Research Article
BibTex RIS Cite

β-Glukan ve Lactoplantibacillus plantarum GD2’den Elde Edilen L-EPS’nin İn Vitro Yara İyileştirici ve Antibiyofilm Potansiyeli

Year 2025, Volume: 8 Issue: 4, 1926 - 1940, 16.09.2025
https://doi.org/10.47495/okufbed.1655264

Abstract

Amaç: Bu çalışma, ticari β-glukan ve Lactoplantibacillus plantarum GD2'den elde edilen L-EPS'nin in vitro yara iyileşmesi ve antibiyofilm potansiyelini değerlendirmeyi amaçlamaktadır. Biyopolimerlerin biyouyumluluk, hücre göçü ve biyofilm oluşumunu önleyici etkileri incelenmiştir. Gereç ve Yöntemler: Sitotoksisite, L929 fare fibroblast ve RAW264.7 fare makrofaj hücre hatlarında MTT testi ile analiz edilmiştir. Antibiyofilm aktivitesi mikrobiyal kolonizasyonu önleme yeteneğiyle, yara iyileşme potansiyeli ise çizik testiyle değerlendirilmiştir. Sonuçların istatistiksel anlamlılığı test edilmiştir. Bulgular: Hem β-glukan hem de L-EPS, bireysel ve kombine uygulamalarda biyouyumlu bulunmuştur. Antibiyofilm analizleri, bu biyopolimerlerin mikrobiyal kolonizasyonu önleyerek steril yara ortamını koruyabileceğini ortaya koymuştur. Çizik testi, hücre göçünü teşvik ederek yara kapanmasını hızlandırdıklarını göstermiştir. Kombinasyon, bireysel uygulamalara kıyasla benzer veya daha güçlü bir etki göstermiş, bu da sinerjik etkilere bağlanmıştır. Sonuç: L. plantarum GD2 kaynaklı β-glukan ve L-EPS, yara iyileşmesini hızlandırıcı ve biyofilm oluşumunu önleyici etkileriyle umut verici biyomalzemelerdir. Ancak, biyomedikal uygulamalardaki potansiyellerini doğrulamak için ileri in vivo ve klinik çalışmalara ihtiyaç duyulmaktadır.

Project Number

-

References

  • Choi M., Lee SM., Lee JW., Kim I., Pack CG., Ha CH. Yeast beta-glucan mediates histone deacetylase 5-induced angiogenesis in vascular endothelial cells. International Journal of Biological Macromolecules 2022; 211: 556-567.
  • Costa R., Costa L., Rodrigues I., Meireles C., Soares R., Tamagnini P., Mota R. Biocompatibility of the biopolymer Cyanoflan for applications in skin wound healing. Marine Drugs 2021; 19(3): 147.
  • Demir A. Potansiyel probiyotik Lactobacillus plantarum GD2 tarafından üretilen ekzopolisakkarit’in (EPS) yara iyileşme özelliklerinin araştırılması (Yüksek lisans tezi). Gazi Üniversitesi Fen Bilimleri Enstitüsü; 2022.
  • Dhivya S., Padma VV., Santhini E. Wound dressings—A review. BioMedicine 2015; 5(4): 22.
  • Dickinson LE., Gerecht S. Engineered biopolymeric scaffolds for chronic wound healing. Frontiers in Physiology 2016; 7: 341.
  • Dilna SV., Surya H., Aswathy RG., Varsha KK., Sakthikumar DN., Pandey A., Nampoothiri KM. Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT - Food Science and Technology 2018; 64: 1179-1186.
  • Filiz AK., Joha Z., Yulak F. Mechanism of anti-cancer effect of β-glucan on SH-SY5Y cell line. Bangladesh Journal of Pharmacology 2021; 16(4): 122-128.
  • Goldberg SR., Diegelmann RF. What makes wounds chronic. Surgical Clinics of North America 2020; 100(4): 681–693.
  • Hamdan S., Pastar I., Drakulich S., Dikici E., Tomic-Canic M., Deo S., Daunert S. Nanotechnology-driven therapeutic interventions in wound healing: Potential uses and applications. ACS Central Science 2017; 3(3): 163–175.
  • Hamidi M., Okoro OV., Ianiri G., Jafari H., Rashidi K., Ghasemi S., Castoria R., Palmieri D., Delattre C., Pierre G., Mirzaei M., Nie L., Samadian H., Shavandi A. Exopolysaccharide from the yeast Papiliotrema terrestris PT22AV for skin wound healing. Journal of Advanced Research 2023; 46: 61–74.
  • Haney EF., Trimble MJ., Cheng JT., Vallé Q., Hancock REW. Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules 2018; 8(2): 29.
  • Kataoka K., Muta T., Yamazaki S., Takeshige K. Activation of macrophages by linear (1→3)-β-D-glucans: Implications for the recognition of fungi by innate immunity. Journal of Biological Chemistry 2002; 277(39): 36825-31.
  • Khadam AA., Salman JA. Antibacterial and antibiofilm of purified β-glucan from Saccharomyces cerevisiae against wound infections causative bacteria. Iraqi Journal of Science 2024; 2397-2409.
  • Khalil MA., Sonbol FI., Al-Madboly LA., Aboshady TA., Alqurashi AS., Ali SS. Exploring the therapeutic potentials of exopolysaccharides derived from lactic acid bacteria and bifidobacteria: Antioxidant, antitumor, and periodontal regeneration. Frontiers in Microbiology 2022; 13: 803688.
  • Kırmusaoğlu S. The methods for detection of biofilm and screening antibiofilm activity of agents. In: Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods. IntechOpen 2019. DOI: 10.5772/intechopen.84411.
  • Koyutürk A., Soyaslan D. Yara ve yanık tedavisinde kullanılan örtüler. Mehmet Akif Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2016; 1: 58-65.
  • Kumar P., Nagarajan A., Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harbor Protocols 2018; 2018(6): pdb.prot095505.
  • Laubach J., Joseph M., Brenza T., Gadhamshetty V., Sani RK. Exopolysaccharide and biopolymer-derived films as tools for transdermal drug delivery. Journal of Controlled Release 2021; 329: 971–987.
  • Liang CC., Park AY., Guan JL. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nature Protocols 2007; 2(2): 329–333.
  • Lima-Neto JF., Fernandes CB., Alvarenga MA., Golim MA., Landim-Alvarenga FC. Viability and cell cycle analysis of equine fibroblasts cultured in vitro. Cell and Tissue Banking 2010; 11(3): 261–268.
  • Majee SB., Avlani D., Biswas GR. Rheological behavior and pharmaceutical applications of bacterial exopolysaccharides. Journal of Applied Pharmaceutical Science 2017; 7(9): 224-232.
  • Muthuramalingam K., Choi SI., Hyun C., Kim YM., Cho M. β-Glucan-based wet dressing for cutaneous wound healing. Advances in Wound Care 2019; 8(4): 125–135.
  • Olsson M., Järbrink K., Divakar U., Bajpai R., Upton Z., Schmidtchen A., Car J. The humanistic and economic burden of chronic wounds: A systematic review. Wound Repair and Regeneration 2019; 27(1): 114–125.
  • Rodrigues M., Kosaric N., Bonham CA., Gurtner GC. Wound healing: A cellular perspective. Physiological Reviews 2019; 99(1): 665–706.
  • Sahana TG., Rekha PD. Biopolymers: Applications in wound healing and skin tissue engineering. Molecular Biology Reports 2018; 45(6): 2857–2867.
  • Santhini E., Pramila VM., Shalini M., Vignesh Balaji R., Chellamani KP. Preparation and characterization of PLGA-based biocompatible nanoparticles for sustained delivery of growth factor for wound healing applications. Current Science 2018; 115(7): 1287–1296.
  • Sarıkaya H. Laktik asit bakterilerinin kültür filtratları ve ekzopolisakkaritlerinin (EPS) bifidobakterilerin gelişimini düzenleyici (BGD) ve antibiyofilm etkilerinin belirlenmesi (Yüksek lisans tezi). Gazi Üniversitesi Fen Bilimleri Enstitüsü; 2014.
  • Seo G., Hyun C., Choi S., Kim YM., Cho M. The wound healing effect of four types of beta-glucan. Applied Biological Chemistry 2019; 62: 20.
  • Sirin S., Aslim B. Characterization of lactic acid bacteria derived exopolysaccharides for use as a defined neuroprotective agent against amyloid beta1–42-induced apoptosis in SH-SY5Y cells. Scientific Reports 2020; 10: 8124.
  • Sirin S., Aslim B. Protective effect of exopolysaccharides from lactic acid bacteria against amyloid beta1-42-induced oxidative stress in SH-SY5Y cells: Involvement of the AKT, MAPK, and NF-κB signaling pathway. Process Biochemistry 2021;106: 50-59.
  • Şirinyıldız F., Mavi Bulut A. Beta glukanların bağışıklık üzerine etkileri: Güncel yaklaşımlar. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 2022; 7(1): 173-178.
  • Soliemani O., Salimi F., Rezaei A. Characterization of exopolysaccharide produced by probiotic Enterococcus durans DU1 and evaluation of its anti-biofilm activity. Archives of Microbiology 2022; 204(7): 419.
  • Swann G. The skin is the body's largest organ. Journal of Visual Communication in Medicine 2010; 33(4): 148–149.
  • Tottoli EM., Dorati R., Genta I., Chiesa E., Pisani S., Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 2020; 12(8): 735.
  • Tukenmez U., Aktas B., Aslim B., Yavuz S. The relationship between the structural characteristics of Lactobacilli-EPS and its ability to induce apoptosis in colon cancer cells in vitro. Scientific Reports 2019; 9(1): 8268.
  • Tükenmez Ü., Aslım B. Probiyotik kaynaklı, muhtemel prebiyotik özelliğe sahip ekzopolisakkarit (EPS’lerin) biyolojik ve fonksiyonel özellikleri. Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi 2018; 25(4): 487-497.
  • van den Berg LM., Zijlstra-Willems EM., Richters CD., Ulrich MM., Geijtenbeek TB. Dectin-1 activation induces proliferation and migration of human keratinocytes enhancing wound re-epithelialization. Cellular Immunology 2014; 289(1-2): 49-54.
  • Vetvicka V., Vetvickova J. β (1-3)-D-glucan affects adipogenesis, wound healing and inflammation. Oriental Pharmacy and Experimental Medicine 2011; 11: 169-175.
  • Wei D., Zhang L., Williams DL., Browder IW. Glucan stimulates human dermal fibroblast collagen biosynthesis through a nuclear factor‐1 dependent mechanism. Wound Repair and Regeneration 2002; 10(3): 161-168.
  • Wu Z., Zheng R., Zhang J., Wu S. Transcriptional profiling of Pseudomonas aeruginosa PAO1 in response to anti‐biofilm and anti‐infection agent exopolysaccharide EPS273. Journal of Applied Microbiology 2021; 130(1): 265-277.
  • Zaghloul EH., Ibrahim MI. Production and characterization of exopolysaccharide from newly isolated marine probiotic Lactiplantibacillus plantarum EI6 with in vitro wound healing activity. Frontiers of Microbiology 2022; 13: 903363.
  • Zheng J., Wittouck S., Salvetti E., Franz CM., Harris HM., Mattarelli P., Lebeer S. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 2020; 70(4): 2782-2758.

In Vitro Wound Healing and Antibiofilm Potential of β-Glucan and L-EPS Obtained from Lactoplantibacillus plantarum GD2

Year 2025, Volume: 8 Issue: 4, 1926 - 1940, 16.09.2025
https://doi.org/10.47495/okufbed.1655264

Abstract

Purpose: This study aims to evaluate the in vitro wound healing and antibiofilm potential of commercial β-glucan and L-EPS derived from Lactoplantibacillus plantarum GD2. Biocompatibility, cell migration and biofilm formation inhibitory effects of biopolymers were investigated. Materials and Methods: Cytotoxicity was analyzed using the MTT assay on L929 mouse fibroblast and RAW264.7 mouse macrophage cell lines. Antibiofilm activity was assessed based on microbial colonization prevention, while wound healing potential was evaluated using the scratch test. The statistical significance of the results was tested. Results: Both β-glucan and L-EPS were found to be biocompatible in individual and combined applications. Antibiofilm analyses revealed that these biopolymers can prevent microbial colonization, maintaining a sterile wound environment. Scratch test results demonstrated that they promoted cell migration and accelerated wound closure. The combination showed similar or enhanced effects compared to individual applications, suggesting synergistic properties. Conclusion: β-glucan and L-EPS derived from L. plantarum GD2 are promising biomaterials with wound healing acceleration and biofilm prevention properties. However, further in vivo and clinical studies are required to confirm their biomedical potential.

Project Number

-

References

  • Choi M., Lee SM., Lee JW., Kim I., Pack CG., Ha CH. Yeast beta-glucan mediates histone deacetylase 5-induced angiogenesis in vascular endothelial cells. International Journal of Biological Macromolecules 2022; 211: 556-567.
  • Costa R., Costa L., Rodrigues I., Meireles C., Soares R., Tamagnini P., Mota R. Biocompatibility of the biopolymer Cyanoflan for applications in skin wound healing. Marine Drugs 2021; 19(3): 147.
  • Demir A. Potansiyel probiyotik Lactobacillus plantarum GD2 tarafından üretilen ekzopolisakkarit’in (EPS) yara iyileşme özelliklerinin araştırılması (Yüksek lisans tezi). Gazi Üniversitesi Fen Bilimleri Enstitüsü; 2022.
  • Dhivya S., Padma VV., Santhini E. Wound dressings—A review. BioMedicine 2015; 5(4): 22.
  • Dickinson LE., Gerecht S. Engineered biopolymeric scaffolds for chronic wound healing. Frontiers in Physiology 2016; 7: 341.
  • Dilna SV., Surya H., Aswathy RG., Varsha KK., Sakthikumar DN., Pandey A., Nampoothiri KM. Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT - Food Science and Technology 2018; 64: 1179-1186.
  • Filiz AK., Joha Z., Yulak F. Mechanism of anti-cancer effect of β-glucan on SH-SY5Y cell line. Bangladesh Journal of Pharmacology 2021; 16(4): 122-128.
  • Goldberg SR., Diegelmann RF. What makes wounds chronic. Surgical Clinics of North America 2020; 100(4): 681–693.
  • Hamdan S., Pastar I., Drakulich S., Dikici E., Tomic-Canic M., Deo S., Daunert S. Nanotechnology-driven therapeutic interventions in wound healing: Potential uses and applications. ACS Central Science 2017; 3(3): 163–175.
  • Hamidi M., Okoro OV., Ianiri G., Jafari H., Rashidi K., Ghasemi S., Castoria R., Palmieri D., Delattre C., Pierre G., Mirzaei M., Nie L., Samadian H., Shavandi A. Exopolysaccharide from the yeast Papiliotrema terrestris PT22AV for skin wound healing. Journal of Advanced Research 2023; 46: 61–74.
  • Haney EF., Trimble MJ., Cheng JT., Vallé Q., Hancock REW. Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules 2018; 8(2): 29.
  • Kataoka K., Muta T., Yamazaki S., Takeshige K. Activation of macrophages by linear (1→3)-β-D-glucans: Implications for the recognition of fungi by innate immunity. Journal of Biological Chemistry 2002; 277(39): 36825-31.
  • Khadam AA., Salman JA. Antibacterial and antibiofilm of purified β-glucan from Saccharomyces cerevisiae against wound infections causative bacteria. Iraqi Journal of Science 2024; 2397-2409.
  • Khalil MA., Sonbol FI., Al-Madboly LA., Aboshady TA., Alqurashi AS., Ali SS. Exploring the therapeutic potentials of exopolysaccharides derived from lactic acid bacteria and bifidobacteria: Antioxidant, antitumor, and periodontal regeneration. Frontiers in Microbiology 2022; 13: 803688.
  • Kırmusaoğlu S. The methods for detection of biofilm and screening antibiofilm activity of agents. In: Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods. IntechOpen 2019. DOI: 10.5772/intechopen.84411.
  • Koyutürk A., Soyaslan D. Yara ve yanık tedavisinde kullanılan örtüler. Mehmet Akif Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2016; 1: 58-65.
  • Kumar P., Nagarajan A., Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harbor Protocols 2018; 2018(6): pdb.prot095505.
  • Laubach J., Joseph M., Brenza T., Gadhamshetty V., Sani RK. Exopolysaccharide and biopolymer-derived films as tools for transdermal drug delivery. Journal of Controlled Release 2021; 329: 971–987.
  • Liang CC., Park AY., Guan JL. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nature Protocols 2007; 2(2): 329–333.
  • Lima-Neto JF., Fernandes CB., Alvarenga MA., Golim MA., Landim-Alvarenga FC. Viability and cell cycle analysis of equine fibroblasts cultured in vitro. Cell and Tissue Banking 2010; 11(3): 261–268.
  • Majee SB., Avlani D., Biswas GR. Rheological behavior and pharmaceutical applications of bacterial exopolysaccharides. Journal of Applied Pharmaceutical Science 2017; 7(9): 224-232.
  • Muthuramalingam K., Choi SI., Hyun C., Kim YM., Cho M. β-Glucan-based wet dressing for cutaneous wound healing. Advances in Wound Care 2019; 8(4): 125–135.
  • Olsson M., Järbrink K., Divakar U., Bajpai R., Upton Z., Schmidtchen A., Car J. The humanistic and economic burden of chronic wounds: A systematic review. Wound Repair and Regeneration 2019; 27(1): 114–125.
  • Rodrigues M., Kosaric N., Bonham CA., Gurtner GC. Wound healing: A cellular perspective. Physiological Reviews 2019; 99(1): 665–706.
  • Sahana TG., Rekha PD. Biopolymers: Applications in wound healing and skin tissue engineering. Molecular Biology Reports 2018; 45(6): 2857–2867.
  • Santhini E., Pramila VM., Shalini M., Vignesh Balaji R., Chellamani KP. Preparation and characterization of PLGA-based biocompatible nanoparticles for sustained delivery of growth factor for wound healing applications. Current Science 2018; 115(7): 1287–1296.
  • Sarıkaya H. Laktik asit bakterilerinin kültür filtratları ve ekzopolisakkaritlerinin (EPS) bifidobakterilerin gelişimini düzenleyici (BGD) ve antibiyofilm etkilerinin belirlenmesi (Yüksek lisans tezi). Gazi Üniversitesi Fen Bilimleri Enstitüsü; 2014.
  • Seo G., Hyun C., Choi S., Kim YM., Cho M. The wound healing effect of four types of beta-glucan. Applied Biological Chemistry 2019; 62: 20.
  • Sirin S., Aslim B. Characterization of lactic acid bacteria derived exopolysaccharides for use as a defined neuroprotective agent against amyloid beta1–42-induced apoptosis in SH-SY5Y cells. Scientific Reports 2020; 10: 8124.
  • Sirin S., Aslim B. Protective effect of exopolysaccharides from lactic acid bacteria against amyloid beta1-42-induced oxidative stress in SH-SY5Y cells: Involvement of the AKT, MAPK, and NF-κB signaling pathway. Process Biochemistry 2021;106: 50-59.
  • Şirinyıldız F., Mavi Bulut A. Beta glukanların bağışıklık üzerine etkileri: Güncel yaklaşımlar. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 2022; 7(1): 173-178.
  • Soliemani O., Salimi F., Rezaei A. Characterization of exopolysaccharide produced by probiotic Enterococcus durans DU1 and evaluation of its anti-biofilm activity. Archives of Microbiology 2022; 204(7): 419.
  • Swann G. The skin is the body's largest organ. Journal of Visual Communication in Medicine 2010; 33(4): 148–149.
  • Tottoli EM., Dorati R., Genta I., Chiesa E., Pisani S., Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 2020; 12(8): 735.
  • Tukenmez U., Aktas B., Aslim B., Yavuz S. The relationship between the structural characteristics of Lactobacilli-EPS and its ability to induce apoptosis in colon cancer cells in vitro. Scientific Reports 2019; 9(1): 8268.
  • Tükenmez Ü., Aslım B. Probiyotik kaynaklı, muhtemel prebiyotik özelliğe sahip ekzopolisakkarit (EPS’lerin) biyolojik ve fonksiyonel özellikleri. Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi 2018; 25(4): 487-497.
  • van den Berg LM., Zijlstra-Willems EM., Richters CD., Ulrich MM., Geijtenbeek TB. Dectin-1 activation induces proliferation and migration of human keratinocytes enhancing wound re-epithelialization. Cellular Immunology 2014; 289(1-2): 49-54.
  • Vetvicka V., Vetvickova J. β (1-3)-D-glucan affects adipogenesis, wound healing and inflammation. Oriental Pharmacy and Experimental Medicine 2011; 11: 169-175.
  • Wei D., Zhang L., Williams DL., Browder IW. Glucan stimulates human dermal fibroblast collagen biosynthesis through a nuclear factor‐1 dependent mechanism. Wound Repair and Regeneration 2002; 10(3): 161-168.
  • Wu Z., Zheng R., Zhang J., Wu S. Transcriptional profiling of Pseudomonas aeruginosa PAO1 in response to anti‐biofilm and anti‐infection agent exopolysaccharide EPS273. Journal of Applied Microbiology 2021; 130(1): 265-277.
  • Zaghloul EH., Ibrahim MI. Production and characterization of exopolysaccharide from newly isolated marine probiotic Lactiplantibacillus plantarum EI6 with in vitro wound healing activity. Frontiers of Microbiology 2022; 13: 903363.
  • Zheng J., Wittouck S., Salvetti E., Franz CM., Harris HM., Mattarelli P., Lebeer S. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 2020; 70(4): 2782-2758.
There are 42 citations in total.

Details

Primary Language English
Subjects Bacteriology
Journal Section RESEARCH ARTICLES
Authors

Mesut Abanuzoğlu This is me 0009-0005-1416-4617

Serap Niğdelioğlu Dolanbay

Project Number -
Publication Date September 16, 2025
Submission Date March 10, 2025
Acceptance Date July 11, 2025
Published in Issue Year 2025 Volume: 8 Issue: 4

Cite

APA Abanuzoğlu, M., & Niğdelioğlu Dolanbay, S. (2025). In Vitro Wound Healing and Antibiofilm Potential of β-Glucan and L-EPS Obtained from Lactoplantibacillus plantarum GD2. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(4), 1926-1940. https://doi.org/10.47495/okufbed.1655264
AMA Abanuzoğlu M, Niğdelioğlu Dolanbay S. In Vitro Wound Healing and Antibiofilm Potential of β-Glucan and L-EPS Obtained from Lactoplantibacillus plantarum GD2. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. September 2025;8(4):1926-1940. doi:10.47495/okufbed.1655264
Chicago Abanuzoğlu, Mesut, and Serap Niğdelioğlu Dolanbay. “In Vitro Wound Healing and Antibiofilm Potential of β-Glucan and L-EPS Obtained from Lactoplantibacillus Plantarum GD2”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, no. 4 (September 2025): 1926-40. https://doi.org/10.47495/okufbed.1655264.
EndNote Abanuzoğlu M, Niğdelioğlu Dolanbay S (September 1, 2025) In Vitro Wound Healing and Antibiofilm Potential of β-Glucan and L-EPS Obtained from Lactoplantibacillus plantarum GD2. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 4 1926–1940.
IEEE M. Abanuzoğlu and S. Niğdelioğlu Dolanbay, “In Vitro Wound Healing and Antibiofilm Potential of β-Glucan and L-EPS Obtained from Lactoplantibacillus plantarum GD2”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 8, no. 4, pp. 1926–1940, 2025, doi: 10.47495/okufbed.1655264.
ISNAD Abanuzoğlu, Mesut - Niğdelioğlu Dolanbay, Serap. “In Vitro Wound Healing and Antibiofilm Potential of β-Glucan and L-EPS Obtained from Lactoplantibacillus Plantarum GD2”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/4 (September2025), 1926-1940. https://doi.org/10.47495/okufbed.1655264.
JAMA Abanuzoğlu M, Niğdelioğlu Dolanbay S. In Vitro Wound Healing and Antibiofilm Potential of β-Glucan and L-EPS Obtained from Lactoplantibacillus plantarum GD2. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8:1926–1940.
MLA Abanuzoğlu, Mesut and Serap Niğdelioğlu Dolanbay. “In Vitro Wound Healing and Antibiofilm Potential of β-Glucan and L-EPS Obtained from Lactoplantibacillus Plantarum GD2”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 8, no. 4, 2025, pp. 1926-40, doi:10.47495/okufbed.1655264.
Vancouver Abanuzoğlu M, Niğdelioğlu Dolanbay S. In Vitro Wound Healing and Antibiofilm Potential of β-Glucan and L-EPS Obtained from Lactoplantibacillus plantarum GD2. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8(4):1926-40.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.