Manual segmentation of patient CT images is both time-consuming and labor-intensive. Additionally, classic image processing techniques are insufficient in CT images due to the close pixel values of tissues. Automatic segmentation of the aorta in human anatomy can reduce healthcare workers' workload in preoperative planning. This study compares the performance of the AKG-Unet segmentation model with other models (U-Net, Inception UNetv2, LinkNet, SegNet, and Res-Unet) on thoracic aorta, abdominal aorta, and iliac arteries segmentation in contrast CT images. Initially, pixel intensities in the Kits and Rider datasets were recalibrated. Then, 2D axial images underwent resizing and grayscale normalization. Segmentation models have been trained and tested with 5-fold cross-validation. 2D prediction masks were stacked to generate a 3D output, and spatial information was transferred to the predicted mask. In the 3B aortic segmentation, small objects adjacent to it were removed using image processing techniques. In our study, the AKG-UNET model achieved the highest segmentation results on the AVT dataset with a Dice score of 91.2%, Intersection-Over-Union (IoU) score of 85.6%, sensitivity of 90.9%, and specificity of 99%. A method has been proposed that helps physicians analyze the aortic structure, and segments the aortic structure so that they can intervene in the correct location and make a preoperative evaluation.
AKGUN Computer Incorporated Company.
This paper has been prepared by AKGUN Computer Incorporated Company. We would like to thank AKGUN Computer Inc. for providing all kinds of opportunities and funds for the execution of this project.
Hasta bilgisayarlı tomografi (BT) görüntülerinin manuel segmentasyonu hem zaman alıcı hem de emek yoğun bir işlemdir. Ayrıca, doku piksel değerlerinin yakınlığı nedeniyle BT görüntülerinde klasik görüntü işleme teknikleri yetersizdir. İnsan anatomisinde aortun otomatik olarak segmentasyonu, ameliyat öncesi planlamada sağlık çalışanlarının iş yükünü azaltabilir. Bu çalışma, kontrastlı BT görüntülerinde torasik aorta, abdominal aorta ve iliak arterlerin segmentasyonunda AKG-Unet segmentasyon modelinin diğer modellerle (U-Net, Inception UNetv2, LinkNet, SegNet ve Res-Unet) performansını karşılaştırır. İlk olarak, Kits ve Rider veri kümelerinde piksel yoğunlukları yeniden kalibre edildi. Daha sonra, 2B eksenel görüntüler yeniden boyutlandırıldı ve gri tonlaması normalleştirildi. Segmentasyon modelleri 5 katlı çapraz doğrulama yöntemi ile eğitilip test edilmiştir. 2B tahmin maskeleri üst üste eklenilerek 3B bir çıktı elde edildi ve tahmin edilen maskeye mekansal bilgi aktarıldı. 3B aortik segmentasyonun yanındaki küçük nesneler görüntü işleme teknikleri ile kaldırıldı. Çalışmamızda, AKG-UNET modeli, AVT veri setinde Dice skoru %91.2, IoU skoru %85.6, hassasiyet %90.9 ve özgüllük %99 ile en yüksek segmentasyon sonuçlarını elde etti. Doktorların aortik yapıyı analiz etmelerine yardımcı olacak ve doğru konumda müdahale edebilmeleri ve ameliyat öncesi değerlendirme yapabilmeleri için aortik yapının segmentasyonunu yapacak bir yöntem önerilmiştir.
Aortik segmentasyon AKG-UNet Bilgisayarlı tomografi anjiyografisi Derin öğrenme Görüntü işleme
Primary Language | English |
---|---|
Subjects | Deep Learning |
Journal Section | RESEARCH ARTICLES |
Authors | |
Publication Date | December 10, 2024 |
Submission Date | March 23, 2024 |
Acceptance Date | July 8, 2024 |
Published in Issue | Year 2024 Volume: 7 Issue: 5 |
*This journal is an international refereed journal
*Our journal does not charge any article processing fees over publication process.
* This journal is online publishes 5 issues per year (January, March, June, September, December)
*This journal published in Turkish and English as open access.
* This work is licensed under a Creative Commons Attribution 4.0 International License.