BibTex RIS Cite

Fitoremediasyon ve piroliz işlemlerinin ardışık uygulamasıyla kadmiyum stabilizasyonu

Year 2016, Volume: 22 Issue: 6, 497 - 502, 20.12.2016

Abstract

Bu
çalışmanın amacı, toprakta kirletici olarak bulunan kadmiyumun (Cd)
stabilizasyonunu sağlamak için,  ardışık
olarak fitoremediasyon ve piroliz işlemlerinin uygulanmasıdır. Çalışmanın ilk
aşamasında, kadmiyumla kirlenmiş topraklara farklı bitkilerle (ayçiçeği, mısır
ve kanola) ve farklı EDTA derişimleriyle (0-5-10 mmol/kg) fitoremediasyon
uygulanmıştır. Fitoremediasyon çalışmaları sonucunda, %89.6-93.5 aralığında
giderim verimleri elde edilmiştir. Hasat işleminden sonra kadmiyumla kirlenmiş
bitkiler, 240 cm3’lük paslanmaz çelik (380 S) sabit yatak bir
reaktörde 500 °C sıcaklık ve

35 °C/dk ısıtma hızında piroliz edilmiştir. Pirolizden sonra, katı ve sıvı
ürünlerin metal içeriği ve özellikleri belirlenmiş ve ayrıca katı üründe eluat
analizleri yapılmıştır. Piroliz sonucunda kirlenmiş bitkilerdeki kadmiyumun
katı üründe stabilize edildiği belirlenmiştir.

References

  • Liu W, Zhou Q, Zhang Z, Hua T, Cai Z. “Evaluation of cadmium phytoremediation potential in chinese cabbage cultivars”. Journal of Agricultural and Food Chemistry, 59(15), 8324-8330, 2001.
  • Banar M, Özkan A, Kulaç A. “Application of ANP and electre for the assessment of different site remediation technologies”. Proceedings of the World Congress on New Technologies (NewTech 2015), Barcelona, Spain, 15-17 July 2015.
  • Chang Y, Chang Y, Lin C, Lee M, Wu C, Lai Y. “Nitrogen fertilization promotes the phytoremediation of cadmium in Pentas lanceolata”. International Biodeteriotion & Biodegredation, 85, 709-714, 2013.
  • EPA. US Environmental Protection Agency. “Technologies for Cleaning Up Contaminated Sites”. http://www2.epa.gov/remedytech, 2015.
  • Goswami S, Das S. “A study on cadmium phytoremediation potential of indian mustard, Brassica juncea”. International Journal of Phytoremediation, 17(1-6), 583-588, 2015.
  • Huang H, Yua N, Wang L, Gupta DK, He Z, Wang K, Zhu Z, Yan X, Li T, Yang X. “The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil”. Bioresource Technology, 102(23), 11034-11038, 2011.
  • Sangthong C, Setkit K, Prapagdee B. “Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp.”. Environmental Science and Pollution Research, 23(1), 756-764, 2015.
  • Stingua A, Volfa I, Popaa VI, Gostin I. “New approaches concerning the utilization of natural amendments in cadmium phytoremediation”. Industrial Crops and Products, 35(1), 53-60, 2012.
  • Marques APGC, Moreira H, Franco AR, Rangel AOSS, Castro PML. “Inoculating Helianthus annus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria-Effects on phytoremediation strategies”. Chemosphere, 92(1), 74-83, 2013.
  • Sun Y, Xu Y, Zhou Q, Wang L, Lin D, Liang X. “The potential of gibberellic acid 3 (GA3) and Tween-80 induced phytoremediation of co-contamination of Cd and Benzo[a]pyrene (B[a]P) using Tagetes patula”. Journal of Environmental Management, 114, 202-208, 2013.
  • Stals M, Thijssen E, Vangronsveld J, Carleer R, Schreurs S, Yperman J. “Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: Influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals”. Journal of Analytical and Applied Pyrolysis, 87(1), 1-7, 2010.
  • Bay B. Farklı Biyokütle Türlerinin Termal Davranışlarının İncelenmesi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2009.
  • Şimşek YE. C3 Enerji Bitkisi olan Enginar (Cynara-Cardunculus L. Saplarının Pirolizi ve Biyoyakıt Üretiminin İncelenmesi. Doktora Tezi, Eskişehir Osmangazi Üniversitesi, Eskişehir, Türkiye, 2006.
  • Stals M, Carleer R, Reggers G, Schreurs S, Yperman J. “Flash pyrolysis of heavy metal contaminated hardwoods from phytoremediation: Characterisation of biomass, pyrolysis Oil and char/ash Fraction”. Journal of Analytical and Applied Pyrolysis, 89(1), 22-29, 2010.
  • Koppolu L, Clements D. “Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part I: Preparation of synthetic hyperaccumulator biomass”. Biomass and Bioenergy, 24(1), 69-79, 2003.
  • Koppolu L, Clements D. “Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part II: Lab-scale pyrolysis of synthetic hyperaccumulator biomass”. Biomass and Bioenergy, 25(6), 651-663, 2003.
  • Lievens C, Yperman J, Vangronsveld J, Carleer R. “Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals”. Fuel, 87(10-11), 1894-1905, 2008.
  • Lievens C, Yperman J, Cornelissen T, Carleer R. “Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part II: Characterisation of the liquid and gaseous fraction as a function of the temperature”. Fuel, 87(10-11), 1906-1916, 2008.
  • Kaçar B, İnal A. Bitki Analizleri. Nobel Yayın Dağıtım, Ankara, Türkiye, 2008.
  • Kalra Y. (Ed.) Reference Methods for Plant Analysis, Soil and Plant Analysis Council, CRC Press, 69–73, 1998.
  • Liu T, Liu B, Zhang W. “Nutrients and heavy metals in biochar produced by sewage sludge pyrolysis: Its application in soil amendment”. Polish Journal of Environmental Studies, 23(1), 271-275, 2014.
  • Tom´e VF, Blanco RP, Lozano JC. “The ability of Helianthus annuus L. and Brassica juncea to uptake and translocate natural uranium and 226Ra under different milieu conditions”. Chemosphere, 74(2), 293-300, 2009.
  • Evangelou M, Ebel M, Schaeffer A. “Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents”. Chemosphere, 68(6), 989-1003, 2007.
  • Meers E, Tack FMG, Van Slycken S, Ruttens A, Du Laing G, Vangronsveld J, Verloo MG. “Chemically assisted phytoextraction: A review of potential soil amendments for increasing plant uptake of heavy metals”. International Journal of Phytoremediation, 10(5), 390-414, 2008.
  • Onay O. “Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor”. Fuel Processing Technology, 88(5), 523-531, 2007.
  • Özçimen D, Karaosmanoğlu F. “Production and characterisation of bio-oil and bio-char from rapeseed cake”. Renewable Energy, 29(5), 779-787, 2004.
  • Gerçel HF. “The production and evaluation of bio-oils from the pyrolysis of sunflower-oil cake”. Biomass and Bioenergy, 23(4), 307-314, 2002.
  • Capunitan JA, Capareda SC. “Assessing the potential for biofuel production of corn stover pyrolysis using a pressurized batch reactor”. Fuel, 95, 563-572, 2012.
  • Özkan A, Çokaygil Z, Banar M. “Stabilization of metal processing plant sludge via sequential application of phytoremediation and pyrolysis”. Toxicological & Environmental Chemistry, 97(8), 989-1002, 2015.

Cadmium stabilization via sequential application of phytoremediation and pyrolysis

Year 2016, Volume: 22 Issue: 6, 497 - 502, 20.12.2016

Abstract

The
objective of this study is the treatment of cadmium (Cd) contaminated soil and
stabilization of cadmium (Cd) in a solid product. For this aim,
phytoremediation and pyrolysis were sequentially applied. Phytoremediation was
first applied to cadmium contaminated soil via different plants (sunflower,
corn and rape). After harvesting, contaminated plants were pyrolyzed.
Phytoremediation was realized with different chelate (EDTA) concentrations
(0-5-10 mmol/kg). The phytoremediation results indicated that high
phytoremediation efficiencies (89.6-93.5%) were observed. Then, contaminated
plants were pyrolyzed at 500°C with the heating rate of 35 °C/min in a fixed
bed 240 m3 stainless steel reactor (380 S). Beside the main property
analyses, Cd content and eluate analysis were performed on the pyrolysis solid
and liquid products. According to pyrolysis results, Cd content of the
contaminated biomass species is fixed into the ash/char fraction.

References

  • Liu W, Zhou Q, Zhang Z, Hua T, Cai Z. “Evaluation of cadmium phytoremediation potential in chinese cabbage cultivars”. Journal of Agricultural and Food Chemistry, 59(15), 8324-8330, 2001.
  • Banar M, Özkan A, Kulaç A. “Application of ANP and electre for the assessment of different site remediation technologies”. Proceedings of the World Congress on New Technologies (NewTech 2015), Barcelona, Spain, 15-17 July 2015.
  • Chang Y, Chang Y, Lin C, Lee M, Wu C, Lai Y. “Nitrogen fertilization promotes the phytoremediation of cadmium in Pentas lanceolata”. International Biodeteriotion & Biodegredation, 85, 709-714, 2013.
  • EPA. US Environmental Protection Agency. “Technologies for Cleaning Up Contaminated Sites”. http://www2.epa.gov/remedytech, 2015.
  • Goswami S, Das S. “A study on cadmium phytoremediation potential of indian mustard, Brassica juncea”. International Journal of Phytoremediation, 17(1-6), 583-588, 2015.
  • Huang H, Yua N, Wang L, Gupta DK, He Z, Wang K, Zhu Z, Yan X, Li T, Yang X. “The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil”. Bioresource Technology, 102(23), 11034-11038, 2011.
  • Sangthong C, Setkit K, Prapagdee B. “Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp.”. Environmental Science and Pollution Research, 23(1), 756-764, 2015.
  • Stingua A, Volfa I, Popaa VI, Gostin I. “New approaches concerning the utilization of natural amendments in cadmium phytoremediation”. Industrial Crops and Products, 35(1), 53-60, 2012.
  • Marques APGC, Moreira H, Franco AR, Rangel AOSS, Castro PML. “Inoculating Helianthus annus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria-Effects on phytoremediation strategies”. Chemosphere, 92(1), 74-83, 2013.
  • Sun Y, Xu Y, Zhou Q, Wang L, Lin D, Liang X. “The potential of gibberellic acid 3 (GA3) and Tween-80 induced phytoremediation of co-contamination of Cd and Benzo[a]pyrene (B[a]P) using Tagetes patula”. Journal of Environmental Management, 114, 202-208, 2013.
  • Stals M, Thijssen E, Vangronsveld J, Carleer R, Schreurs S, Yperman J. “Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: Influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals”. Journal of Analytical and Applied Pyrolysis, 87(1), 1-7, 2010.
  • Bay B. Farklı Biyokütle Türlerinin Termal Davranışlarının İncelenmesi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2009.
  • Şimşek YE. C3 Enerji Bitkisi olan Enginar (Cynara-Cardunculus L. Saplarının Pirolizi ve Biyoyakıt Üretiminin İncelenmesi. Doktora Tezi, Eskişehir Osmangazi Üniversitesi, Eskişehir, Türkiye, 2006.
  • Stals M, Carleer R, Reggers G, Schreurs S, Yperman J. “Flash pyrolysis of heavy metal contaminated hardwoods from phytoremediation: Characterisation of biomass, pyrolysis Oil and char/ash Fraction”. Journal of Analytical and Applied Pyrolysis, 89(1), 22-29, 2010.
  • Koppolu L, Clements D. “Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part I: Preparation of synthetic hyperaccumulator biomass”. Biomass and Bioenergy, 24(1), 69-79, 2003.
  • Koppolu L, Clements D. “Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part II: Lab-scale pyrolysis of synthetic hyperaccumulator biomass”. Biomass and Bioenergy, 25(6), 651-663, 2003.
  • Lievens C, Yperman J, Vangronsveld J, Carleer R. “Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals”. Fuel, 87(10-11), 1894-1905, 2008.
  • Lievens C, Yperman J, Cornelissen T, Carleer R. “Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part II: Characterisation of the liquid and gaseous fraction as a function of the temperature”. Fuel, 87(10-11), 1906-1916, 2008.
  • Kaçar B, İnal A. Bitki Analizleri. Nobel Yayın Dağıtım, Ankara, Türkiye, 2008.
  • Kalra Y. (Ed.) Reference Methods for Plant Analysis, Soil and Plant Analysis Council, CRC Press, 69–73, 1998.
  • Liu T, Liu B, Zhang W. “Nutrients and heavy metals in biochar produced by sewage sludge pyrolysis: Its application in soil amendment”. Polish Journal of Environmental Studies, 23(1), 271-275, 2014.
  • Tom´e VF, Blanco RP, Lozano JC. “The ability of Helianthus annuus L. and Brassica juncea to uptake and translocate natural uranium and 226Ra under different milieu conditions”. Chemosphere, 74(2), 293-300, 2009.
  • Evangelou M, Ebel M, Schaeffer A. “Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents”. Chemosphere, 68(6), 989-1003, 2007.
  • Meers E, Tack FMG, Van Slycken S, Ruttens A, Du Laing G, Vangronsveld J, Verloo MG. “Chemically assisted phytoextraction: A review of potential soil amendments for increasing plant uptake of heavy metals”. International Journal of Phytoremediation, 10(5), 390-414, 2008.
  • Onay O. “Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor”. Fuel Processing Technology, 88(5), 523-531, 2007.
  • Özçimen D, Karaosmanoğlu F. “Production and characterisation of bio-oil and bio-char from rapeseed cake”. Renewable Energy, 29(5), 779-787, 2004.
  • Gerçel HF. “The production and evaluation of bio-oils from the pyrolysis of sunflower-oil cake”. Biomass and Bioenergy, 23(4), 307-314, 2002.
  • Capunitan JA, Capareda SC. “Assessing the potential for biofuel production of corn stover pyrolysis using a pressurized batch reactor”. Fuel, 95, 563-572, 2012.
  • Özkan A, Çokaygil Z, Banar M. “Stabilization of metal processing plant sludge via sequential application of phytoremediation and pyrolysis”. Toxicological & Environmental Chemistry, 97(8), 989-1002, 2015.
There are 29 citations in total.

Details

Subjects Engineering
Journal Section Research Article
Authors

Aysun Özkan This is me

Müfide Banar This is me

Zerrin Günkaya

Alev Kulaç This is me

Gülser Yalçın This is me

Kadriye Taşpınar This is me

Abdullah Altay This is me

Publication Date December 20, 2016
Published in Issue Year 2016 Volume: 22 Issue: 6

Cite

APA Özkan, A., Banar, M., Günkaya, Z., Kulaç, A., et al. (2016). Fitoremediasyon ve piroliz işlemlerinin ardışık uygulamasıyla kadmiyum stabilizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(6), 497-502.
AMA Özkan A, Banar M, Günkaya Z, Kulaç A, Yalçın G, Taşpınar K, Altay A. Fitoremediasyon ve piroliz işlemlerinin ardışık uygulamasıyla kadmiyum stabilizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. December 2016;22(6):497-502.
Chicago Özkan, Aysun, Müfide Banar, Zerrin Günkaya, Alev Kulaç, Gülser Yalçın, Kadriye Taşpınar, and Abdullah Altay. “Fitoremediasyon Ve Piroliz işlemlerinin ardışık uygulamasıyla Kadmiyum Stabilizasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 22, no. 6 (December 2016): 497-502.
EndNote Özkan A, Banar M, Günkaya Z, Kulaç A, Yalçın G, Taşpınar K, Altay A (December 1, 2016) Fitoremediasyon ve piroliz işlemlerinin ardışık uygulamasıyla kadmiyum stabilizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 22 6 497–502.
IEEE A. Özkan, M. Banar, Z. Günkaya, A. Kulaç, G. Yalçın, K. Taşpınar, and A. Altay, “Fitoremediasyon ve piroliz işlemlerinin ardışık uygulamasıyla kadmiyum stabilizasyonu”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 22, no. 6, pp. 497–502, 2016.
ISNAD Özkan, Aysun et al. “Fitoremediasyon Ve Piroliz işlemlerinin ardışık uygulamasıyla Kadmiyum Stabilizasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 22/6 (December 2016), 497-502.
JAMA Özkan A, Banar M, Günkaya Z, Kulaç A, Yalçın G, Taşpınar K, Altay A. Fitoremediasyon ve piroliz işlemlerinin ardışık uygulamasıyla kadmiyum stabilizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2016;22:497–502.
MLA Özkan, Aysun et al. “Fitoremediasyon Ve Piroliz işlemlerinin ardışık uygulamasıyla Kadmiyum Stabilizasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 22, no. 6, 2016, pp. 497-02.
Vancouver Özkan A, Banar M, Günkaya Z, Kulaç A, Yalçın G, Taşpınar K, Altay A. Fitoremediasyon ve piroliz işlemlerinin ardışık uygulamasıyla kadmiyum stabilizasyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2016;22(6):497-502.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.