhamidi, R., Jahangiri, · Abolfazl, Darvish, S., & Astaneh, A. (2020). Outer Membrane Protein, Oma87 Prevents Acinetobacter baumannii Infection. International Journal of Peptide Research and Therapeutics, 26(3), 2653–2660. https://doi.org/10.1007/s10989-020-10056-0
  • Rice, L. B. (2008). Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. The Journal of Infectious Diseases, 197(8), 1079–1081. https://doi.org/10.1086/533452
  • Rice, L. B. (2010). Progress and challenges in implementing the research on ESKAPE pathogens. Infection Control and Hospital Epidemiology, 31 Suppl 1(S1), S7–S10. https://doi.org/10.1086/655995
  • Santajit, S., & Indrawattana, N. (2016). Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Research International, 2016. https://doi.org/10.1155/2016/2475067
  • Segura, A., Bünz, P. v., D’Argenio, D. A., & Ornston, L. N. (1999). Genetic analysis of a chromosomal region containing vanA and vanB, genes required for conversion of either ferulate or vanillate to protocatechuate in Acinetobacter. Journal of Bacteriology, 181(11), 3494–3504. https://doi.org/10.1128/jb.181.11.3494-3504.1999
  • Smith, M. A., Weaver, V. B., Young, D. M., & Ornston, L. N. (2003). Genes for chlorogenate and hydroxycinnamate catabolism (hca) are linked to functionally related genes in the dca-pca-qui-pob-hca chromosomal cluster of Acinetobacter sp. strain ADP1. Applied and Environmental Microbiology, 69(1), 524–532. https://doi.org/10.1128/AEM.69.1.524-532.2003
  • Srinivasan, V. B., Vaidyanathan, V., & Rajamohan, G. (2015). AbuO, a tolc-like outer membrane protein of Acinetobacter baumannii, is involved in antimicrobial and oxidative stress resistance. Antimicrobial Agents and Chemotherapy, 59(2), 1236–1245. https://doi.org/10.1128/AAC.03626-14
  • Studier, F. W. (1991). Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. Journal of Molecular Biology, 219(1), 37–44. https://doi.org/10.1016/0022-2836(91)90855-Z
  • Sugawara, E., & Nikaido, H. (2012). OmpA is the principal nonspecific slow porin of Acinetobacter baumannii. Journal of Bacteriology, 194(15), 4089–4096. https://doi.org/10.1128/JB.00435-12
  • Tokuda, H. (2014). Biogenesis of Outer Membranes in Gram-Negative Bacteria. OUP, 73(3), 465–473. https://doi.org/10.1271/BBB.80778 Uppalapati, S. R., Sett, A., & Pathania, R. (2020). The Outer Membrane Proteins OmpA, CarO, and OprD of Acinetobacter baumannii Confer a Two-Pronged Defense in Facilitating Its Success as a Potent Human Pathogen. Frontiers in Microbiology, 11, 2441. https://doi.org/10.3389/FMICB.2020.589234/BIBTEX
  • Vashist, J., Tiwari, V., Kapil, A., & Rajeswari, M. R. (2010). Quantitative profiling and identification of outer membrane proteins of beta-lactam resistant strain of Acinetobacter baumannii. Journal of Proteome Research, 9(2), 1121–1128. https://doi.org/10.1021/PR9011188
  • Vashistt, J., Tiwari, V., Kapil, A., & Moganty, R. R. (2011). Differential expression of outer membrane proteins in early stages of meropenem-resistance in Acinetobacter baumannii. Journal of Integrated OMICS, 1(2), 280. https://doi.org/10.5584/JIOMICS.V1I2.67
  • Verma, S. K., Gautam, V., Balakrishna, K., & Kumar, S. (2009). Overexpression, purification, and immunogenicity of recombinant porin proteins of Salmonella enterica serovar Typhi (S. Typhi). Journal of Microbiology and Biotechnology, 19(9), 1034–1040. https://doi.org/10.4014/JMB.0812.675
  • Vila, J., Martí, S., & Sánchez-Céspedes, J. (2007). Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. The Journal of Antimicrobial Chemotherapy, 59(6), 1210–1215. https://doi.org/10.1093/JAC/DKL509
  • Zahn, M., Bhamidimarri, S. P., Baslé, A., Winterhalter, M., & van den Berg, B. (2016). Structural Insights into Outer Membrane Permeability of Acinetobacter baumannii. Structure (London, England : 1993), 24(2), 221–231. https://doi.org/10.1016/J.STR.2015.12.009
There are 42 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section RESEARCH ARTICLES
Authors

Özge Kaygusuz İzgördü

Cihan Darcan 0000-0003-0205-3774

Fatma Doğan Guzel

Project Number 117S114
Publication Date July 5, 2023
Submission Date April 27, 2022
Acceptance Date December 14, 2022
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Kaygusuz İzgördü, Ö., Darcan, C., & Doğan Guzel, F. (2023). Cloning, Expression, and Purification of Acinetobacter baumannii OccAB1 Porin Protein in Escherichia coli. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(2), 1529-1542.
AMA Kaygusuz İzgördü Ö, Darcan C, Doğan Guzel F. Cloning, Expression, and Purification of Acinetobacter baumannii OccAB1 Porin Protein in Escherichia coli. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. July 2023;6(2):1529-1542.
Chicago Kaygusuz İzgördü, Özge, Cihan Darcan, and Fatma Doğan Guzel. “Cloning, Expression, and Purification of Acinetobacter Baumannii OccAB1 Porin Protein in Escherichia Coli”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6, no. 2 (July 2023): 1529-42.
EndNote Kaygusuz İzgördü Ö, Darcan C, Doğan Guzel F (July 1, 2023) Cloning, Expression, and Purification of Acinetobacter baumannii OccAB1 Porin Protein in Escherichia coli. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6 2 1529–1542.
IEEE Ö. Kaygusuz İzgördü, C. Darcan, and F. Doğan Guzel, “Cloning, Expression, and Purification of Acinetobacter baumannii OccAB1 Porin Protein in Escherichia coli”, Osmaniye Korkut Ata University Journal of Natural and Applied Sciences, vol. 6, no. 2, pp. 1529–1542, 2023.
ISNAD Kaygusuz İzgördü, Özge et al. “Cloning, Expression, and Purification of Acinetobacter Baumannii OccAB1 Porin Protein in Escherichia Coli”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6/2 (July 2023), 1529-1542.
JAMA Kaygusuz İzgördü Ö, Darcan C, Doğan Guzel F. Cloning, Expression, and Purification of Acinetobacter baumannii OccAB1 Porin Protein in Escherichia coli. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2023;6:1529–1542.
MLA Kaygusuz İzgördü, Özge et al. “Cloning, Expression, and Purification of Acinetobacter Baumannii OccAB1 Porin Protein in Escherichia Coli”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 6, no. 2, 2023, pp. 1529-42.
Vancouver Kaygusuz İzgördü Ö, Darcan C, Doğan Guzel F. Cloning, Expression, and Purification of Acinetobacter baumannii OccAB1 Porin Protein in Escherichia coli. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2023;6(2):1529-42.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.