Research Article
BibTex RIS Cite

Optimization of hydrogen generation rate with Co/MMT catalyst from NaBH4 using Box-Behnken method

Year 2024, Volume: 30 Issue: 1, 87 - 94, 29.02.2024

Abstract

In this study, a Co/MMT catalyst was synthesized by pillaring method using montmorillonite (MMT) as a support material for hydrogen production by hydrolysis reaction from sodium borohydride (NaBH4) solution. N2 sorption, XRD, SEM-EDS, and FTIR spectroscopy techniques were used for catalyst characterization. To optimize the amount of hydrogen obtained as a result of the hydrolysis reaction, the NaBH4 concentration (0.3-0.5 M), the sodium hydroxide (NaOH) concentration (0.3-0.5 M), the amount of catalyst (20-50 mg) and the reaction temperature (30-50 °C) were invesigated. The optimal conditions obtained from the Box-Behnken analysis were 50 °C, 0.33 M NaBH4, 39 mg catalyst, 0.46 M NaOH, and the maximum reaction rate (hydrogen production) was 2328 mL min-1 gcat -1at standard temperature and pressure (298K,1atm). According to the analysis of variance, it was found that all parameters had a significant effect on the hydrogen production rate.

References

  • [1] Yue M, Lambert H, Pahon E, Roche R, Jemei S, Hissel D. “Hydrogen energy systems: A critical review of technologies, applications, trends and challenges”. Renewable and Sustainable Energy Reviews, 146, 1-21 2021.
  • [2] Merdun H, Sezgin İV, Güzelçiftçi B. “Evaluation of bio-oil compounds of catalytic fast pyrolysis by multivariate analysis”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 297-303, 2019.
  • [3] Yang CC, Chen MS, Chen YW. “Hydrogen generation by hydrolysis of sodium borohydride on CoB/SiO2 catalyst”. International Journal of Hydrogen Energy, 36(2), 1418-1423, 2011.
  • [4] Kumar S, Jain A, Ichikawa T, Kojima Y, Dey GK. “Development of vanadium based hydrogen storage material: A review”. Renewable and Sustainable Energy Reviews, 72, 791-800, 2017.
  • [5] Pinto AMFR, Ferreira MJF, Fernandes VR, Rangel, CM. “Durability and reutilization capabilities of a Ni–Ru catalyst for the hydrolysis of sodium borohydride in batch reactors”. Catalysis Today, 170(1), 40-49, 2011.
  • [6] Türkcan JH, Elçiçek H, Özdemir OK. “Optimization of synthesis parameters for catalytic performance of Ni–B catalysts using response surface methodology”. International Journal of Hydrogen Energy, 46(11), 7903-7911, 2021.
  • [7] Wang L, Li Z, Zhang P, Wang G, Xie G. “Hydrogen generation from alkaline NaBH4 solution using Co–Ni–Mo–P/γ-Al2O3 catalysts”. International Journal of Hydrogen Energy, 41(3), 1468-1476, 2016.
  • [8] Meşe E, Figen AK, Filiz BC, Pişkin S. “Cobalt-boron loaded thermal activated Turkish sepiolite composites (Co-B@ tSe) as a catalyst for hydrogen delivery”. Applied Clay Science, 153, 95-106, 2018.
  • [9] Balbay A, Selvitepe N, Saka C. “Fe doped-CoB catalysts with phosphoric acid-activated montmorillonite as support for efficient hydrogen production via NaBH4 hydrolysis”. International Journal of Hydrogen Energy, 46(1), 425-438, 2021.
  • [10] Guo Y, Feng Q, Ma, J. “The hydrogen generation from alkaline NaBH4 solution by using electroplated amorphous Co–Ni–P film catalysts”. Applied surface science, 273, 253-256, 2013.
  • [11] Kumari N, Mohan C. “Basics of clay minerals and their characteristic properties”. Clays and Clay Minerials, 24, 1-29. 2021
  • [12] Dodiuk H. Handbook of Thermoset Plastics. 3rd ed. Chadds Ford, PA, USA, Elsevier, 2014.
  • [13] Niazi A, Khorshidi N, Ghaemmaghami P. “Microwave-assisted of dispersive liquid–liquid microextraction and spectrophotometric determination of uranium after optimization based on Box-Behnken design and chemometrics methods”. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, 69-75, 2015.
  • [14] Xia M, Ding W, Xiong K, Li L, Qi X, Chen S, Wei Z. “Anchoring effect of exfoliated-montmorillonite-supported Pd catalyst for the oxygen reduction reaction”. The Journal of Physical Chemistry C, 117(20), 10581-10588, 2013.
  • [15] Bokade VV, Yadav GD, “Heteropolyacid supported on montmorillonite catalyst for dehydration of dilute bio-ethanol”. Applied Clay Science, 53(2), 263-271, 2011.
  • [16] Ayodele OB, Lim JK, Hameed BH. “Pillared montmorillonite supported ferric oxalate as heterogeneous photo-Fenton catalyst for degradation of amoxicillin”. Applied catalysis A: general, 413, 301-309 2012.
  • [17] Darmawan A, Fuad K, Azmiyawati C. “Synthesis of chromium pillared clay for adsorption of methylene blue”. 13th Joint Conference on Chemistry, Semarang, Indonesia, 7–8 September 2018,
  • [18] Hosgun S, Ozdemir M, Sahin YB. “Optimization of hydrogen generation by catalytic hydrolysis of NaBH4 with halloysite- supported Co-B catalyst using response surface methodology”. Clays and Clay Minerials, 69, 128–141, 2021.
  • [19] Baycan N, “Micro-Pollutant degradation using nanostructured catalysts”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi,27(3), 378-383, 2021.
  • [20] Muir SS, Chen Z, Wood BJ, Wang L, Lu GM, Yao X. “New electroless plating method for preparation of highly active Co–B catalysts for NaBH4 hydrolysis”. International Journal of Hydrogen Energy, 39(1), 414-425, 2014.
  • [21] Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS. “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)”. Pure and Applied Chemistry, 87(9-10), 1051-1069, 2015.
  • [22] Boahene PE, Soni KK, Dalai AK, Adjaye J. “Application of different pore diameter SBA-15 supports for heavy gas oil hydrotreatment using FeW catalyst”. Applied Catalysis A: General, 402(1-2), 31-40, 2011.
  • [23] Olopade BK, Oranusi SU, Nwinyi OC, Lawal IA, Gbashi S, Njobeh PB. “Decontamination of T-2 toxin in maize by modified montmorillonite clay”. Toxins, 11(11), 1-12, 2019.
  • [24] Chen G, Liu S, Chen S, Qi Z. “FTIR spectra, thermal properties, and dispersibility of a polystyrene/montmorillonite nanocomposite”. Macromolecular Chemistry and Physics, 202(7), 1189-1193, 2001.
  • [25] Soltani N, Salavati H, Moghadasi A. “The role of Na-montmorillonite/cobalt ferrite nanoparticles in the corrosion of epoxy coated AA 3105 aluminum alloy”. Surfaces and Interfaces, 15, 89-99, 2019.
  • [26] Swamy GJ, Sangamithra A, Chandrasekar V. “Response surface modeling and process optimization of aqueous extraction of natural pigments from Beta vulgaris using Box–Behnken design of experiments”. Dyes and Pigments, 111, 64-74, 2014.
  • [27] Xu D, Zhao L, Dai P, Ji S. “Hydrogen generation from methanolysis of sodium borohydride over Co/Al2O3 catalyst”. Journal of Natural Gas Chemistry, 21(5), 488-494, 2012.
  • [28] Kytsya A, Berezovets V, Verbovytskyy Y, Bazylyak L, Kordan V, Zavaliy I, Yartys VA. “Bimetallic Ni-Co nanoparticles as an efficient catalyst of hydrogen generation via hydrolysis of NaBH4”. Journal of Alloys and Compounds, 908, 1-9, 2022.

Box-Behnken metodu kullanılarak NaBH4'ten Co/MMT katalizörü ile hidrojen üretim hızının optimizasyonu

Year 2024, Volume: 30 Issue: 1, 87 - 94, 29.02.2024

Abstract

Bu çalışmada, destek malzemesi olarak Montmorillonit (MMT) kullanılarak sütunlama yöntemiyle Co/MMT katalizörü, sodyum borhidrür (NaBH4) çözeltisinden hidroliz reaksiyonu ile hidrojen üretimi için sentezlenmiştir. Katalizör karakterizasyonu için N2 sorpsiyon, XRD, SEM-EDS ve FTIR spektroskopi teknikleri kullanılmıştır. Hidroliz reaksiyonu sonucunda elde edilen hidrojen miktarını optimize etmek amacıyla, NaBH4 konsantrasyonu (0.3-0.5 M), sodyum hidroksit (NaOH) konsantrasyonu (0.3-0.5 M), katalizör miktarı (20-50 mg) ve reaksiyon sıcaklığı (30-50 °C) gibi parametrelerin etkisi incelenmiştir. Box-Behnken analizinden elde edilen optimal koşullar 50 °C, 0.33M NaBH4, 39 mg katalizör, 0.46 M NaOH olup, maksimum reaksiyon (hidrojen üretim) hızı standart sıcaklık ve basınç koşullarında (298K, 1atm) (2328 mL dak-1 gcat -1 olarak bulunmuştur. Varyans analizine göre tüm parametrelerin hidrojen üretim hızı üzerinde önemli bir etkisi olduğu belirlenmiştir.

References

  • [1] Yue M, Lambert H, Pahon E, Roche R, Jemei S, Hissel D. “Hydrogen energy systems: A critical review of technologies, applications, trends and challenges”. Renewable and Sustainable Energy Reviews, 146, 1-21 2021.
  • [2] Merdun H, Sezgin İV, Güzelçiftçi B. “Evaluation of bio-oil compounds of catalytic fast pyrolysis by multivariate analysis”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 297-303, 2019.
  • [3] Yang CC, Chen MS, Chen YW. “Hydrogen generation by hydrolysis of sodium borohydride on CoB/SiO2 catalyst”. International Journal of Hydrogen Energy, 36(2), 1418-1423, 2011.
  • [4] Kumar S, Jain A, Ichikawa T, Kojima Y, Dey GK. “Development of vanadium based hydrogen storage material: A review”. Renewable and Sustainable Energy Reviews, 72, 791-800, 2017.
  • [5] Pinto AMFR, Ferreira MJF, Fernandes VR, Rangel, CM. “Durability and reutilization capabilities of a Ni–Ru catalyst for the hydrolysis of sodium borohydride in batch reactors”. Catalysis Today, 170(1), 40-49, 2011.
  • [6] Türkcan JH, Elçiçek H, Özdemir OK. “Optimization of synthesis parameters for catalytic performance of Ni–B catalysts using response surface methodology”. International Journal of Hydrogen Energy, 46(11), 7903-7911, 2021.
  • [7] Wang L, Li Z, Zhang P, Wang G, Xie G. “Hydrogen generation from alkaline NaBH4 solution using Co–Ni–Mo–P/γ-Al2O3 catalysts”. International Journal of Hydrogen Energy, 41(3), 1468-1476, 2016.
  • [8] Meşe E, Figen AK, Filiz BC, Pişkin S. “Cobalt-boron loaded thermal activated Turkish sepiolite composites (Co-B@ tSe) as a catalyst for hydrogen delivery”. Applied Clay Science, 153, 95-106, 2018.
  • [9] Balbay A, Selvitepe N, Saka C. “Fe doped-CoB catalysts with phosphoric acid-activated montmorillonite as support for efficient hydrogen production via NaBH4 hydrolysis”. International Journal of Hydrogen Energy, 46(1), 425-438, 2021.
  • [10] Guo Y, Feng Q, Ma, J. “The hydrogen generation from alkaline NaBH4 solution by using electroplated amorphous Co–Ni–P film catalysts”. Applied surface science, 273, 253-256, 2013.
  • [11] Kumari N, Mohan C. “Basics of clay minerals and their characteristic properties”. Clays and Clay Minerials, 24, 1-29. 2021
  • [12] Dodiuk H. Handbook of Thermoset Plastics. 3rd ed. Chadds Ford, PA, USA, Elsevier, 2014.
  • [13] Niazi A, Khorshidi N, Ghaemmaghami P. “Microwave-assisted of dispersive liquid–liquid microextraction and spectrophotometric determination of uranium after optimization based on Box-Behnken design and chemometrics methods”. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, 69-75, 2015.
  • [14] Xia M, Ding W, Xiong K, Li L, Qi X, Chen S, Wei Z. “Anchoring effect of exfoliated-montmorillonite-supported Pd catalyst for the oxygen reduction reaction”. The Journal of Physical Chemistry C, 117(20), 10581-10588, 2013.
  • [15] Bokade VV, Yadav GD, “Heteropolyacid supported on montmorillonite catalyst for dehydration of dilute bio-ethanol”. Applied Clay Science, 53(2), 263-271, 2011.
  • [16] Ayodele OB, Lim JK, Hameed BH. “Pillared montmorillonite supported ferric oxalate as heterogeneous photo-Fenton catalyst for degradation of amoxicillin”. Applied catalysis A: general, 413, 301-309 2012.
  • [17] Darmawan A, Fuad K, Azmiyawati C. “Synthesis of chromium pillared clay for adsorption of methylene blue”. 13th Joint Conference on Chemistry, Semarang, Indonesia, 7–8 September 2018,
  • [18] Hosgun S, Ozdemir M, Sahin YB. “Optimization of hydrogen generation by catalytic hydrolysis of NaBH4 with halloysite- supported Co-B catalyst using response surface methodology”. Clays and Clay Minerials, 69, 128–141, 2021.
  • [19] Baycan N, “Micro-Pollutant degradation using nanostructured catalysts”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi,27(3), 378-383, 2021.
  • [20] Muir SS, Chen Z, Wood BJ, Wang L, Lu GM, Yao X. “New electroless plating method for preparation of highly active Co–B catalysts for NaBH4 hydrolysis”. International Journal of Hydrogen Energy, 39(1), 414-425, 2014.
  • [21] Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS. “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)”. Pure and Applied Chemistry, 87(9-10), 1051-1069, 2015.
  • [22] Boahene PE, Soni KK, Dalai AK, Adjaye J. “Application of different pore diameter SBA-15 supports for heavy gas oil hydrotreatment using FeW catalyst”. Applied Catalysis A: General, 402(1-2), 31-40, 2011.
  • [23] Olopade BK, Oranusi SU, Nwinyi OC, Lawal IA, Gbashi S, Njobeh PB. “Decontamination of T-2 toxin in maize by modified montmorillonite clay”. Toxins, 11(11), 1-12, 2019.
  • [24] Chen G, Liu S, Chen S, Qi Z. “FTIR spectra, thermal properties, and dispersibility of a polystyrene/montmorillonite nanocomposite”. Macromolecular Chemistry and Physics, 202(7), 1189-1193, 2001.
  • [25] Soltani N, Salavati H, Moghadasi A. “The role of Na-montmorillonite/cobalt ferrite nanoparticles in the corrosion of epoxy coated AA 3105 aluminum alloy”. Surfaces and Interfaces, 15, 89-99, 2019.
  • [26] Swamy GJ, Sangamithra A, Chandrasekar V. “Response surface modeling and process optimization of aqueous extraction of natural pigments from Beta vulgaris using Box–Behnken design of experiments”. Dyes and Pigments, 111, 64-74, 2014.
  • [27] Xu D, Zhao L, Dai P, Ji S. “Hydrogen generation from methanolysis of sodium borohydride over Co/Al2O3 catalyst”. Journal of Natural Gas Chemistry, 21(5), 488-494, 2012.
  • [28] Kytsya A, Berezovets V, Verbovytskyy Y, Bazylyak L, Kordan V, Zavaliy I, Yartys VA. “Bimetallic Ni-Co nanoparticles as an efficient catalyst of hydrogen generation via hydrolysis of NaBH4”. Journal of Alloys and Compounds, 908, 1-9, 2022.
There are 28 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Article
Authors

Seda Hoşgün

Emir Zafer Hoşgün

Publication Date February 29, 2024
Published in Issue Year 2024 Volume: 30 Issue: 1

Cite

APA Hoşgün, S., & Hoşgün, E. Z. (2024). Optimization of hydrogen generation rate with Co/MMT catalyst from NaBH4 using Box-Behnken method. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(1), 87-94.
AMA Hoşgün S, Hoşgün EZ. Optimization of hydrogen generation rate with Co/MMT catalyst from NaBH4 using Box-Behnken method. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. February 2024;30(1):87-94.
Chicago Hoşgün, Seda, and Emir Zafer Hoşgün. “Optimization of Hydrogen Generation Rate With Co/MMT Catalyst from NaBH4 Using Box-Behnken Method”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, no. 1 (February 2024): 87-94.
EndNote Hoşgün S, Hoşgün EZ (February 1, 2024) Optimization of hydrogen generation rate with Co/MMT catalyst from NaBH4 using Box-Behnken method. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 1 87–94.
IEEE S. Hoşgün and E. Z. Hoşgün, “Optimization of hydrogen generation rate with Co/MMT catalyst from NaBH4 using Box-Behnken method”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 1, pp. 87–94, 2024.
ISNAD Hoşgün, Seda - Hoşgün, Emir Zafer. “Optimization of Hydrogen Generation Rate With Co/MMT Catalyst from NaBH4 Using Box-Behnken Method”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/1 (February 2024), 87-94.
JAMA Hoşgün S, Hoşgün EZ. Optimization of hydrogen generation rate with Co/MMT catalyst from NaBH4 using Box-Behnken method. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:87–94.
MLA Hoşgün, Seda and Emir Zafer Hoşgün. “Optimization of Hydrogen Generation Rate With Co/MMT Catalyst from NaBH4 Using Box-Behnken Method”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 1, 2024, pp. 87-94.
Vancouver Hoşgün S, Hoşgün EZ. Optimization of hydrogen generation rate with Co/MMT catalyst from NaBH4 using Box-Behnken method. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(1):87-94.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif