Research Article
BibTex RIS Cite

Randomize kontrollü bir çalışma: sağlıklı genç erkeklerde 10 haftalık Nordic Hamstring egzersiz eğitimi ve onu izleyen egzersizi bırakma süreçlerinin etkileri

Year 2022, Volume: 15 Issue: 4, 756 - 771, 01.10.2022
https://doi.org/10.31362/patd.1110573

Abstract

Amaç: Nordic Hamstring Egzersizi (NHE) hamstring kas kuvvetini arttırmak ve yaralanmaları önlemek amacıyla kullanılmaktadır. NHE'nin akut, uzun süreli ve egzersizi bırakma (detraining) süreçlerinde demografik veriler, esneklik, anaerobik güç, kas hasarı, yorgunluk, oksidatif stres, kan laktat seviyeleri üzerindeki etkilerinin ortaya konması amaçlanmıştır.
Gereç ve yöntem: 40 sağlıklı, sedanter erkek gönüllü birey deneylere katılmıştır. 20 deneğe 10 haftalık ilerleyici NHE ve takiben detraining uygulanmıştır. Kas mimarisi ultrasonografik ölçümle ve kas sertliği strain elastografi ile belirlenmiştir. Anaerobik güç, çift ayak durarak uzun atlama ve dikey sıçrama ile esneklik otur-uzan testleriyle değerlendirilmiştir. Kreatin kinaz aktivitesi, oksidan/antioksidan parametreler venöz kandan ticari kitler aracılığıyla ölçülmüştür.
Bulgular: NHE, deneklerin kilo vermesini sağlamış; egzersizin 5 hafta boyunca bırakılması ile verilen kilolar geri alınmıştır. Egzersiz deneklerin gonyometre ile ölçülen diz açılarında artışa neden olmuş; bu artış egzersizi bırakma ile geri dönmemiştir. 10 haftalık NHE anaerobik performansta egzersizin bırakılmasıyla kısmen geri dönen artışa sebep olmuştur. NHE, biceps femoris uzun başı alanı ve pennasyon açısında 10 haftalık egzersizi bırakma ile geri dönen bir artış oluşturmuştur. Her egzersiz seansını takiben bireylerin kan laktat düzeyinde, kas ağrısında ve yorgunlukta artış tespit edilmiştir. NHE oksidan/antioksidan parametrelerde değişiklik oluşturmazken; 5 haftalık egzersizi bırakma ile total oksidan kapasite (TOK) ve oksidatif stres indeksi (OSI)’nde artışa sebep olmuştur. 10 haftalık egzersizi bırakma süreci bu parametrelerin yeniden azalmasına neden olmuştur.
Sonuç: 10 haftalık ilerleyici NHE ile elde edilen kazanımların çoğunun 5 haftalık detraining ile geri döndüğü gözlenmiştir. Verilerimiz kas gücü ve performansı arttırmak için seçilebilecek egzersiz tipi hakkından yol gösterici olabilir. 

Supporting Institution

Pamukkale Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

2018SABE034

Thanks

Yok

References

  • 1. Opar DA, Drezner J, Shield A, et al. Acute hamstring strain injury in track-and-field athletes: a 3-year observational study at the Penn Relay Carnival. Scand J Med Sci Sports 2014;24(4): e254-9. https://doi:10.1111/sms.12159
  • 2. Shankar PR, Alanlar SK, Collins CL, Dick RW, Comstock RD. Epidemiology of high school and collegiate football injuries in the United States, 2005-2006. Am J Sports Med 2007; 35(8):1295-303. https://doi:10.1177/0363546507299745
  • 3. Brooks JH, Fuller CW, Kemp SP, Reddin DB. Incidence, risk, and prevention of hamstring muscle injuries in professional rugby union. Am J Sports Med 2006;34(8):1297-306. https://doi:10.1177/0363546505286022
  • 4. Seagrave III RA, Perez L, McQueeney S, Toby EB, Key V, Nelson JD. Preventive effects of eccentric training on acute hamstring muscle injury in Professional baseball. Orthop J Spor Med 2014;2(6):2325967114535351.https://doi:10.1177/2325967114535351
  • 5. Orchard J, James T, Kountouris A, PortusM. Changes to injury profile and (recommended cricket injury definitions) based on the increased frequency of Twenty 20 cricket matches. Open Access J Sports Med 2010;1:63– 76.https://doi:10.2147/oajsm.s9671
  • 6. Al Attar WSA, Soomro N, Sinclair PJ, Pappas E, Sanders RH. Effect of Injury prevention Programs that Include the Nordic hamstring exercise on hamstring injury rates in soccer players: A systematic review and meta-analysis. Sports Med 2017;47(5):907-916.https://doi:10.1007/s40279-016-0638-2
  • 7. Cuthbert M, Ripley N, McMahon JJ, Evans M, Haff GG, Comfort P. The effect of Nordic hamstring exercise intervention volume on eccentric strength and muscle architecture adaptations: A systematic review and meta-analyses. Sport Med 2020;50(1):83–99.https://doi:10.1007/s40279-019-01178-7
  • 8. Mjolsnes R, Arnason A, Osthagen T, Raastad T, Bahr R. A 10-week randomized trial comparing eccentric vs. concentric hamstring strength training in well-trained soccer players. Scand J Med Sci Sports 2004;14(5):311-17.https://doi:10.1046/j.1600-0838.2003.367
  • 9. Higbie EJ, Cureton KJ, Warren GL 3rd, Prior BM. Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J Appl Physiol (1985) 1996;81(5):2173-81.https://doi:10.1152/jappl.1996.81.5.2173
  • 10. Timmins RG, Shield AJ, Williams MD, Lorenzen C, Opar DA. Architectural adaptation of muscleto training and injury: a narrative review outlining the contributions by fascicle length, pennation angle and muscle thickness. Br J Sports Med 2016;50(23):1467-1472.https://doi:10.1136/bjsports-2015-094881
  • 11. Delahunt E, McGroarty M, De Vito G, Ditroilo M. Nordic hamstring exercise training alters knee joint kinematics and hamstring activation patterns in young men. Eur J Appl Physiol 2016;116(4):663–72. https://doi:10.1007/s00421-015-3325-3
  • 12. Lima LCS, Denadai BS. Attenuation of eccentric exercise-induced muscle damage conferred by maximal isometric contractions: a mini review. Front Physiol 2015;6:300. https://doi:10.3389/fphys.2015.00300
  • 13. Tee JC, Bosch AN, Lambert MI. Metabolic consequences of exercise-induced muscle damage. Sports Med ne 2007;37(10):827–36. https://doi:10.2165/00007256-200737100-00001
  • 14. Radák Z, Apor P, Pucsok J, et al. Marathon running alters the DNA base excision repair in human skeletal muscle. Life Sci 2003;72(14):1627-33.https://doi:10.1016/s0024-3205(02)02476-1
  • 15. Pepe H, Balci SS, Revan S, Akalin PP, Kurtoğlu F. Comparison of oxidative stress and antioxidant capacity before and after running exercises in both sexes. Gend Med 2009;6(4): 587-95. https://doi:10.1016/j.genm.2009.10.001
  • 16. Wiecek M, Maciejczyk M, Szymura J, Szygula Z. Sex differences in oxidative stress after eccentric and concentric exercise. R Redox Rep 2017;22(6):478-85. https://doi:10.1080/13510002.2017.1304195
  • 17. Seymore KD, Domire ZJ, DeVita P, Rider PM, Kulas AS. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength. Eur J Appl Physiol 2017;(5): 943-93. https://doi:10.1007/s00421-017-3583-3
  • 18. Bandy WD, Irion JM. The effect of time on static stretch on the flexibility of the hamstring muscles. Phys Ther 1994;74(9):845-50.https://doi:10.1093/ptj/74.9.845
  • 19. Mookerjee S, McMahon MJ. Electromyographic analysis of muscle activation during sit-and-reach flexibility tests. J Strength Cond Res 2014;28(12):3496-501. https://doi:10.1519/JSC.0000000000000607
  • 20. Giagazoglou P, Kokaridas D, Sidiropoulou M, et al. Effects of a trampoline exercise intervention on motor performance and balance ability of children with intellectual disabilities. Res Dev Disabil 2013;34(9):2701-7.https://doi:10.1016/j.ridd.2013.05.034
  • 21. Tamer K. Sporda fiziksel-fizyolojik performansın ölçülmesi ve değerlendirilmesi, Ankara: Bağırgan Yayınevi, 2000;138-43 .
  • 22. De Smet A, Best. MR imaging of the distribution and location of acute hamstring injuries in athletes. Am J Roentgenol 2000;174(2):393–9. https://doi:10.2214/ajr.174.2.1740393
  • 23. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging 1991;13(2):111-34.https://doi:10.1177/016173469101300201
  • 24. Drakonaki EE, Allen GM, Wilson DJ. Ultrasound elastography for musculoskeletal applications. Br J Radiol 2012;85(1019):1435-45.https://doi:10.1259/bjr/93042867
  • 25. Niitsu M, Michizaki A, Endo A, Takei H, Yanagisawa O. Muscle hardness measurement by using ultrasound elastography: a feasibility study. Acta Radiol 2011;52(1):99-105. https://doi:10.1258/ar.2010.100190
  • 26. Cosgrove D, Piscaglia F, Bamber J, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall Med 2013;34(3):238-53.https://doi:10.1055/s-0033-1335375
  • 27. Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem 2004;37(2):112-19. https://doi:10.1016/j.clinbiochem.2003.10.014
  • 28. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem 2005;38(12):1103-11.https://doi:10.1016/j.clinbiochem.2005.08.008
  • 29. Kosecik M, Erel O, Sevinc E, Selek, S. Increased oxidative stres in children exposed to passive smoking. Int J Cardiol 2005;100(1):61-4.https://doi:10.1016/j.ijcard.2004.05.069
  • 30. Rodio A, Fattorini L. Downhill walking to improve lower limb strength in healthy young adults. Eur J Sport Sci 2014;14(8):806-12. https://doi:10.1080/17461391.2014.908958
  • 31. Roig M, O’Brien K, Kirk G, et al. The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analyses. Br J Sports Med 2008;43(8):556–568. https://doi:10.1136/bjsm.2008.051417
  • 32. Alonso-Fernandez D, Docampo-Blanco P, Martinez-Fernandez J. Changes in muscle architecture of biceps femoris induced by eccentric strength training with nordic hamstring exercise. Scand J Med Sci Sports 2018;28(1):88-94. https://doi:10.1111/sms.12877
  • 33. Presland JD, Timmins RG, Bourne MN, Williams MD, Opar DA. The effect of Nordic hamstring exercise training volüme on biceps femoris long head architectural adaptation. Scand J Med Sci Sports 2018;28(7):1775-83. https://doi:10.1111/sms.13085
  • 34. Messer DJ, Bourne MN, Williams MD, Al Najjar A, Shield AJ. Hamstring muscle use in women during hip extension and the Nordic hamstring exercise: A Functional Magnetic Resonance Imaging Study. . J Orthop Sports Phys Ther 2018;48(8):607-612. https://doi:10.2519/jospt.2018.7748
  • 35. Mitchell WK, Taivassalo T, Narici MV, Franchi MV. Eccentric Exercise and the Critically Ill Patient. Front Physiol 2017;8:120. https://doi:10.3389/fphys.2017.00120
  • 36. Krentz JR, Farthing JP. Neural and morphological changes in response to a 20-day intense eccentric training protocol. Eur J Appl Physiol 2010;110(2):333–40. https://doi:10.1007/s00421-010-1513-8
  • 37. Duhig SJ, Bourne MN, Buhmann RL, et al. Effect of concentric and eccentric hamstring training on sprint recovery, strength and muscle architecture in inexperienced athletes. J Sci Med Sport 2019;22(7):769-74. https://doi:10.1016/j.jsams.2019.01.010
  • 38. Abaïdia AE, Delecroix B, Leduc C, et al. Effects of a strength training session after an exercise inducing muscle damage on recovery kinetics. J Strength Cond Res 2017;31(1): 115-25. https://doi:10.1519/JSC.0000000000001479
  • 39. Atkinson G, Nevill M. Statistical Methods For Assessing Measurement Error (Reliability) in Variables Relevant to Sports Medicine. Sports Med 1998;26(4):217-38. https://doi:10.2165/00007256-199826040-00002 40. Morishita S, Tsubaki A, Nakamura M, et al. Rating of perceived exertion on resistance training in elderly subjects. Expert Rev Cardiovasc Ther 2019;17(2):135-42. https://doi:10.1080/14779072.2019.1561278
  • 41. Sen CK. Antioxidants in exercise nutrition. Sports Med 2001;31(13):891-908. https://doi:10.2165/00007256-200131130-00001
  • 42. Margaritelis NV, Kyparos A, Paschalis V, et al. Reductive stress after exercise: theissue of redox individuality. Redox Biol 2014;2:520-28. https://doi:10.1016/j.redox.2014.02.003
  • 43. Tanskanen M, Atalay M, Uusitalo A. Altered oxidative stress in overtrained athletes. Journal Sports Sci 2010;28(3):309-17. https://doi:10.1080/02640410903473844
  • 44. Balcı SS, Pepe H. Effects of gender, endurance training and acute exhaustive exercise on oxidative stress in the heart and skeletal muscle of the rat. Chin J Physiol 2012;55(4):236-44. https://doi:10.4077/CJP.2012.BAA021
  • 45. Lima FD, Stamm DN, Della-Pace ID, et al. Swimming training induces liver mitochondrial adaptations to oxidative stress in rats submitted to repeated exhaustive swimming bouts. PLoS One 2013;8(2):e55668. https://doi:10.1371/journal.pone.0055668
  • 46. Unver F, Kilic-Toprak E, Kilic-Erkek O, et al. Hemorheological alterations following an acute bout of Nordic hamstring exercise in active male participants1. Clin Hemorheol Microcirc 2019;71(4):463-73. https://doi:10.3233/CH-180402
  • 47. Stagos D, Goutzourelas N, Ntontou AM, et al. Assessment of eccentric exercise-ınduced oxidative stress using oxidation-reduction potential markers. Oxid Med Cell Longev 2015; 2015:204615. https://doi:10.1155/2015/204615
  • 48. Kilic-Toprak E, Ardic F, Erken E, et al. Hemorheological responses to progressive resistance exercise training in healthy young males. Med Sci Monit 2012;18(6):351–60. https://doi:10.3233/CH-180402
  • 49. Bradic J, Dragojlovic Ruzicic R, Jeremic J, et al. Comparison of training and detraining on redox state of rats: gender specific differences. Gen Physiol Biophys 2018;37(3):285-97. https://doi:10.4149/gpb_2017053
  • 50. Bahr R, Thorborg K, Ekstrand J. Evidence-based hamstring injury prevention is not adopted by the majority of Champions League or Norwegian Premier League football teams: the Nordic Hamstring survey. Br J Sports Med 2015;49(22):1466-71. https://doi:10.1136/bjsports-2015-094826

A randomized controlled trial: effectiveness of 10-week Nordic Hamstring exercise training and subsequent detraining in healthy young men

Year 2022, Volume: 15 Issue: 4, 756 - 771, 01.10.2022
https://doi.org/10.31362/patd.1110573

Abstract

Purpose: Nordic Hamstring Exercise (NHE) is used to increase hamstring muscle strength, prevent injuries. We aimed to reveal the acute, long-term effects of NHE, followed by detraining on demographic measurements, flexibility, anaerobic power, damage, fatigue, oxidative stress, blood lactate levels.
Material and method: A total of 40 sedentary healthy male participated the experiments. 20 of them underwent 10 weeks of progressive NHE followed by detraining. Muscle architecture was determined by ultrasonography, strain ratio by elastography. Anaerobic power was assessed by standing long jump, vertical jump, flexibility by sit reach tests. Creatine kinase activity, oxidant/antioxidant parameters were measured by commercial kits.
Results: NHE allowed subjects to lose weight, which was reversed by detraining of 5 weeks. Exercise caused an increase in knee angles that wasn’t affected by detraining. 10-week NHE caused a partially reversed increase in anaerobic performance upon detraining. NHE resulted in increment of biceps femoris long head area, pennation angle which were reversed by detraining of 10-weeks. Blood lactate, muscle pain, fatigue were increased after each exercise session.
NHE didn’t change oxidative stress but, 5-week detraining resulted in an increase in total oxidant capacity, oxidative stress index. Detraining of 10 weeks caused a reduction of these parameters.
Conclusions: It has been observed that most of the gains obtained with 10-week progressive NHE are reversed with 5-week detraining. These results may guide the selection of the exercise type to increase performance and muscle strength.

Project Number

2018SABE034

References

  • 1. Opar DA, Drezner J, Shield A, et al. Acute hamstring strain injury in track-and-field athletes: a 3-year observational study at the Penn Relay Carnival. Scand J Med Sci Sports 2014;24(4): e254-9. https://doi:10.1111/sms.12159
  • 2. Shankar PR, Alanlar SK, Collins CL, Dick RW, Comstock RD. Epidemiology of high school and collegiate football injuries in the United States, 2005-2006. Am J Sports Med 2007; 35(8):1295-303. https://doi:10.1177/0363546507299745
  • 3. Brooks JH, Fuller CW, Kemp SP, Reddin DB. Incidence, risk, and prevention of hamstring muscle injuries in professional rugby union. Am J Sports Med 2006;34(8):1297-306. https://doi:10.1177/0363546505286022
  • 4. Seagrave III RA, Perez L, McQueeney S, Toby EB, Key V, Nelson JD. Preventive effects of eccentric training on acute hamstring muscle injury in Professional baseball. Orthop J Spor Med 2014;2(6):2325967114535351.https://doi:10.1177/2325967114535351
  • 5. Orchard J, James T, Kountouris A, PortusM. Changes to injury profile and (recommended cricket injury definitions) based on the increased frequency of Twenty 20 cricket matches. Open Access J Sports Med 2010;1:63– 76.https://doi:10.2147/oajsm.s9671
  • 6. Al Attar WSA, Soomro N, Sinclair PJ, Pappas E, Sanders RH. Effect of Injury prevention Programs that Include the Nordic hamstring exercise on hamstring injury rates in soccer players: A systematic review and meta-analysis. Sports Med 2017;47(5):907-916.https://doi:10.1007/s40279-016-0638-2
  • 7. Cuthbert M, Ripley N, McMahon JJ, Evans M, Haff GG, Comfort P. The effect of Nordic hamstring exercise intervention volume on eccentric strength and muscle architecture adaptations: A systematic review and meta-analyses. Sport Med 2020;50(1):83–99.https://doi:10.1007/s40279-019-01178-7
  • 8. Mjolsnes R, Arnason A, Osthagen T, Raastad T, Bahr R. A 10-week randomized trial comparing eccentric vs. concentric hamstring strength training in well-trained soccer players. Scand J Med Sci Sports 2004;14(5):311-17.https://doi:10.1046/j.1600-0838.2003.367
  • 9. Higbie EJ, Cureton KJ, Warren GL 3rd, Prior BM. Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J Appl Physiol (1985) 1996;81(5):2173-81.https://doi:10.1152/jappl.1996.81.5.2173
  • 10. Timmins RG, Shield AJ, Williams MD, Lorenzen C, Opar DA. Architectural adaptation of muscleto training and injury: a narrative review outlining the contributions by fascicle length, pennation angle and muscle thickness. Br J Sports Med 2016;50(23):1467-1472.https://doi:10.1136/bjsports-2015-094881
  • 11. Delahunt E, McGroarty M, De Vito G, Ditroilo M. Nordic hamstring exercise training alters knee joint kinematics and hamstring activation patterns in young men. Eur J Appl Physiol 2016;116(4):663–72. https://doi:10.1007/s00421-015-3325-3
  • 12. Lima LCS, Denadai BS. Attenuation of eccentric exercise-induced muscle damage conferred by maximal isometric contractions: a mini review. Front Physiol 2015;6:300. https://doi:10.3389/fphys.2015.00300
  • 13. Tee JC, Bosch AN, Lambert MI. Metabolic consequences of exercise-induced muscle damage. Sports Med ne 2007;37(10):827–36. https://doi:10.2165/00007256-200737100-00001
  • 14. Radák Z, Apor P, Pucsok J, et al. Marathon running alters the DNA base excision repair in human skeletal muscle. Life Sci 2003;72(14):1627-33.https://doi:10.1016/s0024-3205(02)02476-1
  • 15. Pepe H, Balci SS, Revan S, Akalin PP, Kurtoğlu F. Comparison of oxidative stress and antioxidant capacity before and after running exercises in both sexes. Gend Med 2009;6(4): 587-95. https://doi:10.1016/j.genm.2009.10.001
  • 16. Wiecek M, Maciejczyk M, Szymura J, Szygula Z. Sex differences in oxidative stress after eccentric and concentric exercise. R Redox Rep 2017;22(6):478-85. https://doi:10.1080/13510002.2017.1304195
  • 17. Seymore KD, Domire ZJ, DeVita P, Rider PM, Kulas AS. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength. Eur J Appl Physiol 2017;(5): 943-93. https://doi:10.1007/s00421-017-3583-3
  • 18. Bandy WD, Irion JM. The effect of time on static stretch on the flexibility of the hamstring muscles. Phys Ther 1994;74(9):845-50.https://doi:10.1093/ptj/74.9.845
  • 19. Mookerjee S, McMahon MJ. Electromyographic analysis of muscle activation during sit-and-reach flexibility tests. J Strength Cond Res 2014;28(12):3496-501. https://doi:10.1519/JSC.0000000000000607
  • 20. Giagazoglou P, Kokaridas D, Sidiropoulou M, et al. Effects of a trampoline exercise intervention on motor performance and balance ability of children with intellectual disabilities. Res Dev Disabil 2013;34(9):2701-7.https://doi:10.1016/j.ridd.2013.05.034
  • 21. Tamer K. Sporda fiziksel-fizyolojik performansın ölçülmesi ve değerlendirilmesi, Ankara: Bağırgan Yayınevi, 2000;138-43 .
  • 22. De Smet A, Best. MR imaging of the distribution and location of acute hamstring injuries in athletes. Am J Roentgenol 2000;174(2):393–9. https://doi:10.2214/ajr.174.2.1740393
  • 23. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging 1991;13(2):111-34.https://doi:10.1177/016173469101300201
  • 24. Drakonaki EE, Allen GM, Wilson DJ. Ultrasound elastography for musculoskeletal applications. Br J Radiol 2012;85(1019):1435-45.https://doi:10.1259/bjr/93042867
  • 25. Niitsu M, Michizaki A, Endo A, Takei H, Yanagisawa O. Muscle hardness measurement by using ultrasound elastography: a feasibility study. Acta Radiol 2011;52(1):99-105. https://doi:10.1258/ar.2010.100190
  • 26. Cosgrove D, Piscaglia F, Bamber J, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall Med 2013;34(3):238-53.https://doi:10.1055/s-0033-1335375
  • 27. Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem 2004;37(2):112-19. https://doi:10.1016/j.clinbiochem.2003.10.014
  • 28. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem 2005;38(12):1103-11.https://doi:10.1016/j.clinbiochem.2005.08.008
  • 29. Kosecik M, Erel O, Sevinc E, Selek, S. Increased oxidative stres in children exposed to passive smoking. Int J Cardiol 2005;100(1):61-4.https://doi:10.1016/j.ijcard.2004.05.069
  • 30. Rodio A, Fattorini L. Downhill walking to improve lower limb strength in healthy young adults. Eur J Sport Sci 2014;14(8):806-12. https://doi:10.1080/17461391.2014.908958
  • 31. Roig M, O’Brien K, Kirk G, et al. The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analyses. Br J Sports Med 2008;43(8):556–568. https://doi:10.1136/bjsm.2008.051417
  • 32. Alonso-Fernandez D, Docampo-Blanco P, Martinez-Fernandez J. Changes in muscle architecture of biceps femoris induced by eccentric strength training with nordic hamstring exercise. Scand J Med Sci Sports 2018;28(1):88-94. https://doi:10.1111/sms.12877
  • 33. Presland JD, Timmins RG, Bourne MN, Williams MD, Opar DA. The effect of Nordic hamstring exercise training volüme on biceps femoris long head architectural adaptation. Scand J Med Sci Sports 2018;28(7):1775-83. https://doi:10.1111/sms.13085
  • 34. Messer DJ, Bourne MN, Williams MD, Al Najjar A, Shield AJ. Hamstring muscle use in women during hip extension and the Nordic hamstring exercise: A Functional Magnetic Resonance Imaging Study. . J Orthop Sports Phys Ther 2018;48(8):607-612. https://doi:10.2519/jospt.2018.7748
  • 35. Mitchell WK, Taivassalo T, Narici MV, Franchi MV. Eccentric Exercise and the Critically Ill Patient. Front Physiol 2017;8:120. https://doi:10.3389/fphys.2017.00120
  • 36. Krentz JR, Farthing JP. Neural and morphological changes in response to a 20-day intense eccentric training protocol. Eur J Appl Physiol 2010;110(2):333–40. https://doi:10.1007/s00421-010-1513-8
  • 37. Duhig SJ, Bourne MN, Buhmann RL, et al. Effect of concentric and eccentric hamstring training on sprint recovery, strength and muscle architecture in inexperienced athletes. J Sci Med Sport 2019;22(7):769-74. https://doi:10.1016/j.jsams.2019.01.010
  • 38. Abaïdia AE, Delecroix B, Leduc C, et al. Effects of a strength training session after an exercise inducing muscle damage on recovery kinetics. J Strength Cond Res 2017;31(1): 115-25. https://doi:10.1519/JSC.0000000000001479
  • 39. Atkinson G, Nevill M. Statistical Methods For Assessing Measurement Error (Reliability) in Variables Relevant to Sports Medicine. Sports Med 1998;26(4):217-38. https://doi:10.2165/00007256-199826040-00002 40. Morishita S, Tsubaki A, Nakamura M, et al. Rating of perceived exertion on resistance training in elderly subjects. Expert Rev Cardiovasc Ther 2019;17(2):135-42. https://doi:10.1080/14779072.2019.1561278
  • 41. Sen CK. Antioxidants in exercise nutrition. Sports Med 2001;31(13):891-908. https://doi:10.2165/00007256-200131130-00001
  • 42. Margaritelis NV, Kyparos A, Paschalis V, et al. Reductive stress after exercise: theissue of redox individuality. Redox Biol 2014;2:520-28. https://doi:10.1016/j.redox.2014.02.003
  • 43. Tanskanen M, Atalay M, Uusitalo A. Altered oxidative stress in overtrained athletes. Journal Sports Sci 2010;28(3):309-17. https://doi:10.1080/02640410903473844
  • 44. Balcı SS, Pepe H. Effects of gender, endurance training and acute exhaustive exercise on oxidative stress in the heart and skeletal muscle of the rat. Chin J Physiol 2012;55(4):236-44. https://doi:10.4077/CJP.2012.BAA021
  • 45. Lima FD, Stamm DN, Della-Pace ID, et al. Swimming training induces liver mitochondrial adaptations to oxidative stress in rats submitted to repeated exhaustive swimming bouts. PLoS One 2013;8(2):e55668. https://doi:10.1371/journal.pone.0055668
  • 46. Unver F, Kilic-Toprak E, Kilic-Erkek O, et al. Hemorheological alterations following an acute bout of Nordic hamstring exercise in active male participants1. Clin Hemorheol Microcirc 2019;71(4):463-73. https://doi:10.3233/CH-180402
  • 47. Stagos D, Goutzourelas N, Ntontou AM, et al. Assessment of eccentric exercise-ınduced oxidative stress using oxidation-reduction potential markers. Oxid Med Cell Longev 2015; 2015:204615. https://doi:10.1155/2015/204615
  • 48. Kilic-Toprak E, Ardic F, Erken E, et al. Hemorheological responses to progressive resistance exercise training in healthy young males. Med Sci Monit 2012;18(6):351–60. https://doi:10.3233/CH-180402
  • 49. Bradic J, Dragojlovic Ruzicic R, Jeremic J, et al. Comparison of training and detraining on redox state of rats: gender specific differences. Gen Physiol Biophys 2018;37(3):285-97. https://doi:10.4149/gpb_2017053
  • 50. Bahr R, Thorborg K, Ekstrand J. Evidence-based hamstring injury prevention is not adopted by the majority of Champions League or Norwegian Premier League football teams: the Nordic Hamstring survey. Br J Sports Med 2015;49(22):1466-71. https://doi:10.1136/bjsports-2015-094826
There are 49 citations in total.

Details

Primary Language English
Subjects Medical Physiology
Journal Section Research Article
Authors

Hatice Çağla Özdamar 0000-0003-3868-4797

Özgen Kılıç Erkek

Habip Eser Akkaya 0000-0002-8447-3627

Emine Kılıç Toprak 0000-0002-8795-0185

Z. Melek Bor Küçükatay 0000-0002-9366-0205

Project Number 2018SABE034
Publication Date October 1, 2022
Submission Date May 5, 2022
Acceptance Date July 8, 2022
Published in Issue Year 2022 Volume: 15 Issue: 4

Cite

APA Özdamar, H. Ç., Kılıç Erkek, Ö., Eser Akkaya, H., Kılıç Toprak, E., et al. (2022). A randomized controlled trial: effectiveness of 10-week Nordic Hamstring exercise training and subsequent detraining in healthy young men. Pamukkale Medical Journal, 15(4), 756-771. https://doi.org/10.31362/patd.1110573
AMA Özdamar HÇ, Kılıç Erkek Ö, Eser Akkaya H, Kılıç Toprak E, Bor Küçükatay ZM. A randomized controlled trial: effectiveness of 10-week Nordic Hamstring exercise training and subsequent detraining in healthy young men. Pam Med J. October 2022;15(4):756-771. doi:10.31362/patd.1110573
Chicago Özdamar, Hatice Çağla, Özgen Kılıç Erkek, Habip Eser Akkaya, Emine Kılıç Toprak, and Z. Melek Bor Küçükatay. “A Randomized Controlled Trial: Effectiveness of 10-Week Nordic Hamstring Exercise Training and Subsequent Detraining in Healthy Young Men”. Pamukkale Medical Journal 15, no. 4 (October 2022): 756-71. https://doi.org/10.31362/patd.1110573.
EndNote Özdamar HÇ, Kılıç Erkek Ö, Eser Akkaya H, Kılıç Toprak E, Bor Küçükatay ZM (October 1, 2022) A randomized controlled trial: effectiveness of 10-week Nordic Hamstring exercise training and subsequent detraining in healthy young men. Pamukkale Medical Journal 15 4 756–771.
IEEE H. Ç. Özdamar, Ö. Kılıç Erkek, H. Eser Akkaya, E. Kılıç Toprak, and Z. M. Bor Küçükatay, “A randomized controlled trial: effectiveness of 10-week Nordic Hamstring exercise training and subsequent detraining in healthy young men”, Pam Med J, vol. 15, no. 4, pp. 756–771, 2022, doi: 10.31362/patd.1110573.
ISNAD Özdamar, Hatice Çağla et al. “A Randomized Controlled Trial: Effectiveness of 10-Week Nordic Hamstring Exercise Training and Subsequent Detraining in Healthy Young Men”. Pamukkale Medical Journal 15/4 (October 2022), 756-771. https://doi.org/10.31362/patd.1110573.
JAMA Özdamar HÇ, Kılıç Erkek Ö, Eser Akkaya H, Kılıç Toprak E, Bor Küçükatay ZM. A randomized controlled trial: effectiveness of 10-week Nordic Hamstring exercise training and subsequent detraining in healthy young men. Pam Med J. 2022;15:756–771.
MLA Özdamar, Hatice Çağla et al. “A Randomized Controlled Trial: Effectiveness of 10-Week Nordic Hamstring Exercise Training and Subsequent Detraining in Healthy Young Men”. Pamukkale Medical Journal, vol. 15, no. 4, 2022, pp. 756-71, doi:10.31362/patd.1110573.
Vancouver Özdamar HÇ, Kılıç Erkek Ö, Eser Akkaya H, Kılıç Toprak E, Bor Küçükatay ZM. A randomized controlled trial: effectiveness of 10-week Nordic Hamstring exercise training and subsequent detraining in healthy young men. Pam Med J. 2022;15(4):756-71.

Creative Commons Lisansı
Pamukkale Medical Journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License