Research Article
BibTex RIS Cite

Sisplatin ve Karboplatin Yüklü Albumin Nanopartiküllerin Meme Kanseri Hücreleri Üzerindeki Sitotoksik Etkileri

Year 2023, Volume: 8 Issue: 1, 115 - 121, 05.03.2023
https://doi.org/10.26453/otjhs.1217364

Abstract

Amaç: Bu çalışmanın amacı kanser tedavisinde sıklıkla kullanılan karboplatin ve sisplatin ilaçlarının albümin nanotaşıyıcıya yüklenerek antikanser etkilerinin araştırılması ve karşılaştırılmasıdır.
Materyal ve Metot: Karboplatin (CP) ve Sisplatin (Cis) yüklenmiş albümin nanopartiküller, sırasıyla CP-NPs ve Cis-NPs olarak ultrasonikasyon kullanarak sentezlendi. Nanopartikül boyutu ve dağılımın homojenitesi Dinamik ışık saçılımı (DLS) ile değerlendirildi. Nanopartiküllerin sitotoksik aktiviteleri MDA-MB-231 ve MCF-7 meme kanseri hücrelerinde ve HUVEC hücrelerinde, MTT testi kullanılarak değerlendirildi ve morfolojik görüntüleri karşılaştırıldı.
Bulgular: CP-NPs’lerin boyutu ortalama 2-3 nm civarında iken, Cis-NPs’lerin 7-8 nm idi. Her iki nanopartikül grubunun da homojen bir şekilde dağıldığı görüldü. Sitotoksisite sonuçlarına göre CP-NPs ve Cis-NPs, MCF-7 meme kanseri hücrelerinde daha sitotoksikti. Ayrıca CP-NPs ve Cis-NPs’ler MDA-MB-231 meme kanseri hücrelerinde önemli sitotoksisite gösterirken, normal HUVEC hücrelerinde düşük sitotoksisite tespit edildi. CP-NPs ve Cis-NPs ile tedavi edilen MCF-7, tedavi edilmeyen MCF-7 ile karşılaştırıldı ve NPs'ler için istatistiksel anlamlılık P<0,01 olarak hesaplandı.
Sonuç: Meme kanseri hücrelerinde yüksek sitotoksisite gözlenirken, sağlıklı hücrelerde belirgin sitotoksisite gözlenmemiş olup albümine bağlı CP-NPs ve Cis-NPs kanser tedavisinde umut vadedici bir tedavi seçeneği olabilir.

References

  • 1. Howell A, Anderson AS, Clarke RB, et al. Risk determination and prevention of breast cancer. Breast Cancer Research 2014;16(5):1-19. doi:10.1186/S13058-014-0446-2
  • 2. Reang J, Sharma PC, Kumar Thakur V, et al. Understanding the therapeutic potential of ascorbic acid in the battle to overcome cancer. Biomolecules 2021;11(8):1130. doi:10.3390/BIOM11081130
  • 3. Schirrmacher V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. Int J Oncol. 2019;54(2):407-419. https://doi.org/10.3892/ijo.2018.4661
  • 4. Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for cancer therapy based on chemotherapy. Molecules. 2018;23(4). doi:10.3390/molecules23040826
  • 5. Parvanian S, Mostafavi SM, Aghashiri M. Multifunctional nanoparticle developments in cancer diagnosis and treatment. Sens Biosensing Res. 2017;13:81-87. doi:10.1016/J.SBSR.2016.08.002
  • 6. Wu J. The enhanced permeability and retention (epr) effect:The significance of the concept and methods to enhance its application. Journal of Personalized Medicine 2021;11(8):771. doi:10.3390/JPM11080771
  • 7. Ma P, Mumper RJ. Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol. 2013;4(2):1000164. doi:10.4172/2157-7439.1000164
  • 8. Karami E, Behdani M, Kazemi-Lomedasht F. Albumin nanoparticles as nanocarriers for drug delivery: Focusing on antibody and nanobody delivery and albumin-based drugs. J Drug Deliv Sci Technol. 2020;55:101471. doi:10.1016/J.JDDST.2019.101471
  • 9. Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of Controlled Release. 2012;157(2):168-182. doi:10.1016/J.JCONREL.2011.07.031
  • 10. Lee ES, Youn YS. Albumin-based potential drugs: focus on half-life extension and nanoparticle preparation. Journal of Pharmaceutical Investigation 2016;46(4):305-315. doi:10.1007/S40005-016-0250-3
  • 11. Vaz J, Ansari D, Sasor A, Andersson R. SPARC: A Potential Prognostic and Therapeutic Target in Pancreatic Cancer. Pancreas. 2015;44(7):1024. doi:10.1097/MPA.0000000000000409
  • 12. Kratz F. A clinical update of using albumin as a drug vehicle-A commentary. Journal of Controlled Release. 2014;190:331-336. doi:10.1016/J.JCONREL.2014.03.013
  • 13. Hassanin I, Elzoghby A. Albumin-based nanoparticles: a promising strategy to overcome cancer drug resistance. Cancer Drug Resistance. 2020;3(4):930-946. doi:10.20517/CDR.2020.68
  • 14. Kalındemirtaş FD, Kariper İA, Sert E, Okşak N, Kuruca SE. The evaluation of anticancer activity by synthesizing 5FU loaded albumin nanoparticles by exposure to UV light. Toxicology in Vitro 2022;84:105435. doi.org/10.1016/j.tiv.2022.105435
  • 15. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. doi:10.1016/0022-1759(83)90303-4
  • 16. Dang Y, Guan J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater Med. 2020;1:10-19. doi:10.1016/J.SMAIM.2020.04.001
  • 17. Liu Y, Guo Q, Sun H, Guo N, Zhang J. Improved therapeutic efficiency of photothermal treatment and nursing care in prostate cancer by DOX loaded PEG coated Cu@Se nano-hybrid vesicle. Process Biochemistry. 2020;92:78-84. doi:10.1016/J.PROCBIO.2020.02.022
  • 18. Ye BL, Zheng R, Ruan XJ, Zheng ZH, Cai HJ. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway. Biochem Biophys Res Commun. 2018;495(1):414-420. doi:10.1016/J.BBRC.2017.10.156
  • 19. Haggag YA, Osman MA, El-Gizawy SA, et al. Polymeric nano-encapsulation of 5-fluorouracil enhances anti-cancer activity and ameliorates side effects in solid Ehrlich Carcinoma-bearing mice. Biomedicine & Pharmacotherapy. 2018;105:215-224. doi:10.1016/J.BIOPHA.2018.05.124
  • 20. Vijayakumar S, Ganesan S. Size-dependent in vitro cytotoxicity assay of gold nanoparticles. Toxicological & Environmental Chemistry 2013;95(2):277-287. doi:10.1080/02772248.2013.770858
  • 21. Kocak C, Kocak FE, Ozturk B, Tekin G, Vatansev H. Cytotoxic, anti-proliferative and apoptotic effects of noscapine on human estrogen receptor positive (MCF-7) and negative (MDA-MB-231) breast cancer cell lines. Bratisl Lek Listy. 2020;121(1):43-50. doi:10.4149/BLL_2020_007
  • 22. Noh JI, Mun SK, Lim EH, et al. Induction of apoptosis in MDA-MB-231 cells treated with the methanol extract of lichen physconia hokkaidensis. Journal of Fungi 2021;7(3):188. doi:10.3390/JOF7030188
  • 23. Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules. 2020;25(9). doi:10.3390/MOLECULES25092193
  • 24. Zinger A, Koren L, Adir O, et al. Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano. 2019;13(10):11008-11021 doi: 10.1021/acsnano.9b02395
  • 25. Yan L, Shen J, Wang J, Yang X, Dong S, Lu S. Nanoparticle-based drug delivery system: a patient-friendly chemotherapy for oncology. Dose-Response. 2020;18(3). doi:10.1177/1559325820936161
  • 26. Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M. Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and Perspectives. Int J Nanomedicine. 2021;16:1313-1330. doi:10.2147/IJN.S289443

Cytotoxic Effects of Cisplatin and Carboplatin Loaded Albumin Nanoparticles on Breast Cancer Cells

Year 2023, Volume: 8 Issue: 1, 115 - 121, 05.03.2023
https://doi.org/10.26453/otjhs.1217364

Abstract

Objective: This study aims to investigate and compare the anticancer effects of carboplatin and cisplatin, frequently used in cancer treatment, by loading them on albumin nanocarrier.
Materials and Methods: Carboplatin (CP) and Cisplatin (Cis) loaded albumin nanoparticles were synthesized using ultrasonication as CP-NPs and Cis-NPs, respectively. Nanoparticle size and distribution were evaluated by Dynamic light scattering (DLS). Cytotoxicities of NPs were evaluated in MDA-MB-231 and MCF-7 breast cancer cells and HUVEC using MTT test and their morphological images were compared.
Results: While the average size of CP-NPs was around 2-3 nm, Cis-NPs was 7-8 nm. It was observed that both NPs groups were homogeneously dispersed. According to the cytotoxicity results, both CP-NPs and Cis-NPs were more cytotoxic on MCF-7 breast cancer cells. In addition, CP-NPs and Cis-NPs showed significant cytotoxicity on MCF-7, MDA-MB-231 breast cancer cells, while low cytotoxicity was detected in normal HUVEC cells. The NPs treated MCF-7 was compared with the untreated MCF-7 and statistical significance was calculated as P<0.01 for CP-NPs and Cis-NPs.
Conclusions: Abumin-based CP-NPs and Cis-NPs showed high cytotoxicity in breast cancer cells, they have low cytotoxicity in healthy cells, making them promising for breast cancer treatment.

References

  • 1. Howell A, Anderson AS, Clarke RB, et al. Risk determination and prevention of breast cancer. Breast Cancer Research 2014;16(5):1-19. doi:10.1186/S13058-014-0446-2
  • 2. Reang J, Sharma PC, Kumar Thakur V, et al. Understanding the therapeutic potential of ascorbic acid in the battle to overcome cancer. Biomolecules 2021;11(8):1130. doi:10.3390/BIOM11081130
  • 3. Schirrmacher V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. Int J Oncol. 2019;54(2):407-419. https://doi.org/10.3892/ijo.2018.4661
  • 4. Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for cancer therapy based on chemotherapy. Molecules. 2018;23(4). doi:10.3390/molecules23040826
  • 5. Parvanian S, Mostafavi SM, Aghashiri M. Multifunctional nanoparticle developments in cancer diagnosis and treatment. Sens Biosensing Res. 2017;13:81-87. doi:10.1016/J.SBSR.2016.08.002
  • 6. Wu J. The enhanced permeability and retention (epr) effect:The significance of the concept and methods to enhance its application. Journal of Personalized Medicine 2021;11(8):771. doi:10.3390/JPM11080771
  • 7. Ma P, Mumper RJ. Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol. 2013;4(2):1000164. doi:10.4172/2157-7439.1000164
  • 8. Karami E, Behdani M, Kazemi-Lomedasht F. Albumin nanoparticles as nanocarriers for drug delivery: Focusing on antibody and nanobody delivery and albumin-based drugs. J Drug Deliv Sci Technol. 2020;55:101471. doi:10.1016/J.JDDST.2019.101471
  • 9. Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of Controlled Release. 2012;157(2):168-182. doi:10.1016/J.JCONREL.2011.07.031
  • 10. Lee ES, Youn YS. Albumin-based potential drugs: focus on half-life extension and nanoparticle preparation. Journal of Pharmaceutical Investigation 2016;46(4):305-315. doi:10.1007/S40005-016-0250-3
  • 11. Vaz J, Ansari D, Sasor A, Andersson R. SPARC: A Potential Prognostic and Therapeutic Target in Pancreatic Cancer. Pancreas. 2015;44(7):1024. doi:10.1097/MPA.0000000000000409
  • 12. Kratz F. A clinical update of using albumin as a drug vehicle-A commentary. Journal of Controlled Release. 2014;190:331-336. doi:10.1016/J.JCONREL.2014.03.013
  • 13. Hassanin I, Elzoghby A. Albumin-based nanoparticles: a promising strategy to overcome cancer drug resistance. Cancer Drug Resistance. 2020;3(4):930-946. doi:10.20517/CDR.2020.68
  • 14. Kalındemirtaş FD, Kariper İA, Sert E, Okşak N, Kuruca SE. The evaluation of anticancer activity by synthesizing 5FU loaded albumin nanoparticles by exposure to UV light. Toxicology in Vitro 2022;84:105435. doi.org/10.1016/j.tiv.2022.105435
  • 15. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. doi:10.1016/0022-1759(83)90303-4
  • 16. Dang Y, Guan J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater Med. 2020;1:10-19. doi:10.1016/J.SMAIM.2020.04.001
  • 17. Liu Y, Guo Q, Sun H, Guo N, Zhang J. Improved therapeutic efficiency of photothermal treatment and nursing care in prostate cancer by DOX loaded PEG coated Cu@Se nano-hybrid vesicle. Process Biochemistry. 2020;92:78-84. doi:10.1016/J.PROCBIO.2020.02.022
  • 18. Ye BL, Zheng R, Ruan XJ, Zheng ZH, Cai HJ. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway. Biochem Biophys Res Commun. 2018;495(1):414-420. doi:10.1016/J.BBRC.2017.10.156
  • 19. Haggag YA, Osman MA, El-Gizawy SA, et al. Polymeric nano-encapsulation of 5-fluorouracil enhances anti-cancer activity and ameliorates side effects in solid Ehrlich Carcinoma-bearing mice. Biomedicine & Pharmacotherapy. 2018;105:215-224. doi:10.1016/J.BIOPHA.2018.05.124
  • 20. Vijayakumar S, Ganesan S. Size-dependent in vitro cytotoxicity assay of gold nanoparticles. Toxicological & Environmental Chemistry 2013;95(2):277-287. doi:10.1080/02772248.2013.770858
  • 21. Kocak C, Kocak FE, Ozturk B, Tekin G, Vatansev H. Cytotoxic, anti-proliferative and apoptotic effects of noscapine on human estrogen receptor positive (MCF-7) and negative (MDA-MB-231) breast cancer cell lines. Bratisl Lek Listy. 2020;121(1):43-50. doi:10.4149/BLL_2020_007
  • 22. Noh JI, Mun SK, Lim EH, et al. Induction of apoptosis in MDA-MB-231 cells treated with the methanol extract of lichen physconia hokkaidensis. Journal of Fungi 2021;7(3):188. doi:10.3390/JOF7030188
  • 23. Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules. 2020;25(9). doi:10.3390/MOLECULES25092193
  • 24. Zinger A, Koren L, Adir O, et al. Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano. 2019;13(10):11008-11021 doi: 10.1021/acsnano.9b02395
  • 25. Yan L, Shen J, Wang J, Yang X, Dong S, Lu S. Nanoparticle-based drug delivery system: a patient-friendly chemotherapy for oncology. Dose-Response. 2020;18(3). doi:10.1177/1559325820936161
  • 26. Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M. Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and Perspectives. Int J Nanomedicine. 2021;16:1313-1330. doi:10.2147/IJN.S289443
There are 26 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research article
Authors

Ferdane Danışman Kalındemirtaş 0000-0001-7085-8596

İshak Afşin Kariper 0000-0001-9127-301X

Early Pub Date March 2, 2023
Publication Date March 5, 2023
Submission Date December 11, 2022
Acceptance Date February 2, 2023
Published in Issue Year 2023 Volume: 8 Issue: 1

Cite

AMA Danışman Kalındemirtaş F, Kariper İA. Cytotoxic Effects of Cisplatin and Carboplatin Loaded Albumin Nanoparticles on Breast Cancer Cells. OTJHS. March 2023;8(1):115-121. doi:10.26453/otjhs.1217364

Creative Commons License

Online Türk Sağlık Bilimleri Dergisi [Online Turkish Journal of Health Sciences (OTJHS)] is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an open-access journal distributed under the terms of the Creative Commons Attribution License (CC BY-NC 4.0). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Click here to get help about article submission processes and "Copyright Transfer Form".