Research Article
BibTex RIS Cite

Nb ve Ti mikro alaşımlı çeliklerde düşük sıcaklıklarda darbe ve DWTT dayanımının iyileştirilmesine yönelik inceleme

Year 2023, Volume: 29 Issue: 1, 86 - 93, 28.02.2023

Abstract

Yeni nesil petrol boru çelikleri, kullanıldıkları iklim koşullarına bağlı olarak yüksek mukavemet ve mükemmel tokluk ihtiyacı ile karşımıza çıkmaktadır. Petrol ve doğalgazın taşınması sırasında bu çeliklerin yüksek sertlik ile birlikte darbe dayanımının da en üst seviyede olması gerekmektedir. Son yıllarda, 0oC gibi genel test sıcaklıkları, eksi derecelerden daha düşük olma eğilimindedir. Bu çalışmada (American Petroleum Institute X70 Quality) API X70, darbe, (düşürme-ağırlığı yırtılma testi) DWTT ve mukavemet; 10 mm'den kalın rulolar üzerinde modellenmiştir. Ayrıca düşük sıcaklıklarda yüksek darbe dayanımı için gerekli parametreler modelleme ile belirlenmiştir. Belirtilen parametrelerde çelik üretimi ve haddeleme sonrasında mekanik testler ve mikroyapı incelemeleri yapılmıştır. Mukavemet ve tokluğun mekanik özellikler üzerindeki etkisini belirlemek için kimyasal analiz ve haddeleme parametreleri için farklı test setleri hazırlanmıştır. Titanyum seviyesi ve farklı bekletme süreleri ile termomekanik ve konvansiyonel haddelemenin mamul mikro yapı ve test sonuçlarında yarattığı farklılıklar araştırıldı. Farklı proses parametreleri ile üretilen malzemelerin darbe enerji değerleri büyük veri setleri kullanılarak incelenmiştir. Sonuç olarak termomekanik haddeleme yöntemi ile üretilen ve tanelerin en küçük ve mikro yapı içerisinde homojen dağılmış olanların malzeme kalitesi olarak beklentileri karşıladığı tespit edilmiştir.

References

  • [1] Carbos TR, Jorge JCF, Souza LFGD, Bott IDS, Mendes MC. “Investigation into the impact toughness of API 5L X80 steel weldments and its relationship with safe welding procedures”. Materials Research, 23(6), 1-3, 2020.
  • [2] Tütük R, Arıkan MM, Kayalı ES. “Effect of reduction ratio below austenite recrystallization stop temperature on mechanical properties of an API X70M PSL2 line pipe steel”. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(5), 972-974, 2019.
  • [3] Trench TJ. Oil Pipeline Characteristics and Risk Factors: Illustrations From the Decade of Construction. Editor Kiefner JF. American Petroleum Institute, 39-40, New York, USA, Pearson Press, 2001.
  • [4] Zvirko O, Tsyrulnyk O, Nykyforchyn H. “Non-Destructive evaluation of operated pipeline steel state taking into account degradation stage”. Procedia Structural Integrity, 26, 219-224, 2020.
  • [5] Poletskov P, Gushchina M, Polyakova M, Alekseev D, Nikitenko O, Chukin D. Vasil’ev Y. “Development of alloyed pipe steel composition for oil and gas production in the Arctic region”. Resources, 8(2), 6-7, 2019.
  • [6] Rudskoi АI, Коdzhaspirov GЕ, Kliber J, Apostolopoulos C, Kitaeva DA. “Physical fundamentals of thermomechanical processing in ultrafine-grained metallic materials manufacturing”. Materials Physics & Mechanics, 43(1), 50-54, 2020.
  • [7] Mitchell EB. Toughness and Separation Improvement of Thick Plate X70 Pipeline Steels, Masters of Applied Science in Engineering, Doctoral Dissertation, Colorado School of Mines, Colorado, USA, 2019.
  • [8] Wang H, Bao Y, Liu Y, Wang M, Wang J, Su C. “Effect of microstructure and grain size on DWTT properties of 22 mm thick X80M hot rolled steel strip”. Metallurgical Research & Technology, 116(2), 1-3, 2019.
  • [9] Weglowski MS, Dymek S, Kopyściański M, Niagaj J, Rykała J, De Waele W, Hertelé S. “A comprehensive study on the microstructure and mechanical properties of arc girth welded joints of spiral welded high strength API X70 steel pipe”. Archives of Civil and Mechanical Engineering, 20(1), 1-18, 2020.
  • [10] Ike TM, Adedipe O, Abolarin MS, Lawal SA. “Mechanical characterization of welded API X70 steel exposed to air and seawater: a review”. In IOP Conference Series: Materials Science and Engineering, Vancouver, Canada, 9-13 July 2018.
  • [11] Hwang B, Shin SY, Lee S, Kim NJ, Ahn SS. “Effect of microstructure on drop weight tear properties and inverse fracture occurring in hammer impacted region of high toughness X70 pipeline steels”. Materials Science and Technology, 24(8), 945-956, 2008.
  • [12] Rudskoi AI, Kodzhaspirov G, Kliber J. “Apostolopoulos C. Thermomechanical Processing of Steels And Alloys Physical Foundations, Resource Saving Technique and Modelling”. Materials Physics & Mechanics, 38(1), 16-18, 2018.
  • [13] Uranga P, Ibabe JMR. “Interaction between Microalloying additions and phase transformation during ıntercritical deformation in low carbon steels”. Metals, 9(10), 1049, 2019.
  • [14] Olalla VC. Influence of the Thermo Mechanical Control Processing Finishing Condition on Microstructure and Properties of High Strength Low Alloy Pipeline Steels. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2015.
  • [15] Almatani RA, De Ardo AJ. “Rational alloy design of niobium-bearing HSLA steels”. Metals, 10(3), 413-415, 2020.
  • [16] Wu SA. Microstructural and Damage Investigation into the Low Temperature Impact Behavior of an HSLA Steel. Doctoral Dissertation, University of Guelph, Ontario, Canada, 2019.
  • [17] Kholodnyi A, Shabalov I, Matrosov Y, Velikodnev V. “Perspective ways to improve the strength properties and resistance to hydrogen induced cracking of low-alloy pipe steels”. In E3S Web of Conferences, Petersburg, Russia, 22-24 May 2019.
  • [18] Rosado DB, Waele WD, Vanderschueren D, Hertelé S. “Latest developments ın mechanıcal properties and metallurgıcal features of high strength line pipe steels”. International Journal of Sustainable Mechanical Engineering and Design, 4(1), 1-3, 2013.
  • [19] Yılmaz E, Gökçe A, Fındık F, Gülsoy, HÖ. “Effect of Nb addition on microstructural and mechanical properties of Ti-Nb based alloys produced by powder metallurgy”. Pamukkale University Journal of Engineering Sciences, 23(8), 945-948, 201.
  • [20] Yang Y. “The fracture during drop-weight tear test of high performance pipeline steel and ıts abnormal fracture appearance”. Procedia Materials Science, 3, 1591-1598, 2014.
  • [21] Hernandez-Avila, VH. Heat Transfer Model of the Hot Rolling Runout Table-Cooling and Coil Cooling of Steel. Doctoral Dissertation, University of British Columbia, Vancouver, Canada, 1994.
  • [22] Quinelato FP, Garção WJL, Paradela KG, Sales RC, Baptista LADS, Ferreira AF. “An experimental ınvestigation of continuous casting process: effect of pouring temperatures on the macrosegregation and macrostructure in steel slab”. Materials Research, 23(4), 56-57, 2020.
  • [23] Silva RA, Pinto AL, Kuznetsov A, Bott IS. “Precipitation and grain size effects on the tensile strain-hardening exponents of an API X80 steel pipe after high-frequency hot-induction bending”. Metals, 8(3), 168-169, 2018.
  • [24] Feng B. Effect of Ti and Ti-Nb on the stability of the austenite grain structure and transformation characteristics in C-Mn steel under hot Rolling conditions. Ph.D. Thesis, University of Wollongong, Wollongong, Australia, 1991.

Investigation on impact and DWTT resistance at low temperatures in Nb and Ti micro alloy steels

Year 2023, Volume: 29 Issue: 1, 86 - 93, 28.02.2023

Abstract

Depending on the climatic conditions in which they are used, new generation petroleum pipe steels come up with the need for high strength and excellent toughness. During the transportation of oil and natural gas, these steels should be at the highest level of impact resistance along with high hardness. In recent years, the general test temperatures, such as 0oC, tend to be lower minus degrees. In this study; (American Petroleum Institute X70 Quality) API X70, impact, (dropweight tear test) DWTT, and strength were modeled on rolls with thicker than 10 mm. In addition, the necessary parameters for high impact strength at low temperatures were determined by modeling. After the steel production and rolling with the specified parameters, mechanical tests and microstructure examinations were carried out. In order to determine the effect of strength and toughness on mechanical properties, different test sets were prepared for chemical analysis and rolling parameters. The differences in the product microstructure and test results of the titanium level and different holding times and thermomechanical and conventional rolling were investigated. The impact energy values of the materials produced with different process parameters were examined using large data sets. As a result, it has been determined that the particles produced by the thermomechanical rolling method and the particles are the most minor and homogeneously dispersed in the microstructure meet the expectations in terms of material quality.

References

  • [1] Carbos TR, Jorge JCF, Souza LFGD, Bott IDS, Mendes MC. “Investigation into the impact toughness of API 5L X80 steel weldments and its relationship with safe welding procedures”. Materials Research, 23(6), 1-3, 2020.
  • [2] Tütük R, Arıkan MM, Kayalı ES. “Effect of reduction ratio below austenite recrystallization stop temperature on mechanical properties of an API X70M PSL2 line pipe steel”. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(5), 972-974, 2019.
  • [3] Trench TJ. Oil Pipeline Characteristics and Risk Factors: Illustrations From the Decade of Construction. Editor Kiefner JF. American Petroleum Institute, 39-40, New York, USA, Pearson Press, 2001.
  • [4] Zvirko O, Tsyrulnyk O, Nykyforchyn H. “Non-Destructive evaluation of operated pipeline steel state taking into account degradation stage”. Procedia Structural Integrity, 26, 219-224, 2020.
  • [5] Poletskov P, Gushchina M, Polyakova M, Alekseev D, Nikitenko O, Chukin D. Vasil’ev Y. “Development of alloyed pipe steel composition for oil and gas production in the Arctic region”. Resources, 8(2), 6-7, 2019.
  • [6] Rudskoi АI, Коdzhaspirov GЕ, Kliber J, Apostolopoulos C, Kitaeva DA. “Physical fundamentals of thermomechanical processing in ultrafine-grained metallic materials manufacturing”. Materials Physics & Mechanics, 43(1), 50-54, 2020.
  • [7] Mitchell EB. Toughness and Separation Improvement of Thick Plate X70 Pipeline Steels, Masters of Applied Science in Engineering, Doctoral Dissertation, Colorado School of Mines, Colorado, USA, 2019.
  • [8] Wang H, Bao Y, Liu Y, Wang M, Wang J, Su C. “Effect of microstructure and grain size on DWTT properties of 22 mm thick X80M hot rolled steel strip”. Metallurgical Research & Technology, 116(2), 1-3, 2019.
  • [9] Weglowski MS, Dymek S, Kopyściański M, Niagaj J, Rykała J, De Waele W, Hertelé S. “A comprehensive study on the microstructure and mechanical properties of arc girth welded joints of spiral welded high strength API X70 steel pipe”. Archives of Civil and Mechanical Engineering, 20(1), 1-18, 2020.
  • [10] Ike TM, Adedipe O, Abolarin MS, Lawal SA. “Mechanical characterization of welded API X70 steel exposed to air and seawater: a review”. In IOP Conference Series: Materials Science and Engineering, Vancouver, Canada, 9-13 July 2018.
  • [11] Hwang B, Shin SY, Lee S, Kim NJ, Ahn SS. “Effect of microstructure on drop weight tear properties and inverse fracture occurring in hammer impacted region of high toughness X70 pipeline steels”. Materials Science and Technology, 24(8), 945-956, 2008.
  • [12] Rudskoi AI, Kodzhaspirov G, Kliber J. “Apostolopoulos C. Thermomechanical Processing of Steels And Alloys Physical Foundations, Resource Saving Technique and Modelling”. Materials Physics & Mechanics, 38(1), 16-18, 2018.
  • [13] Uranga P, Ibabe JMR. “Interaction between Microalloying additions and phase transformation during ıntercritical deformation in low carbon steels”. Metals, 9(10), 1049, 2019.
  • [14] Olalla VC. Influence of the Thermo Mechanical Control Processing Finishing Condition on Microstructure and Properties of High Strength Low Alloy Pipeline Steels. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2015.
  • [15] Almatani RA, De Ardo AJ. “Rational alloy design of niobium-bearing HSLA steels”. Metals, 10(3), 413-415, 2020.
  • [16] Wu SA. Microstructural and Damage Investigation into the Low Temperature Impact Behavior of an HSLA Steel. Doctoral Dissertation, University of Guelph, Ontario, Canada, 2019.
  • [17] Kholodnyi A, Shabalov I, Matrosov Y, Velikodnev V. “Perspective ways to improve the strength properties and resistance to hydrogen induced cracking of low-alloy pipe steels”. In E3S Web of Conferences, Petersburg, Russia, 22-24 May 2019.
  • [18] Rosado DB, Waele WD, Vanderschueren D, Hertelé S. “Latest developments ın mechanıcal properties and metallurgıcal features of high strength line pipe steels”. International Journal of Sustainable Mechanical Engineering and Design, 4(1), 1-3, 2013.
  • [19] Yılmaz E, Gökçe A, Fındık F, Gülsoy, HÖ. “Effect of Nb addition on microstructural and mechanical properties of Ti-Nb based alloys produced by powder metallurgy”. Pamukkale University Journal of Engineering Sciences, 23(8), 945-948, 201.
  • [20] Yang Y. “The fracture during drop-weight tear test of high performance pipeline steel and ıts abnormal fracture appearance”. Procedia Materials Science, 3, 1591-1598, 2014.
  • [21] Hernandez-Avila, VH. Heat Transfer Model of the Hot Rolling Runout Table-Cooling and Coil Cooling of Steel. Doctoral Dissertation, University of British Columbia, Vancouver, Canada, 1994.
  • [22] Quinelato FP, Garção WJL, Paradela KG, Sales RC, Baptista LADS, Ferreira AF. “An experimental ınvestigation of continuous casting process: effect of pouring temperatures on the macrosegregation and macrostructure in steel slab”. Materials Research, 23(4), 56-57, 2020.
  • [23] Silva RA, Pinto AL, Kuznetsov A, Bott IS. “Precipitation and grain size effects on the tensile strain-hardening exponents of an API X80 steel pipe after high-frequency hot-induction bending”. Metals, 8(3), 168-169, 2018.
  • [24] Feng B. Effect of Ti and Ti-Nb on the stability of the austenite grain structure and transformation characteristics in C-Mn steel under hot Rolling conditions. Ph.D. Thesis, University of Wollongong, Wollongong, Australia, 1991.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ömer Saltuk Bölükbaşı This is me

Cemre Keçeci This is me

Publication Date February 28, 2023
Published in Issue Year 2023 Volume: 29 Issue: 1

Cite

APA Bölükbaşı, Ö. S., & Keçeci, C. (2023). Investigation on impact and DWTT resistance at low temperatures in Nb and Ti micro alloy steels. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(1), 86-93.
AMA Bölükbaşı ÖS, Keçeci C. Investigation on impact and DWTT resistance at low temperatures in Nb and Ti micro alloy steels. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. February 2023;29(1):86-93.
Chicago Bölükbaşı, Ömer Saltuk, and Cemre Keçeci. “Investigation on Impact and DWTT Resistance at Low Temperatures in Nb and Ti Micro Alloy Steels”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29, no. 1 (February 2023): 86-93.
EndNote Bölükbaşı ÖS, Keçeci C (February 1, 2023) Investigation on impact and DWTT resistance at low temperatures in Nb and Ti micro alloy steels. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29 1 86–93.
IEEE Ö. S. Bölükbaşı and C. Keçeci, “Investigation on impact and DWTT resistance at low temperatures in Nb and Ti micro alloy steels”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 29, no. 1, pp. 86–93, 2023.
ISNAD Bölükbaşı, Ömer Saltuk - Keçeci, Cemre. “Investigation on Impact and DWTT Resistance at Low Temperatures in Nb and Ti Micro Alloy Steels”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 29/1 (February 2023), 86-93.
JAMA Bölükbaşı ÖS, Keçeci C. Investigation on impact and DWTT resistance at low temperatures in Nb and Ti micro alloy steels. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29:86–93.
MLA Bölükbaşı, Ömer Saltuk and Cemre Keçeci. “Investigation on Impact and DWTT Resistance at Low Temperatures in Nb and Ti Micro Alloy Steels”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 29, no. 1, 2023, pp. 86-93.
Vancouver Bölükbaşı ÖS, Keçeci C. Investigation on impact and DWTT resistance at low temperatures in Nb and Ti micro alloy steels. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2023;29(1):86-93.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif