Araştırma Makalesi
BibTex RIS Kaynak Göster

Bazı Vitis labrusca ve Vitis türlerinin Genetik Çeşitliliğinin Moleküler Markörlerle Analizi

Yıl 2024, Cilt: 39 Sayı: 3, 607 - 621, 30.10.2024
https://doi.org/10.7161/omuanajas.1475187

Öz

Türkiye bağcılık için oldukça uygun bir iklime sahip olup, eski çağlardan beri ülkenin hemen her bölgesinde farklı üzüm çeşitleri yetiştirilmektedir. Bu üzüm çeşitleri arasında farklı isimlere sahip olanlar bulunsa da aynı genetik yapıya sahip üzüm çeşitleri de bulunmaktadır. Özellikle Karadeniz Bölgesi'nde yoğun yağışlar ile neme dayanıklı Vitis labrusca türüne giren üzüm tip ve melezleri yetişmektedir. Ancak bölgede bu türün farklı genotiplerinin yetiştirildiğide bilinmektedir. Vitis labrusca L. ve melezlerinde doğal polen transferi ve melezlemeden dolayı genetik karışıklık söz konusudur. Bu çalışmada Vitis labrusca genotipleri başta olmak üzere Vitis çeşitleri ve genotipleri arasındaki genetik benzerlik ve farklılıklar 18 farklı SSR primeri ile değerlendirilmiştir. Genetik ilişki dendrogramında çeşitler/genotipler %0,65 ile %0,98 arasında değişen oranlarda benzerlik göstermiştir. Çalışmada kullanılan çeşit ve genotipler arasındaki en yüksek benzerlik oranı %92 ile 5 '57 Gerze 04' ve 6 '61 Of 04' genotipleri arasında tespit edilmiştir. Elde edilen sonuçların özellikle Karadeniz Bölgesi'nde farklı üzüm gen havuzu olduğunu ortaya çıkarmış olup, gelecekte hastalık direnci ıslahı çalışmalarına önemli katkı sağlaması beklenmektedir. İklim değişikliği ve tüketicilerde farkındalığının artması ile birlikte, önümüzdeki yıllarda V. labrusca türüne mensup üzümler gibi hastalığa dayanıklı veya tolerant olan üzümlere talebin artması beklenmektedir.

Kaynakça

  • Atak, A., Altındişli, A., Gökçe A.F., Özer, C. 2012. Molecular and ampelographic characterization of some grape hybrids (Vitis vinifera L.). Afr. J. Agric. Res. 7(33), 4596-4606. https://doi.org/10.5897/AJAR11.1957
  • Atak, A. 2023. New Perspectives in Grapevine (Vitis spp.) Breeding. Case Studies of Breeding Strategies in Major Plant Species (Book/Edited by Haiping Wang). IntechOpen 422 pages https://doi.org/10.5772/intechopen.100882 .
  • Bowers, J.E., Dangl, G.S., Vignani, R., Meredith, C.P. 1996. Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L). Genome 39, 628–633. https://doi.org/10.1139/g96-080
  • Bowers, J.E., Dangl, G.S., Meredith, C.P. 1999. Development and characterization of additional microsatellite DNA markers for grape. Am. J. Enol. Vitic. 50, 243-246.
  • Cangi, R., Celik, H., Kose, B. 2006. Determination of Ampelographic Characters of Some Natural Foxy Grape (Vitis labrusca L.) Types Grown in Northern Turkey (Ordu and Giresun Province). International Journal of Botany, 2, 171-176. https://doi.org/10.3923/ijb.2006.171.176
  • Celik, H., Köse, B., Cangi, R. 2008. Determination of Fox grape genotypes (Vitis labrusca L.) grown in Northeastern Anatolia. Horticultural Science, 35(4), 162-170. https://doi.org/10.17221/655-HORTSCI
  • Daler, S., Cangi, R. 2022. Characterization of grapevine (V. vinifera L.) varieties grown in Yozgat province (Turkey) by simple sequence repeat (SSR) markers, Turkish Journal of Agriculture and Forestry, 46(1), 38-48. https://doi.org/10.3906/tar-2104-75
  • Dangi, G.S., Mendum, M.L., Prins, B.H., Walker, M.A., Meredith, C.P., Simon, C.J. 2001. Simple sequence repeat analysis of a clonally propagated species: a tool for managing a grape germplasm collection. Genome, 44(3), 432-438. https://doi.org/10.1139/g01-026
  • De Lorenzis, G. 2024. From ancient to modern grapevine cultivars: a lesson from cultivars that made the history of viticulture. Acta Hortic. 1385, 47-58. https://doi.org/10.17660/ActaHortic.2024.1385.7
  • Dong, Y., Duan, S., Xia, Q., Liang, Z., Dong, X., Margaryan, K., et al. 2023. Dual domestications and origin of traits in grapevine evolution. Science 379, 892–901. https://doi.org/10.1126/science.add865
  • Ergül, A., Perez-Rivera, G., Söylemezoğlu, G. et al. 2011. Genetic diversity in Anatolian wild grapes (Vitis vinifera subsp. sylvestris) estimated by SSR markers. – Plant Genetic Resour. 9: 375–383. https://doi.org/10.1017/S1479262111000013
  • Fatahi, R., Ebadi, A., Bassil, N.,Mehlenbacher, S.A., Zamani, Z. 2003. Characterization of Iranian grapevine cultivars using microsatellite markers. Vitis 42, 185-192. https://doi.org/10.5073/vitis.2003.42.185-192
  • Franks, T., Botta, R., Thomas, M.R., Franks, J. 2002. Chimerism in grapevines:implications for cultivar identity, ancestry and genetic improvement. Theor. Appl.Genet. 104, 192–199. https://doi.org/10.1007/s001220100683
  • Grassi ,F., Labra, M., Imazio, S., Spada, A., Sgorbati, S., Scienza, A., Sala, F. 2003. Evidence of a secondary grapevine domestication centre detected by SSR analysis. Theor Appl Genet. 107(7), 1315-20. https://doi.org/10.1007/s00122-003-1321-1
  • Hizarci, Y., Ercisli, S., Yuksel, C., Ergül, A. 2012. Genetic characterization and relatedness among autochthonous grapevine cultivars from Northeast Türkiye by simple sequence repeats (SSR). J Appl Bot Food Qual 85, 224–228
  • Ikten, H., Sari, D., Sabir, A. et al. 2024. Estimating genetic diversity among selected wild grapevine genotypes from Southern Turkey by simple sequence repeat (SSR) and inter-Primer Binding Site(iPBS) markers. Genet Resour Crop Evol. https://doi.org/10.1007/s10722-024-02102-3
  • Ibañez, J., Andrés, M. T., Molino, A., Borrego, J. 2003. Genetic study of key Spanish grapevine varieties using microsatellite analysis. Am. J. Enol. Vitic. 54, 22-30. http://dx.doi.org/10.5344/ajev.2003.54.1.22
  • Karataş, H., Değirmenci, D., Velasco, R., Vezzulli, S., Bodur, Ç., Ağaoğlu, Y.S. 2007. Microsatellite fingerprinting of homonymous grapevine (Vitis vinifera L.) varieties in neighboring regions of south-East Turkey. Sci Hortic. 114, 3, 164-169. https://doi.org/10.1016/j.scienta.2007.07.001
  • Karataş, D.D., Karataş, H., Laucou, V., Sarikamiş, G., Riahi, L., Bacilieri, R., This, P. 2014, Genetic diversity of wild and cultivated grapevine accessions from southeast Turkey. Hereditas, 151, 73-80. https://doi.org/10.1111/hrd2.00039
  • Köse, B. 2014. Phenology and ripening of Vitis vinifera L. and Vitis labrusca L. varieties in the maritime climate of Samsun in Turkey's Black Sea Region. South African Journal of Enology and Viticulture, 35(1), 90-102.
  • Köse, B., Çelik, H. 2018. Comparison of ampelographic characteristics of foxy grape genotypes (Vitis labrusca L.) growing in the black sea region. Bahçe (Private Issue), 47(1), 293-297.
  • Li, B., Gschwend, A.R., 2023. Vitis labrusca genome assembly reveals diversification between wild and cultivated grapevine genomes. Front. Plant Sci. 14, 1234130. https://doi.org/10.3389/fpls.2023.1234130
  • Ma, Z.Y., Wen, J., Ickert-Bond, S.M., Nie, Z.L., Chen, L.Q., Liu, X.Q. 2018. Phylogenomics, biogeography, and adaptive radiation of grapes. Mol. Phylogenet Evol. 129, 258–267. https://doi.org/10.1016/j.ympev.2018.08.021
  • Margaryan, K., Töpfer, R., Gasparyan, B., Arakelyan, A., Trapp, O., Röckel, F., Maul, E. 2023. Wild grapes of Armenia: unexplored source of genetic diversity and disease resistance. Front. Plant Sci. 14:1276764. https://doi.org/10.3389/fpls.2023.1276764
  • Martinez, l. E., Cavagnaro, P.F., Masuelli, R. W., Zuniga, M. 2006. SSR-based assessment of genetic diversity in Sout American Vitis vinifera varieties. Plant Sci. 170, 1036-1044. https://doi.org/10.1016/j.plantsci.2005.12.006
  • Reynolds, A.G., Reisch, B.I. 2015. “Grapevine breeding in the eastern United States,” in Grapevine breeding programs for the wine industry. Ed. A. Reynolds (Waltham, MA: Woodhead Publishing).
  • Riaz, S., Garrison, K.E., Dangl, G. S., Boursiquot, J.M., Meredith, C.P. 2002. Genetic divergence and chimerism within ancient asexually propagated winegrape cultivars. J. Am. Soc. Hortic. Sci. 127, 508–514. https://doi.org/10.21273/JASHS.127.4.508
  • Rohlf, F.J. 2000. NTSYS-PC manual Exter Software, Setauket, New York.
  • Sefc, K., Lopes, M., Lefort, F., et al. 2000. Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor. Appl. Genet. 100, 498–505. https://doi.org/10.1007/s001220050065
  • Smith, J., Chin, E., Shu, H. et al. 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPS and pedigree. Theor. Appl. Genet. 95, 163–173). https://doi.org/10.1007/s001220050544
  • Şelli, F., Bakır, M., İnan, G. , Aygün, H., Boz, Y., Yaşasın, A.S., Özer, C., et al. 2007. Simple sequence repeat-based assessment of genetic diversity in Dimrit and Gemre grapevine accessions from Turkey. Vitis 46, 182-187.
  • Tahmaz Karaman, H., Yuksel Kusku, D., Söylemezoğlu, G., Çelik, H. 2022. Phenolic Compound and Antioxidant Capacity Contents of Vitis labrusca. L. Genotypes. Journal Of Tekirdag Agriculture Faculty, 19(2), 318-331. http://doi.org/10.33462/jotaf.952108
  • This, P., Jung, A., Boccacci, P., Borreg,o J., Botta, R., Costantini L. 2004. Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor. Appl. Genet. 109, https://doi.org/1448-1458. 10.1007/s00122-004-1760-32004
  • Vouillamoz, J.F., Mcgovern, P.E., Ergül, A., Söylemezoğlu, G., Tevzadze, G., Meredith, C.P., Grando, M.S., 2006. Genetic characterization and relationships of traditional grape cultivars from Transcaucasia and Anatolia. Plant Genet. Res. 4, 144-158. http://dx.doi.org/10.1079/PGR2006114
  • Vondras, A.M., Minio, A., Blanco-Ulate, B., Figueroa-Balderas, R., Penn, M.A., Zhou, Y., et al. 2019. The genomic diversification of grapevine clones. BMC Genomics 20, 972. https://doi.org/10.1186/s12864-019-6211-2
  • Yılmaz, F., Shidfar, M., Hazrati, N. et al. 2020. Genetic analysis of central Anatolian grapevine (Vitis vinifera L.) germplasm by simple sequence repeats. Tree Genetics & Genomes 16, 55. https://doi.org/10.1007/s11295-020-01429-z
  • Walker, M.A., Heinitz, C., Riaz, S., Uretsky, J. 2019. “Grape taxonomy and germplasm,” in The grape genome. Eds. D. Cantu and M. Walker (Cham: Springer). Compendium of Plant Genomes.
  • Wen, J, Herron, S.A., Yang, X., Liu, B-B., Zuo, Y-J., Harris, A., Kalburgi, Y., Johnson, G., Zimmer, E.A. 2020. Nuclear and Chloroplast Sequences Resolve the Enigmatic Origin of the Concord Grape. Front. Plant Sci. 11:263. http://dx.doi.org/10.3389/fpls.2020.00263
  • Xiao, H., Liu, Z., Wang, N., Long, Q., Cao, S., Huang, G., et al. 2023. Adaptive and maladaptive introgression in grapevine domestication. Proc. Natl. Acad. Sci. U.S.A. 120, e2222041120. https://doi.org/10.1073/pnas.2222041120
  • Zhou, Y., Massonnet, M., Sanjak, J. S., Cantu, D., Gaut, B. S. 2017. Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication. Proc. Natl. Acad. Sci. U.S.A. 114, 11715–11720. https://doi.org/10.1073/pnas.1709257114

Analysis of Genetic Diversity of Some Vitis labrusca and Vitis spp. with Molecular Markers

Yıl 2024, Cilt: 39 Sayı: 3, 607 - 621, 30.10.2024
https://doi.org/10.7161/omuanajas.1475187

Öz

Türkiye has a very suitable climate for viticulture, and different grape varieties have been grown in almost every region since ancient times. Although these grape varieties have different names, there are also grape varieties with the same genetic structure. In particular, in the Black Sea Region, Vitis labrusca, which is resistant to heavy rainfall and humidity, and hybrids of this species grow. However, it is known that different genotypes of this species are grown in the region. Genetic confusion exists in Vitis labrusca L. and its hybrids due to natural pollen transfer and crossing. This study evaluated the genetic similarities and differences among Vitis varieties and genotypes, mainly Vitis labrusca genotypes, with 18 different SSR primers. In the genetic relationship dendrogram, the varieties/genotypes showed similarity at rates ranging from 0.65% to 0.98%. The highest similarity rate between the varieties and genotypes used in the study was determined between the genotypes 5 '57 Gerze 04' and 6 '61 Of 04' with 92%. The results obtained have revealed different grape gene pools, especially in the Black Sea Region, and are expected to contribute to disease resistance breeding studies in the future significantly. Increasing consumer awareness of climate change will increase the interest in disease-resistant or tolerant grapes, such as Vitis labrusca species, in the coming years.

Kaynakça

  • Atak, A., Altındişli, A., Gökçe A.F., Özer, C. 2012. Molecular and ampelographic characterization of some grape hybrids (Vitis vinifera L.). Afr. J. Agric. Res. 7(33), 4596-4606. https://doi.org/10.5897/AJAR11.1957
  • Atak, A. 2023. New Perspectives in Grapevine (Vitis spp.) Breeding. Case Studies of Breeding Strategies in Major Plant Species (Book/Edited by Haiping Wang). IntechOpen 422 pages https://doi.org/10.5772/intechopen.100882 .
  • Bowers, J.E., Dangl, G.S., Vignani, R., Meredith, C.P. 1996. Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L). Genome 39, 628–633. https://doi.org/10.1139/g96-080
  • Bowers, J.E., Dangl, G.S., Meredith, C.P. 1999. Development and characterization of additional microsatellite DNA markers for grape. Am. J. Enol. Vitic. 50, 243-246.
  • Cangi, R., Celik, H., Kose, B. 2006. Determination of Ampelographic Characters of Some Natural Foxy Grape (Vitis labrusca L.) Types Grown in Northern Turkey (Ordu and Giresun Province). International Journal of Botany, 2, 171-176. https://doi.org/10.3923/ijb.2006.171.176
  • Celik, H., Köse, B., Cangi, R. 2008. Determination of Fox grape genotypes (Vitis labrusca L.) grown in Northeastern Anatolia. Horticultural Science, 35(4), 162-170. https://doi.org/10.17221/655-HORTSCI
  • Daler, S., Cangi, R. 2022. Characterization of grapevine (V. vinifera L.) varieties grown in Yozgat province (Turkey) by simple sequence repeat (SSR) markers, Turkish Journal of Agriculture and Forestry, 46(1), 38-48. https://doi.org/10.3906/tar-2104-75
  • Dangi, G.S., Mendum, M.L., Prins, B.H., Walker, M.A., Meredith, C.P., Simon, C.J. 2001. Simple sequence repeat analysis of a clonally propagated species: a tool for managing a grape germplasm collection. Genome, 44(3), 432-438. https://doi.org/10.1139/g01-026
  • De Lorenzis, G. 2024. From ancient to modern grapevine cultivars: a lesson from cultivars that made the history of viticulture. Acta Hortic. 1385, 47-58. https://doi.org/10.17660/ActaHortic.2024.1385.7
  • Dong, Y., Duan, S., Xia, Q., Liang, Z., Dong, X., Margaryan, K., et al. 2023. Dual domestications and origin of traits in grapevine evolution. Science 379, 892–901. https://doi.org/10.1126/science.add865
  • Ergül, A., Perez-Rivera, G., Söylemezoğlu, G. et al. 2011. Genetic diversity in Anatolian wild grapes (Vitis vinifera subsp. sylvestris) estimated by SSR markers. – Plant Genetic Resour. 9: 375–383. https://doi.org/10.1017/S1479262111000013
  • Fatahi, R., Ebadi, A., Bassil, N.,Mehlenbacher, S.A., Zamani, Z. 2003. Characterization of Iranian grapevine cultivars using microsatellite markers. Vitis 42, 185-192. https://doi.org/10.5073/vitis.2003.42.185-192
  • Franks, T., Botta, R., Thomas, M.R., Franks, J. 2002. Chimerism in grapevines:implications for cultivar identity, ancestry and genetic improvement. Theor. Appl.Genet. 104, 192–199. https://doi.org/10.1007/s001220100683
  • Grassi ,F., Labra, M., Imazio, S., Spada, A., Sgorbati, S., Scienza, A., Sala, F. 2003. Evidence of a secondary grapevine domestication centre detected by SSR analysis. Theor Appl Genet. 107(7), 1315-20. https://doi.org/10.1007/s00122-003-1321-1
  • Hizarci, Y., Ercisli, S., Yuksel, C., Ergül, A. 2012. Genetic characterization and relatedness among autochthonous grapevine cultivars from Northeast Türkiye by simple sequence repeats (SSR). J Appl Bot Food Qual 85, 224–228
  • Ikten, H., Sari, D., Sabir, A. et al. 2024. Estimating genetic diversity among selected wild grapevine genotypes from Southern Turkey by simple sequence repeat (SSR) and inter-Primer Binding Site(iPBS) markers. Genet Resour Crop Evol. https://doi.org/10.1007/s10722-024-02102-3
  • Ibañez, J., Andrés, M. T., Molino, A., Borrego, J. 2003. Genetic study of key Spanish grapevine varieties using microsatellite analysis. Am. J. Enol. Vitic. 54, 22-30. http://dx.doi.org/10.5344/ajev.2003.54.1.22
  • Karataş, H., Değirmenci, D., Velasco, R., Vezzulli, S., Bodur, Ç., Ağaoğlu, Y.S. 2007. Microsatellite fingerprinting of homonymous grapevine (Vitis vinifera L.) varieties in neighboring regions of south-East Turkey. Sci Hortic. 114, 3, 164-169. https://doi.org/10.1016/j.scienta.2007.07.001
  • Karataş, D.D., Karataş, H., Laucou, V., Sarikamiş, G., Riahi, L., Bacilieri, R., This, P. 2014, Genetic diversity of wild and cultivated grapevine accessions from southeast Turkey. Hereditas, 151, 73-80. https://doi.org/10.1111/hrd2.00039
  • Köse, B. 2014. Phenology and ripening of Vitis vinifera L. and Vitis labrusca L. varieties in the maritime climate of Samsun in Turkey's Black Sea Region. South African Journal of Enology and Viticulture, 35(1), 90-102.
  • Köse, B., Çelik, H. 2018. Comparison of ampelographic characteristics of foxy grape genotypes (Vitis labrusca L.) growing in the black sea region. Bahçe (Private Issue), 47(1), 293-297.
  • Li, B., Gschwend, A.R., 2023. Vitis labrusca genome assembly reveals diversification between wild and cultivated grapevine genomes. Front. Plant Sci. 14, 1234130. https://doi.org/10.3389/fpls.2023.1234130
  • Ma, Z.Y., Wen, J., Ickert-Bond, S.M., Nie, Z.L., Chen, L.Q., Liu, X.Q. 2018. Phylogenomics, biogeography, and adaptive radiation of grapes. Mol. Phylogenet Evol. 129, 258–267. https://doi.org/10.1016/j.ympev.2018.08.021
  • Margaryan, K., Töpfer, R., Gasparyan, B., Arakelyan, A., Trapp, O., Röckel, F., Maul, E. 2023. Wild grapes of Armenia: unexplored source of genetic diversity and disease resistance. Front. Plant Sci. 14:1276764. https://doi.org/10.3389/fpls.2023.1276764
  • Martinez, l. E., Cavagnaro, P.F., Masuelli, R. W., Zuniga, M. 2006. SSR-based assessment of genetic diversity in Sout American Vitis vinifera varieties. Plant Sci. 170, 1036-1044. https://doi.org/10.1016/j.plantsci.2005.12.006
  • Reynolds, A.G., Reisch, B.I. 2015. “Grapevine breeding in the eastern United States,” in Grapevine breeding programs for the wine industry. Ed. A. Reynolds (Waltham, MA: Woodhead Publishing).
  • Riaz, S., Garrison, K.E., Dangl, G. S., Boursiquot, J.M., Meredith, C.P. 2002. Genetic divergence and chimerism within ancient asexually propagated winegrape cultivars. J. Am. Soc. Hortic. Sci. 127, 508–514. https://doi.org/10.21273/JASHS.127.4.508
  • Rohlf, F.J. 2000. NTSYS-PC manual Exter Software, Setauket, New York.
  • Sefc, K., Lopes, M., Lefort, F., et al. 2000. Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor. Appl. Genet. 100, 498–505. https://doi.org/10.1007/s001220050065
  • Smith, J., Chin, E., Shu, H. et al. 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPS and pedigree. Theor. Appl. Genet. 95, 163–173). https://doi.org/10.1007/s001220050544
  • Şelli, F., Bakır, M., İnan, G. , Aygün, H., Boz, Y., Yaşasın, A.S., Özer, C., et al. 2007. Simple sequence repeat-based assessment of genetic diversity in Dimrit and Gemre grapevine accessions from Turkey. Vitis 46, 182-187.
  • Tahmaz Karaman, H., Yuksel Kusku, D., Söylemezoğlu, G., Çelik, H. 2022. Phenolic Compound and Antioxidant Capacity Contents of Vitis labrusca. L. Genotypes. Journal Of Tekirdag Agriculture Faculty, 19(2), 318-331. http://doi.org/10.33462/jotaf.952108
  • This, P., Jung, A., Boccacci, P., Borreg,o J., Botta, R., Costantini L. 2004. Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor. Appl. Genet. 109, https://doi.org/1448-1458. 10.1007/s00122-004-1760-32004
  • Vouillamoz, J.F., Mcgovern, P.E., Ergül, A., Söylemezoğlu, G., Tevzadze, G., Meredith, C.P., Grando, M.S., 2006. Genetic characterization and relationships of traditional grape cultivars from Transcaucasia and Anatolia. Plant Genet. Res. 4, 144-158. http://dx.doi.org/10.1079/PGR2006114
  • Vondras, A.M., Minio, A., Blanco-Ulate, B., Figueroa-Balderas, R., Penn, M.A., Zhou, Y., et al. 2019. The genomic diversification of grapevine clones. BMC Genomics 20, 972. https://doi.org/10.1186/s12864-019-6211-2
  • Yılmaz, F., Shidfar, M., Hazrati, N. et al. 2020. Genetic analysis of central Anatolian grapevine (Vitis vinifera L.) germplasm by simple sequence repeats. Tree Genetics & Genomes 16, 55. https://doi.org/10.1007/s11295-020-01429-z
  • Walker, M.A., Heinitz, C., Riaz, S., Uretsky, J. 2019. “Grape taxonomy and germplasm,” in The grape genome. Eds. D. Cantu and M. Walker (Cham: Springer). Compendium of Plant Genomes.
  • Wen, J, Herron, S.A., Yang, X., Liu, B-B., Zuo, Y-J., Harris, A., Kalburgi, Y., Johnson, G., Zimmer, E.A. 2020. Nuclear and Chloroplast Sequences Resolve the Enigmatic Origin of the Concord Grape. Front. Plant Sci. 11:263. http://dx.doi.org/10.3389/fpls.2020.00263
  • Xiao, H., Liu, Z., Wang, N., Long, Q., Cao, S., Huang, G., et al. 2023. Adaptive and maladaptive introgression in grapevine domestication. Proc. Natl. Acad. Sci. U.S.A. 120, e2222041120. https://doi.org/10.1073/pnas.2222041120
  • Zhou, Y., Massonnet, M., Sanjak, J. S., Cantu, D., Gaut, B. S. 2017. Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication. Proc. Natl. Acad. Sci. U.S.A. 114, 11715–11720. https://doi.org/10.1073/pnas.1709257114
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Meyve Yetiştirme ve Islahı, Bahçe Bitkileri Yetiştirme ve Islahı (Diğer), Tarımda Bitki Biyoteknolojisi
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Yeşim Doyğaci 0000-0002-4213-271X

Arif Atak 0000-0001-7251-2417

Erken Görünüm Tarihi 25 Ekim 2024
Yayımlanma Tarihi 30 Ekim 2024
Gönderilme Tarihi 29 Nisan 2024
Kabul Tarihi 9 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 3

Kaynak Göster

APA Doyğaci, Y., & Atak, A. (2024). Analysis of Genetic Diversity of Some Vitis labrusca and Vitis spp. with Molecular Markers. Anadolu Tarım Bilimleri Dergisi, 39(3), 607-621. https://doi.org/10.7161/omuanajas.1475187
Online ISSN: 1308-8769