Araştırma Makalesi
BibTex RIS Kaynak Göster

Development and comparison of three different machine learning models for estimating daily reference evapotranspiration in sub-humid region

Yıl 2023, Cilt: 38 Sayı: 2, 235 - 254, 04.07.2023
https://doi.org/10.7161/omuanajas.1211716

Öz

Accurate estimation of reference evapotranspiration (ET0) is very important for water resource planning and agricultural water management. This study investigates the performance of three different machine learning methods, multivariate adaptive regression splines (MARS), random tree (RT), and gaussian process regression (GPR), for predicting daily ET0 using climate data from a sub-humid climate region. Five input combinations [including both complete and incomplete combinations of daily average (Tavg), maximum (Tmax) and minimum (Tmin) temperature wind speed (u2), relative humidity (RHavg), and solar radiation (Rs)] of daily meteorological data collected in Bafra district during the 2018–2020 period were used for model training and testing. The performance of machine learning models was compared with the standard FAO-56 Penman-Monteith equation (FAO-56 PM). Four different statistical performance indices were used to evaluate the accuracy of the models [coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), and Nash-Sutcliffe efficiency coefficient (NSE)]. The results revealed that MARS models outperform the RT and GPR models. For scenario 5, using all data as input, the ET0 values estimated by the MARS models agreed well with the FAO-56 PM values (R2=0.982, MAE=0.250, RMSE=0.305, NSE=0.965). However, even if the meteorological data are incomplete, very high daily ET0 estimates have been obtained using only Tavg, RHavg, and Rs. Overall, the radiation-based machine learning models outperformed the temperature-based machine learning models. The results show that the MARS model can be used effectively to model ET0 quite efficiently and accurately in a region with sub-humid climate characteristics.

Kaynakça

  • Adnan, R.M., Mostafa, R.R., Islam, A.R.M.T., Kisi, O., Kuriqi, A., Heddam, S., 2021. Estimating reference evapotranspiration using hybrid adaptive fuzzy inferencing coupled with heuristic algorithms. Computers and Electronics in Agriculture, 191, 106541. doi:10.1016/j.compag.2021.106541
  • Aghelpour, P., Norooz-Valashedi, R., 2022. Predicting daily reference evapotranspiration rates in a humid region, comparison of seven various data-based predictor models. Stochastic Environmental Research and Risk Assessment, 1-23. doi:10.1007/s00477-022-02249-4
  • Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO - Food and Agriculture Organisation of the United Nations, Rome, 300(9), D05109.
  • ASCE-EWRI, 2005. The ASCE standardized reference evapotranspiration equation. Standardization of reference evapotranspiration task committee final repor, R. G. Allen, I. A. Walter, R. L. Elliott, T. A. Howell, D. Itenfisu, M. E. Jensen, and R. L. Snyder, eds., ASCE, Reston, VA, (http://www.asce.org/Product.aspx?id=2147485918), 216.
  • Blaney, H.F., Criddle, W.D., 1950. Determining Water Requirements in Irrigated Areas from Climatological Irrigation Data. Technical Paper No. 96, US Department of Agriculture, Soil Conservation Service, Washington, D.C., 48 pp.
  • Cheng, M.Y., Cao, M.T., 2014. Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines. Applied Soft Computing, 22, 178-188. doi: 10.1016/j.asoc.2014.05.015
  • Djaman, K., Tabari, H., Balde, A. B., Diop, L., Futakuchi, K., Irmak, S., 2016. Analyses, calibration and validation of evapotranspiration models to predict grass-reference evapotranspiration in the Senegal river delta. Journal of Hydrology: Regional Studies, 8, 82-94. doi:10.1016/j.ejrh.2016.06.003
  • Dong, J., Zhu, Y., Jia, X., Han, X., Qiao, J., Bai, C., Tang, X., 2022. Nation-scale reference evapotranspiration estimation by using deep learning and classical machine learning models in China. Journal of Hydrology, 604, 127207. doi: 10.1016/j.jhydrol.2021.127207
  • Fan, J., Yue, W., Wu, L., Zhang, F., Cai, H., Wang, X., Lu, X., Xiang, Y., 2018. Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agricultural and Forest Meteorology, 263, 225-241. doi:10.1016/j.agrformet.2018.08.019
  • Gocić, M., Arab Amiri, M., 2021. Reference evapotranspiration prediction using neural networks and optimum time lags. Water Resources Management, 35(6), 1913-1926. doi:10.1007/s11269-021-02820-8
  • Hargreaves, G.H., Samani, Z.A., 1985. Reference crop evapotranspiration from temperature. Applied engineering in agriculture, 1(2), 96-99. doi:10.13031/2013.26773
  • Huang, G., Wu, L., Ma, X., Zhang, W., Fan, J., Yu, X., Zeng, W., Zhou, H., 2019. Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. Journal of Hydrology, 574, 1029-1041. doi:10.1016/j.jhydrol.2019.04.085
  • Irmak, S., Irmak, A., Allen, R. G., Jones, J. W., 2003. Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates. Journal of irrigation and drainage engineering, 129(5), 336-347. doi:10.1061/~ASCE!0733-9437
  • Jing, W., Yaseen, Z.M., Shahid, S., Saggi, M.K., Tao, H., Kisi, O., Salih, S.Q., Al-Ansari, N., Chau, K.W., 2019. Implementation of evolutionary computing models for reference evapotranspiration modeling: short review, assessment and possible future research directions. Engineering applications of computational fluid mechanics, 13(1), 811-823. doi:10.1080/19942060.2019.1645045
  • Karbasi, M., 2018. Forecasting of multi-step ahead reference evapotranspiration using wavelet-Gaussian process regression model. Water resources management, 32(3), 1035-1052.
  • Liu, X., Xu, C., Zhong, X., Li, Y., Yuan, X., Cao, J., 2017. Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement. Agricultural Water Management, 184, 145-155. https://doi.org/10.1016/j.agwat.2017.01.017
  • Makkink, G.F., 1957. Testing the Penman formula by means of lysimeters. J. Inst. Water Eng., 11(3): 277-288.
  • Makwana, J.J., Tiwari, M.K., Deora, B.S., 2023. Development and comparison of artificial intelligence models for estimating daily reference evapotranspiration from limited input variables. Smart Agricultural Technology, 3, 100115. doi:10.1016/j.atech.2022.100115
  • Mehdizadeh, S., Behmanesh, J., Khalili, K., 2017. Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Computers and electronics in agriculture, 139, 103-114. doi:10.1016/j.compag.2017.05.002
  • Mishra, A.K., Ratha, B.K., 2016. Study of random tree and random forest data mining algorithms for microarray data analysis. International Journal on Advanced Electrical and Computer Engineering, 3(4), 5-7.
  • Nash, J.E., Sutcliffe, J.V., 1970. “River Flow Forecasting through Conceptual Models: Part I. A Discussion of Principles.” Journal of Hydrology 10 (3): 282-90. doi:10.1016/0022-1694(70)90255-6
  • Priestley, C.H.B., Taylor, R.J., 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100(2): 81-92. doi:10.1175/1520-0493
  • Rasmussen, C.E., Williams, C.K.I., 2006. Gaussian Processes for Machine Learning, in: Adaptive Computation and Machine Learning series, MIT Press, Cambridge, Massachusetts, ISBN 0-262-18253-X, 2005. 
  • Roy, D.K., Saha, K.K., Kamruzzaman, M., Biswas, S.K., Hossain, M.A., 2021. Hierarchical fuzzy systems integrated with particle swarm optimization for daily reference evapotranspiration prediction: A novel approach. Water Resources Management, 35(15), 5383-5407. doi:10.1007/s11269-021-03009-9
  • Salam, R., Islam, A.R.M.T., 2020. Potential of RT, Bagging and RS ensemble learning algorithms for reference evapotranspiration prediction using climatic data-limited humid region in Bangladesh. Journal of Hydrology, 590, 125241. doi:10.1016/j.jhydrol.2020.125241
  • Shan, X., Cui, N., Cai, H., Hu, X., Zhao, L., 2020. Estimation of summer maize evapotranspiration using MARS model in the semi-arid region of northwest China. Computers and Electronics in Agriculture, 174, 105495. doi:10.1016/j.compag.2020.105495
  • Taşan, S., 2018. Bafra ovası sağ sahil topraklarının sulama açısından bazı fiziksel ve kimyasal özelliklerindeki değişimin modeller ile tahmini. Doktora Tezi. Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, 346s, Samsun.
  • Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geographical review, 38(1), 55-94.
  • Wu, M., Feng, Q., Wen, X., Deo, R. C., Yin, Z., Yang, L., Sheng, D., 2020. Random forest predictive model development with uncertainty analysis capability for the estimation of evapotranspiration in an arid oasis region. Hydrology Research, 51(4), 648-665. https://doi.org/10.2166/nh.2020.012
  • Yin, L., Tao, F., Chen, Y., Liu, F., Hu, J., 2021. Improving terrestrial evapotranspiration estimation across China during 2000–2018 with machine learning methods. Journal of Hydrology, 600, 126538.
  • Zhou, Z. H., 2016. Learnware: on the future of machine learning. Frontiers Comput. Sci., 10(4), 589-590.
  • Zhu, B., Feng, Y., Gong, D., Jiang, S., Zhao, L., Cui, N., 2020. Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data. Computers and Electronics in Agriculture, 173, 105430. doi:10.1016/j.compag.2020.105430

Yarı nemli bir bölgede günlük referans bitki su tüketiminin tahmini için üç farklı makine öğrenimi modellerinin geliştirilmesi ve karşılaştırılması

Yıl 2023, Cilt: 38 Sayı: 2, 235 - 254, 04.07.2023
https://doi.org/10.7161/omuanajas.1211716

Öz

Su kaynaklarının planlanması ve tarımsal su yönetimi için referans bitki su tüketiminin (ET0) doğru tahmin edilmesi oldukça önemlidir. Bu çalışmada üç farklı makine öğrenimi yönteminin, çok değişkenli uyarlanabilir regresyon eğrileri (MARS), rassal ağaç (RT) ve gauss süreç regresyonu (GPR), yarı nemli iklim koşullarına sahip bir bölgeden alınan iklim verileri kullanılarak günlük ET0’ı tahmin etme performansları araştırılmıştır. Modelleri eğitmek ve test etmek için Bafra ilçesinde 2018–2020 döneminde toplanan günlük meteorolojik verilerin beş girdi kombinasyonu [günlük ortalama (Tort), maksimum (Tmax) ve minimum sıcaklık (Tmin), rüzgar hızı (u2), bağıl nem (RHort) ve güneşlenme şiddeti (Rs) hem tam hem de eksik kombinasyonları dahil] kullanılmıştır. Makine öğrenimi modellerinin performansı ise FAO-56 Penman Monteith (FAO-56 PM) standart denklemi ile karşılaştırılmıştır. Modellerin doğruluğunu değerlendirmek için dört farklı istatistiksel performans indeksi kullanılmıştır [belirleme katsayısı (R2), ortalama mutlak hata (MAE), hata kareleri toplamının karekökü (RMSE) ve Nash–Sutcliffe etkinlik katsayısı (NSE)]. Sonuçlar, genel olarak MARS modellerinin RT ve GPR modellerinden daha iyi performans gösterdiğini ortaya koymuştur. Tüm verilerin girdi olarak kullanıldığı beşinci senaryo için MARS modeli tarafından tahmin edilen ET0 değerlerinin FAO-56 PM değerleri ile iyi bir uyum içinde olduğu belirlenmiştir (R2=0.982, MAE=0.250, RMSE=0.305, NSE=0.965). Bununla birlikte meteorolojik veriler tam olmadığında bile sadece Tort, RHort ve Rs ile oldukça yüksek günlük ET0 tahminleri elde edilmiştir. Genel olarak, radyasyona dayalı makine öğrenimi modelleri, sıcaklığa dayalı makine öğrenimi modellerinden daha iyi performans göstermiştir. Sonuçlar, yarı nemli iklim özelliklerine sahip bir bölgede MARS modelinin ET0'ı oldukça verimli ve doğru bir şekilde modellemek için etkili bir şekilde kullanılabileceğini göstermektedir.

Kaynakça

  • Adnan, R.M., Mostafa, R.R., Islam, A.R.M.T., Kisi, O., Kuriqi, A., Heddam, S., 2021. Estimating reference evapotranspiration using hybrid adaptive fuzzy inferencing coupled with heuristic algorithms. Computers and Electronics in Agriculture, 191, 106541. doi:10.1016/j.compag.2021.106541
  • Aghelpour, P., Norooz-Valashedi, R., 2022. Predicting daily reference evapotranspiration rates in a humid region, comparison of seven various data-based predictor models. Stochastic Environmental Research and Risk Assessment, 1-23. doi:10.1007/s00477-022-02249-4
  • Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO - Food and Agriculture Organisation of the United Nations, Rome, 300(9), D05109.
  • ASCE-EWRI, 2005. The ASCE standardized reference evapotranspiration equation. Standardization of reference evapotranspiration task committee final repor, R. G. Allen, I. A. Walter, R. L. Elliott, T. A. Howell, D. Itenfisu, M. E. Jensen, and R. L. Snyder, eds., ASCE, Reston, VA, (http://www.asce.org/Product.aspx?id=2147485918), 216.
  • Blaney, H.F., Criddle, W.D., 1950. Determining Water Requirements in Irrigated Areas from Climatological Irrigation Data. Technical Paper No. 96, US Department of Agriculture, Soil Conservation Service, Washington, D.C., 48 pp.
  • Cheng, M.Y., Cao, M.T., 2014. Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines. Applied Soft Computing, 22, 178-188. doi: 10.1016/j.asoc.2014.05.015
  • Djaman, K., Tabari, H., Balde, A. B., Diop, L., Futakuchi, K., Irmak, S., 2016. Analyses, calibration and validation of evapotranspiration models to predict grass-reference evapotranspiration in the Senegal river delta. Journal of Hydrology: Regional Studies, 8, 82-94. doi:10.1016/j.ejrh.2016.06.003
  • Dong, J., Zhu, Y., Jia, X., Han, X., Qiao, J., Bai, C., Tang, X., 2022. Nation-scale reference evapotranspiration estimation by using deep learning and classical machine learning models in China. Journal of Hydrology, 604, 127207. doi: 10.1016/j.jhydrol.2021.127207
  • Fan, J., Yue, W., Wu, L., Zhang, F., Cai, H., Wang, X., Lu, X., Xiang, Y., 2018. Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agricultural and Forest Meteorology, 263, 225-241. doi:10.1016/j.agrformet.2018.08.019
  • Gocić, M., Arab Amiri, M., 2021. Reference evapotranspiration prediction using neural networks and optimum time lags. Water Resources Management, 35(6), 1913-1926. doi:10.1007/s11269-021-02820-8
  • Hargreaves, G.H., Samani, Z.A., 1985. Reference crop evapotranspiration from temperature. Applied engineering in agriculture, 1(2), 96-99. doi:10.13031/2013.26773
  • Huang, G., Wu, L., Ma, X., Zhang, W., Fan, J., Yu, X., Zeng, W., Zhou, H., 2019. Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. Journal of Hydrology, 574, 1029-1041. doi:10.1016/j.jhydrol.2019.04.085
  • Irmak, S., Irmak, A., Allen, R. G., Jones, J. W., 2003. Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates. Journal of irrigation and drainage engineering, 129(5), 336-347. doi:10.1061/~ASCE!0733-9437
  • Jing, W., Yaseen, Z.M., Shahid, S., Saggi, M.K., Tao, H., Kisi, O., Salih, S.Q., Al-Ansari, N., Chau, K.W., 2019. Implementation of evolutionary computing models for reference evapotranspiration modeling: short review, assessment and possible future research directions. Engineering applications of computational fluid mechanics, 13(1), 811-823. doi:10.1080/19942060.2019.1645045
  • Karbasi, M., 2018. Forecasting of multi-step ahead reference evapotranspiration using wavelet-Gaussian process regression model. Water resources management, 32(3), 1035-1052.
  • Liu, X., Xu, C., Zhong, X., Li, Y., Yuan, X., Cao, J., 2017. Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement. Agricultural Water Management, 184, 145-155. https://doi.org/10.1016/j.agwat.2017.01.017
  • Makkink, G.F., 1957. Testing the Penman formula by means of lysimeters. J. Inst. Water Eng., 11(3): 277-288.
  • Makwana, J.J., Tiwari, M.K., Deora, B.S., 2023. Development and comparison of artificial intelligence models for estimating daily reference evapotranspiration from limited input variables. Smart Agricultural Technology, 3, 100115. doi:10.1016/j.atech.2022.100115
  • Mehdizadeh, S., Behmanesh, J., Khalili, K., 2017. Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Computers and electronics in agriculture, 139, 103-114. doi:10.1016/j.compag.2017.05.002
  • Mishra, A.K., Ratha, B.K., 2016. Study of random tree and random forest data mining algorithms for microarray data analysis. International Journal on Advanced Electrical and Computer Engineering, 3(4), 5-7.
  • Nash, J.E., Sutcliffe, J.V., 1970. “River Flow Forecasting through Conceptual Models: Part I. A Discussion of Principles.” Journal of Hydrology 10 (3): 282-90. doi:10.1016/0022-1694(70)90255-6
  • Priestley, C.H.B., Taylor, R.J., 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100(2): 81-92. doi:10.1175/1520-0493
  • Rasmussen, C.E., Williams, C.K.I., 2006. Gaussian Processes for Machine Learning, in: Adaptive Computation and Machine Learning series, MIT Press, Cambridge, Massachusetts, ISBN 0-262-18253-X, 2005. 
  • Roy, D.K., Saha, K.K., Kamruzzaman, M., Biswas, S.K., Hossain, M.A., 2021. Hierarchical fuzzy systems integrated with particle swarm optimization for daily reference evapotranspiration prediction: A novel approach. Water Resources Management, 35(15), 5383-5407. doi:10.1007/s11269-021-03009-9
  • Salam, R., Islam, A.R.M.T., 2020. Potential of RT, Bagging and RS ensemble learning algorithms for reference evapotranspiration prediction using climatic data-limited humid region in Bangladesh. Journal of Hydrology, 590, 125241. doi:10.1016/j.jhydrol.2020.125241
  • Shan, X., Cui, N., Cai, H., Hu, X., Zhao, L., 2020. Estimation of summer maize evapotranspiration using MARS model in the semi-arid region of northwest China. Computers and Electronics in Agriculture, 174, 105495. doi:10.1016/j.compag.2020.105495
  • Taşan, S., 2018. Bafra ovası sağ sahil topraklarının sulama açısından bazı fiziksel ve kimyasal özelliklerindeki değişimin modeller ile tahmini. Doktora Tezi. Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, 346s, Samsun.
  • Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geographical review, 38(1), 55-94.
  • Wu, M., Feng, Q., Wen, X., Deo, R. C., Yin, Z., Yang, L., Sheng, D., 2020. Random forest predictive model development with uncertainty analysis capability for the estimation of evapotranspiration in an arid oasis region. Hydrology Research, 51(4), 648-665. https://doi.org/10.2166/nh.2020.012
  • Yin, L., Tao, F., Chen, Y., Liu, F., Hu, J., 2021. Improving terrestrial evapotranspiration estimation across China during 2000–2018 with machine learning methods. Journal of Hydrology, 600, 126538.
  • Zhou, Z. H., 2016. Learnware: on the future of machine learning. Frontiers Comput. Sci., 10(4), 589-590.
  • Zhu, B., Feng, Y., Gong, D., Jiang, S., Zhao, L., Cui, N., 2020. Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data. Computers and Electronics in Agriculture, 173, 105430. doi:10.1016/j.compag.2020.105430
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sulama Suyu Kalitesi
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Sevda Taşan 0000-0002-4335-4074

Mehmet Taşan 0000-0002-5592-5022

Erken Görünüm Tarihi 30 Haziran 2023
Yayımlanma Tarihi 4 Temmuz 2023
Kabul Tarihi 7 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 38 Sayı: 2

Kaynak Göster

APA Taşan, S., & Taşan, M. (2023). Yarı nemli bir bölgede günlük referans bitki su tüketiminin tahmini için üç farklı makine öğrenimi modellerinin geliştirilmesi ve karşılaştırılması. Anadolu Tarım Bilimleri Dergisi, 38(2), 235-254. https://doi.org/10.7161/omuanajas.1211716
Online ISSN: 1308-8769