Research Article
BibTex RIS Cite

THE EFFECT OF TRUST IN CHATGPT'S TRAVEL RECOMMENDATIONS ON TRAVELERS' BEHAVIORAL INTENTION: THE MEDIATING ROLE OF PERCEIVED RISK

Year 2025, Issue: 69, 1 - 19, 18.07.2025
https://doi.org/10.30794/pausbed.1559251

Abstract

The purpose of this study is to examine the impact of personalized travel recommendations (perceived convenience, perceived usefulness, and perceived intelligence) offered by ChatGPT on travelers' perceived trust and behavioral intentions. In addition, this study aims to examine the mediating role of perceived risk between perceived trust and behavioral intention. In this context, data were collected from 286 respondents using a questionnaire. As a result of the factor analysis performed in Jamovi 2.3.28 software, it was determined that perceived convenience, perceived usefulness, and perceived intelligence affect travelers' perceived trust and behavioral intentions. In addition, travelers' perceived trust has a positive and significant effect on behavioral intention. Finally, it was found that perceived risk does not have a mediating role between perceived trust and behavioral intention. For users to adopt systems such as ChatGPT and trust recommendations more, platforms need to improve the accuracy, degree of personalization, and interaction quality of AI-assisted recommendations. The finding that perceived risk does not mediate between trust and behavioral intention suggests businesses should focus on building trust. In this context, transparency should be ensured in customer service, informative content about the accuracy of AI-assisted recommendations should be provided, and continuous feedback mechanisms should be established to improve the user experience.

References

  • Abubakar, A. M., & Ilkan, M. (2016). Impact of online WOM on destination trust and intention to travel: A medical tourism perspective. Journal of Destination Marketing & Management, 5(3), 192-201.
  • Acosta-Enriquez, B. G., Arbulú Ballesteros, M. A., Arbulu Perez Vargas, C. G., Orellana Ulloa, M. N., Gutiérrez Ulloa, C. R., Pizarro Romero, J. M., ... & López Roca, C. (2024). Knowledge, attitudes, and perceived Ethics regarding the use of ChatGPT among generation Z university students. International Journal for Educational Integrity, 20(1), 10.
  • Afolabi, O. O., Ozturen, A., & Ilkan, M. (2021). Effects of privacy concern, risk, and information control in a smart tourism destination. Economic research-Ekonomska istraživanja, 34(1), 3119-3138.
  • Agag, G. M., & El-Masry, A. A. (2017). Why do consumers trust online travel websites? Drivers and outcomes of consumer trust toward online travel websites. Journal of Travel Research, 56(3), 347-369.
  • Agag, G., Abdelmoety, Z. H., & Eid, R. (2024). Understanding the factors affecting travel avoidance behavior during the COVID-19 pandemic: findings from a mixed method approach. Journal of Travel Research, 63(4), 858-882.
  • Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.
  • Ali, F., Yasar, B., Ali, L., & Dogan, S. (2023). Antecedents and consequences of travelers' trust towards personalized travel recommendations offered by ChatGPT. International Journal of Hospitality Management, 114, 103588.
  • Avcı Yücel, Ü., & Usluel, Y. K. (2016). Bilgi ve iletişim teknolojilerinin benimsenmesi sürecinde uygunluk algısına etki eden faktörler: boylamsal bir çalışma. Journal of Instructional Technologies and Teacher Education, 5(1), 1-12.
  • Bae, S. Y., & Chang, P. J. (2021). The effect of coronavirus disease-19 (COVID-19) risk perception on behavioural intention towards ‘untact’tourism in South Korea during the first wave of the pandemic (March 2020). Current Issues in Tourism, 24(7), 1017-1035.
  • Baki, R. (2020). Analysis of factors affecting customer trust in online hotel booking website usage. European Journal of Tourism, Hospitality and Recreation, 10(2), 106-117.
  • Balakrishnan, J., Abed, S. S., & Jones, P. (2022). The role of meta-UTAUT factors, perceived anthropomorphism, perceived intelligence, and social self-efficacy in chatbot-based services?. Technological Forecasting and Social Change, 180, 121692.
  • Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological bulletin, 88(3), 588.
  • Battour, M., Mady, K., Salaheldeen, M., Ratnasari, R. T., Sallem, R., & Al Sinawi, S. (2024). Halal tourism and ChatGPT: an overview of current trends and future research directions. Journal of Islamic Marketing.
  • Bryman, A., & Cramer, D. (2004). Constructing variables. Handbook of data analysis, 17-34.
  • Buhalis, D., O’Connor, P., & Leung, R. (2023). Smart hospitality: from smart cities and smart tourism towards agile business ecosystems in networked destinations. International Journal of Contemporary Hospitality Management, 35(1), 369-393.
  • Büttner, O. B., & Göritz, A. S. (2008). Perceived trustworthiness of online shops. Journal of Consumer Behaviour: An International Research Review, 7(1), 35-50.
  • Carvalho, I., & Ivanov, S. (2024). ChatGPT for tourism: applications, benefits and risks. Tourism Review, 79(2), 290-303.
  • Chen, C. F., & Tsai, D. (2007). How destination image and evaluative factors affect behavioral intentions?. Tourism management, 28(4), 1115-1122.
  • Choe, J. Y., Kim, J. J., & Hwang, J. (2021). Perceived risks from drone food delivery services before and after COVID-19. International Journal of Contemporary Hospitality Management, 33(4), 1276-1296.
  • Choi, S. M., & Rifon, N. J. (2002). Antecedents and consequences of web advertising credibility: A study of consumer response to banner ads. Journal of interactive Advertising, 3(1), 12-24.
  • Choi, J., Lee, A., & Ok, C. (2013). The effects of consumers' perceived risk and benefit on attitude and behavioral intention: A study of street food. Journal of Travel & Tourism Marketing, 30(3), 222-237.
  • Choudhury, A., & Shamszare, H. (2023). Investigating the impact of user trust on the adoption and use of ChatGPT: survey analysis. Journal of Medical Internet Research, 25, e47184.
  • Curras-Perez, R., Ruiz, C., Sanchez-Garcia, I., & Sanz, S. (2017). Determinants of customer retention in virtual environments. The role of perceived risk in a tourism services context. Spanish journal of marketing-ESIC, 21(2), 131-145.
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
  • Demir, M., & Demir, Ş. Ş. (2023). Is ChatGPT the right technology for service individualization and value co-creation? evidence from the travel industry. Journal of Travel & Tourism Marketing, 40(5), 383-398.
  • Di Domenico, G., Nunan, D., Sit, J., & Pitardi, V. (2021). Free but fake speech: When giving primacy to the source decreases misinformation sharing on social media. Psychology & Marketing, 38(10), 1700-1711.
  • Doborjeh, Z., Hemmington, N., Doborjeh, M., & Kasabov, N. (2021). Artificial intelligence: a systematic review of methods and applications in hospitality and tourism. International Journal of Contemporary Hospitality Management, 34(3), 1154-1176.
  • Doney, P. M., & Cannon, J. P. (1997). An examination of the nature of trust in buyer–seller relationships. Journal of marketing, 61(2), 35-51.
  • Dowling, G. R., & Staelin, R. (1994). A model of perceived risk and intended risk-handling activity. Journal of consumer research, 21(1), 119-134.
  • Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., ... & Wright, R. (2023). Opinion Paper:“So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642.
  • Dwivedi, Y. K., Pandey, N., Currie, W., & Micu, A. (2024). Leveraging ChatGPT and other generative artificial intelligence (AI)-based applications in the hospitality and tourism industry: practices, challenges and research agenda. International Journal of Contemporary Hospitality Management, 36(1), 1-12.
  • Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International journal of human-computer studies, 59(4), 451-474.
  • Gaudiello, I., Zibetti, E., Lefort, S., Chetouani, M., & Ivaldi, S. (2016). Trust as indicator of robot functional and social acceptance. An experimental study on user conformation to iCub answers. Computers in Human Behavior, 61, 633-655.
  • Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS quarterly, 51-90.
  • Geng, S., Yang, P., Gao, Y., Tan, Y., & Yang, C. (2021). The effects of ad social and personal relevance on consumer ad engagement on social media: The moderating role of platform trust. Computers in human behavior, 122, 106834.
  • Göktaş, L. S. (2023a). ChatGPT Uzaktan Eğitim Sınavlarında Başarılı Olabilir Mi? Turizm Alanında Doğruluk ve Doğrulama Üzerine Bir Araştırma. Journal of Tourism & Gastronomy Studies, 11(2), 892-905.
  • Göktaş, L. S. (2023b). The role of ChatGPT in vegetarian menus. Tourism and Recreation, 5(2), 79-86. Gu, C., Jia, S., Lai, J., Chen, R., & Chang, X. (2024). Exploring Consumer Acceptance of AI-Generated Advertisements: From the Perspectives of Perceived Eeriness and Perceived Intelligence. Journal of Theoretical and Applied Electronic Commerce Research, 19(3), 2218-2238.
  • Gupta, B., Mufti, T., Sohail, S. S., & Madsen, D. Ø. (2023). ChatGPT: A brief narrative review. Cogent Business & Management, 10(3), 2275851.
  • Gursoy, D., Chi, O. H., Lu, L., & Nunkoo, R. (2019). Consumers acceptance of artificially intelligent (AI) device use in service delivery. International Journal of Information Management, 49, 157-169.
  • Gursoy, D., Li, Y., & Song, H. (2023). ChatGPT and the hospitality and tourism industry: an overview of current trends and future research directions. Journal of Hospitality Marketing & Management, 32(5), 579-592.
  • Haleem, A., Javaid, M., Qadri, M. A., & Suman, R. (2022). Understanding the role of digital technologies in education: A review. Sustainable operations and computers, 3, 275-285.
  • Harrigan, M., Feddema, K., Wang, S., Harrigan, P., & Diot, E. (2021). How trust leads to online purchase intention founded in perceived usefulness and peer communication. Journal of Consumer Behaviour, 20(5), 1297-1312.
  • Helberger, N., & Diakopoulos, N. (2023). ChatGPT and the AI Act. Internet Policy Review, 12(1).
  • Hmoud, M., Swaity, H., Hamad, N., Karram, O., & Daher, W. (2024). Higher education students’ task motivation in the generative artificial intelligence context: the case of chatgpt. Information, 15(1), 33.
  • Hooper, D., Coughlan, J., & Mullen, M. (2008). Evaluating model fit: a synthesis of the structural equation modelling literature. In 7th European Conference on research methodology for business and management studies (Vol. 2008, pp. 195-200).
  • Hsiao, K. L., & Chen, C. C. (2022). What drives continuance intention to use a food-ordering chatbot? An examination of trust and satisfaction. Library Hi Tech, 40(4), 929-946.
  • Ivanov, S., & Soliman, M. (2023). Game of algorithms: ChatGPT implications for the future of tourism education and research. Journal of Tourism Futures, 9(2), 214-221.
  • Jarvenpaa, S. L., Tractinsky, N., & Vitale, M. (2000). Consumer trust in an Internet store. Information technology and management, 1, 45-71.
  • Jo, H. (2023). Decoding the ChatGPT mystery: A comprehensive exploration of factors driving AI language model adoption. Information Development, 02666669231202764.
  • Kasilingam, D. L. (2020). Understanding the attitude and intention to use smartphone chatbots for shopping. Technology in society, 62, 101280.
  • Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., ... & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and individual differences, 103, 102274.
  • Kaur, S., & Arora, S. (2020). Role of perceived risk in online banking and its impact on behavioral intention: trust as a moderator. Journal of Asia Business Studies, 15(1), 1-30.
  • Kim, D. J., Ferrin, D. L., & Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision support systems, 44(2), 544-564.
  • Kim, J. H., Kim, J., Park, J., Kim, C., Jhang, J., & King, B. (2023a). When ChatGPT gives incorrect answers: the impact of inaccurate information by generative AI on tourism decision-making. Journal of Travel Research, 00472875231212996.
  • Kim, J. H., Kim, J., Kim, S., & Hailu, T. B. (2023b). Effects of AI ChatGPT on travelers’ travel decision-making. Tourism Review.
  • Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford publications. New York.
  • Kogan, N., & Wallach, M. A. (1964). Risk taking: A study in cognition and personality.
  • Konuk, F. A. (2018). Price fairness, satisfaction, and trust as antecedents of purchase intentions towards organic food. Journal of Consumer Behaviour, 17(2), 141-148.
  • Ku, E. C. (2012). Beyond price: how does trust encourage online group's buying intention?. Internet Research, 22(5), 569-590.
  • Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. Human factors, 46(1), 50-80.
  • Lei, S. I., Shen, H., & Ye, S. (2021). A comparison between chatbot and human service: customer perception and reuse intention. International Journal of Contemporary Hospitality Management, 33(11), 3977-3995.
  • Li, L., Lee, K. Y., Emokpae, E., & Yang, S. B. (2021). What makes you continuously use chatbot services? Evidence from chinese online travel agencies. Electronic Markets, 1-25.
  • Li, W., Jiang, M., & Zhan, W. (2022a). Why advertise on short video platforms? Optimizing online advertising using advertisement quality. Journal of Theoretical and Applied Electronic Commerce Research, 17(3), 1057-1074.
  • Li, W., Chen, G., Wu, L., Zeng, Y., Wei, J., & Liu, Y. (2022b). Travel intention during the COVID-19 epidemic: The influence of institutional and interpersonal trust. Frontiers in Psychology, 13, 1015900.
  • Li, B., Yao, R., & Nan, Y. (2023). How do friendship artificial intelligence chatbots (FAIC) benefit the continuance using intention and customer engagement?. Journal of Consumer Behaviour, 22(6), 1376-1398.
  • Lim, W. M., Jasim, K. M., & Das, M. (2024). Augmented and virtual reality in hotels: Impact on tourist satisfaction and intention to stay and return. International Journal of Hospitality Management, 116, 103631.
  • Ling, E. C., Tussyadiah, I., Liu, A., & Stienmetz, J. (2023). Perceived intelligence of artificially intelligent assistants for travel: Scale development and validation. Journal of travel research, 00472875231217899.
  • Liu, M., Yang, Y., Ren, Y., Jia, Y., Ma, H., Luo, J., ... & Zhang, L. (2024). What influences consumer AI chatbot use intention? An application of the extended technology acceptance model. Journal of Hospitality and Tourism Technology, 15(4), 667-689.
  • Longoni, C., Bonezzi, A., & Morewedge, C. K. (2019). Resistance to medical artificial intelligence. Journal of Consumer Research, 46(4), 629-650.
  • Madsen, M., & Gregor, S. (2000). Measuring human-computer trust. In 11th australasian conference on information systems (Vol. 53, pp. 6-8).
  • Margono, H., Bastian, D., & Faiza, N. A. (2024). Narrative literature review: Efficiency enhancement-user trust in chatbots as a tool for improving service quality by humans. Journal of Soft Computing Exploration, 5(2), 107-114.
  • Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of management review, 20(3), 709-734.
  • McAllister, D. J. (1995). Affect-and cognition-based trust as foundations for interpersonal cooperation in organizations. Academy of management journal, 38(1), 24-59.
  • Mcknight, D. H., Carter, M., Thatcher, J. B., & Clay, P. F. (2011). Trust in a specific technology: An investigation of its components and measures. ACM Transactions on management information systems (TMIS), 2(2), 1-25.
  • Mich, L., & Garigliano, R. (2023). ChatGPT for e-Tourism: a technological perspective. Information Technology & Tourism, 25(1), 1-12.
  • Mirnig, N., Stollnberger, G., Miksch, M., Stadler, S., Giuliani, M., & Tscheligi, M. (2017). To err is robot: How humans assess and act toward an erroneous social robot. Frontiers in Robotics and AI, 4, 251625.
  • Morosan, C. (2012). Theoretical and empirical considerations of guests’ perceptions of biometric systems in hotels: Extending the technology acceptance model. Journal of Hospitality & Tourism Research, 36(1), 52-84.
  • Moussawi, S., & Koufaris, M. (2019). Perceived intelligence and perceived anthropomorphism of personal intelligent agents: Scale development and validation. Proceedings of the 52nd Hawaii International Conference on System Sciences.
  • Nasrolahi Vosta, L., & Jalilvand, M. R. (2023). Electronic trust-building for hotel websites: a social exchange theory perspective. Journal of Islamic Marketing, 14(11), 2689-2714.
  • Nautiyal, R., Albrecht, J. N., & Nautiyal, A. (2023). ChatGPT and tourism academia. Annals of Tourism Research, 99. Newsom, J. T. (2015). Longitudinal structural equation modeling: A comprehensive introduction. Routledge.
  • Nordheim, C. B., Følstad, A., & Bjørkli, C. A. (2019). An initial model of trust in chatbots for customer service—findings from a questionnaire study. Interacting with Computers, 31(3), 317-335.
  • Orden-Mejía, M., Carvache-Franco, M., Huertas, A., Carvache-Franco, O., & Carvache-Franco, W. (2023). Modeling users’ satisfaction and visit intention using AI-based chatbots. Plos one, 18(9).
  • Orel, F. D., & Arık, A. (2020). Sosyal medya pazarlamasının tüketici satın alma niyetine etkisinin teknoloji kabul modeli aracılığıyla incelenmesi. Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, (57), 205-232.
  • Ozdemir, O., Dogru, T., Kizildag, M., & Erkmen, E. (2023). A critical reflection on digitalization for the hospitality and tourism industry: value implications for stakeholders. International Journal of Contemporary Hospitality Management, 35(9), 3305-3321.
  • Özer, S., & Bayram, M. (2024). ChatGPT ve Turizm: Araştırmalar Ne Söylüyor?. Journal of Global Tourism and Technology Research, 5(1), 1-11.
  • Paraskevi, G., Saprikis, V., & Avlogiaris, G. (2023). Modeling Nonusers’ Behavioral Intention towards Mobile Chatbot Adoption: An Extension of the UTAUT2 Model with Mobile Service Quality Determinants. Human Behavior and Emerging Technologies, 2023(1), 8859989.
  • Pavlou, P. A., & Gefen, D. (2004). Building effective online marketplaces with institution-based trust. Information systems research, 15(1), 37-59.
  • Pham, H. C., Duong, C. D., & Nguyen, G. K. H. (2024). What drives tourists’ continuance intention to use ChatGPT for travel services? A stimulus-organism-response perspective. Journal of Retailing and Consumer Services, 78, 103758.
  • Pillai, R., & Sivathanu, B. (2020). Adoption of AI-based chatbots for hospitality and tourism. International Journal of Contemporary Hospitality Management, 32(10), 3199-3226.
  • Rafiq, F., Dogra, N., Adil, M., & Wu, J. (2022). Examining consumer’s intention to adopt ai-chatbots in tourism using partial least squares structural equation modeling method. Mathematics, 10(13), 2190.
  • Rather, R. A. (2024). AI-powered ChatGPT in the hospitality and tourism industry: benefits, challenges, theoretical framework, propositions and future research directions. Tourism Recreation Research, 1-11.
  • Ranieri, A., Di Bernardo, I., & Mele, C. (2024). Serving customers through chatbots: positive and negative effects on customer experience. Journal of Service Theory and Practice. Ravich, T. M. (2015). Courts in the drone age. Northern Kentucky Law Review, 42(2), 161–190.
  • Ribeiro, M. A., Gursoy, D., & Chi, O. H. (2022). Customer acceptance of autonomous vehicles in travel and tourism. Journal of Travel Research, 61(3), 620-636.
  • Rivas, P., & Zhao, L. (2023). Marketing with chatgpt: Navigating the ethical terrain of gpt-based chatbot technology. AI, 4(2), 375-384.
  • Rogers, E. M. (2003). Diffusion of innovations. The Free Press, (5th ed.), New York.
  • Rostami, M., & Navabinejad, S. (2023). Artificial Empathy: User Experiences with Emotionally Intelligent Chatbots. AI and Tech in Behavioral and Social Sciences, 1(3), 19-27.
  • Seo, K. H., & Lee, J. H. (2021). The emergence of service robots at restaurants: Integrating trust, perceived risk, and satisfaction. Sustainability, 13(8), 4431.
  • Shi, S., Gong, Y., & Gursoy, D. (2021). Antecedents of trust and adoption intention toward artificially intelligent recommendation systems in travel planning: a heuristic–systematic model. Journal of Travel Research, 60(8), 1714-1734.
  • Shi, J., Lee, M., Girish, V. G., Xiao, G., & Lee, C. K. (2024). Embracing the ChatGPT revolution: unlocking new horizons for tourism. Journal of Hospitality and Tourism Technology, 15(3), 433-448.
  • Shum, H. Y., He, X. D., & Li, D. (2018). From Eliza to XiaoIce: challenges and opportunities with social chatbots. Frontiers of Information Technology & Electronic Engineering, 19, 10-26.
  • Smith, T. D., & McMillan, B. F. (2001). A Primer of Model Fit Indices in Structural Equation Modeling.
  • Steiger, J. H. (2007). Understanding the limitations of global fit assessment in structural equation modeling. Personality and Individual differences, 42(5), 893-898.
  • Syaharani, D. P., & Yasa, N. K. (2022). The role of trust as mediation between perceived usefulness and perceived ease of use on repurchase intention. European Journal of Development Studies, 2(3), 36-40.
  • Tian, Y., Zhang, H., Jiang, Y., & Yang, Y. (2022). Understanding trust and perceived risk in sharing accommodation: An extended elaboration likelihood model and moderated by risk attitude. Journal of Hospitality Marketing & Management, 31(3), 348-368.
  • Tourism and Hospitality Market Forecast (THMF) (2024). Global tourism and hospitality market size (2024-2029). https://www.marketdataforecast.com/market-reports/tourism-and-hospitality-market adresinden erişildi. Erişim tarihi: 11.03.2024.
  • Tussyadiah, I. P., Zach, F. J., & Wang, J. (2017). Attitudes toward autonomous on demand mobility system: The case of self-driving taxi. In Information and Communication Technologies in Tourism 2017: Proceedings of the International Conference in Rome, Italy, January 24-26, 2017 (pp. 755-766). Springer International Publishing.
  • Udo, G. J., Bagchi, K. K., & Kirs, P. J. (2010). An assessment of customers’ e-service quality perception, satisfaction and intention. International Journal of Information Management, 30(6), 481-492.
  • Ustasüleyman, T., & Eyüboğlu, K. (2010). Bireylerin internet bankacılığını benimsemesini etkileyen faktörlerin yapısal eşitlik modeli ile belirlenmesi. BDDK Bankacılık ve Finansal Piyasalar Dergisi, 4(2), 11-38.
  • Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 157-178.
  • Van Dis, E. A., Bollen, J., Zuidema, W., Van Rooij, R., & Bockting, C. L. (2023). ChatGPT: five priorities for research. Nature, 614(7947), 224-226.
  • Wilson, N., Keni, K., & Tan, P. H. P. (2021). The role of perceived usefulness and perceived ease-of-use toward satisfaction and trust which influence computer consumers' loyalty in China. Gadjah Mada International Journal of Business, 23(3), 262-294.
  • Wang, C., Li, Y., Fu, W., & Jin, J. (2023). Whether to trust chatbots: Applying the event-related approach to understand consumers’ emotional experiences in interactions with chatbots in e-commerce. Journal of Retailing and Consumer Services, 73, 103325.
  • Wong, I. A., Lian, Q. L., & Sun, D. (2023). Autonomous travel decision-making: An early glimpse into ChatGPT and generative AI. Journal of Hospitality and Tourism Management, 56, 253-263.
  • Xiong, Y., Shi, Y., Pu, Q., & Liu, N. (2024). More trust or more risk? User acceptance of artificial intelligence virtual assistant. Human Factors and Ergonomics in Manufacturing & Service Industries, 34(3), 190-205.
  • Yarış, A., & Kanik, E. (2023). Turistlerin Yeni Gastronomi Etkinliklerine Katılma Niyeti. Aydın Gastronomy, 7(2), 223-240.
  • Yu, J., Lee, K., Ariza-Montes, A., Vega-Muñoz, A., & Han, H. (2021). How do air quality issues caused by particulate matter affect consumers’ emotional response to tourism destinations and willingness to visit?. International Journal of Environmental Research and Public Health, 18(19), 10364.
  • Zhang, B., Zhu, Y., Deng, J., Zheng, W., Liu, Y., Wang, C., & Zeng, R. (2023). “I am here to assist your tourism”: predicting continuance intention to use ai-based chatbots for tourism. does gender really matter?. International Journal of Human–Computer Interaction, 39(9), 1887-1903.
  • Zhang, W., Wen, Y., Zhou, S., Ge, R., & Xie, X. (2024). Research on the influencing factors of online tourism product purchase intention in ethnic minority areas—taking ganzi tibetan autonomous prefecture as an example. Modern Management Science &Amp; Engineering, 6(1), s.190.

CHATGPT’NİN SEYAHAT ÖNERİLERİNE DUYULAN GÜVENİN GEZGİNLERİN DAVRANIŞSAL NİYETİNE ETKİSİ: ALGILANAN RİSKİN ARACILIK ROLÜ

Year 2025, Issue: 69, 1 - 19, 18.07.2025
https://doi.org/10.30794/pausbed.1559251

Abstract

Bu çalışmanın amacı, ChatGPT tarafından sunulan kişiselleştirilmiş seyahat önerilerinin (algılanan uygunluk, algılanan kullanışlılık ve algılanan zekanın) gezginlerin algılanan güven ve davranışsal niyetleri üzerindeki etkisini incelemektir. Ayrıca bu çalışma, algılanan riskin algılanan güven ve davranışsal niyet arasındaki aracılık rolünü incelemeyi amaçlamaktadır. Bu kapsamda 286 kişiden anket tekniği ile veri toplanmıştır. Jamovi 2.3.28 yazılımında gerçekleştirilen faktör analizi sonucunda, algılanan uygunluk, algılanan kullanışlılık ve algılanan zekanın gezginlerin algılanan güven ve davranışsal niyetlerini etkilediği tespit edilmiştir. Ayrıca, gezginlerin algıladıkları güvenin davranışsal niyeti pozitif ve anlamlı olarak etkilediği belirlenmiştir. Son olarak, algılanan riskin algılanan güven ve davranışsal niyet arasında aracılık rolüne sahip olmadığı tespit edilmiştir. Kullanıcıların ChatGPT gibi sistemleri daha fazla benimsemeleri ve önerilere güven duymaları için platformların yapay zekâ destekli önerilerin doğruluğunu, kişiselleştirme derecesini ve etkileşim kalitesini artırmaları gerekmektedir. Algılanan riskin güven ve davranışsal niyet arasındaki aracılık rolüne sahip olmadığı bulgusu, işletmelerin özellikle güven oluşturmaya odaklanması gerektiğini göstermektedir. Bu kapsamda, müşteri hizmetlerinde şeffaflık sağlanmalı, yapay zekâ destekli önerilerin doğruluğu hakkında bilgilendirici içerikler sunulmalı ve kullanıcı deneyimini geliştirmek için sürekli geri bildirim mekanizmaları oluşturulmalıdır.

References

  • Abubakar, A. M., & Ilkan, M. (2016). Impact of online WOM on destination trust and intention to travel: A medical tourism perspective. Journal of Destination Marketing & Management, 5(3), 192-201.
  • Acosta-Enriquez, B. G., Arbulú Ballesteros, M. A., Arbulu Perez Vargas, C. G., Orellana Ulloa, M. N., Gutiérrez Ulloa, C. R., Pizarro Romero, J. M., ... & López Roca, C. (2024). Knowledge, attitudes, and perceived Ethics regarding the use of ChatGPT among generation Z university students. International Journal for Educational Integrity, 20(1), 10.
  • Afolabi, O. O., Ozturen, A., & Ilkan, M. (2021). Effects of privacy concern, risk, and information control in a smart tourism destination. Economic research-Ekonomska istraživanja, 34(1), 3119-3138.
  • Agag, G. M., & El-Masry, A. A. (2017). Why do consumers trust online travel websites? Drivers and outcomes of consumer trust toward online travel websites. Journal of Travel Research, 56(3), 347-369.
  • Agag, G., Abdelmoety, Z. H., & Eid, R. (2024). Understanding the factors affecting travel avoidance behavior during the COVID-19 pandemic: findings from a mixed method approach. Journal of Travel Research, 63(4), 858-882.
  • Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.
  • Ali, F., Yasar, B., Ali, L., & Dogan, S. (2023). Antecedents and consequences of travelers' trust towards personalized travel recommendations offered by ChatGPT. International Journal of Hospitality Management, 114, 103588.
  • Avcı Yücel, Ü., & Usluel, Y. K. (2016). Bilgi ve iletişim teknolojilerinin benimsenmesi sürecinde uygunluk algısına etki eden faktörler: boylamsal bir çalışma. Journal of Instructional Technologies and Teacher Education, 5(1), 1-12.
  • Bae, S. Y., & Chang, P. J. (2021). The effect of coronavirus disease-19 (COVID-19) risk perception on behavioural intention towards ‘untact’tourism in South Korea during the first wave of the pandemic (March 2020). Current Issues in Tourism, 24(7), 1017-1035.
  • Baki, R. (2020). Analysis of factors affecting customer trust in online hotel booking website usage. European Journal of Tourism, Hospitality and Recreation, 10(2), 106-117.
  • Balakrishnan, J., Abed, S. S., & Jones, P. (2022). The role of meta-UTAUT factors, perceived anthropomorphism, perceived intelligence, and social self-efficacy in chatbot-based services?. Technological Forecasting and Social Change, 180, 121692.
  • Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological bulletin, 88(3), 588.
  • Battour, M., Mady, K., Salaheldeen, M., Ratnasari, R. T., Sallem, R., & Al Sinawi, S. (2024). Halal tourism and ChatGPT: an overview of current trends and future research directions. Journal of Islamic Marketing.
  • Bryman, A., & Cramer, D. (2004). Constructing variables. Handbook of data analysis, 17-34.
  • Buhalis, D., O’Connor, P., & Leung, R. (2023). Smart hospitality: from smart cities and smart tourism towards agile business ecosystems in networked destinations. International Journal of Contemporary Hospitality Management, 35(1), 369-393.
  • Büttner, O. B., & Göritz, A. S. (2008). Perceived trustworthiness of online shops. Journal of Consumer Behaviour: An International Research Review, 7(1), 35-50.
  • Carvalho, I., & Ivanov, S. (2024). ChatGPT for tourism: applications, benefits and risks. Tourism Review, 79(2), 290-303.
  • Chen, C. F., & Tsai, D. (2007). How destination image and evaluative factors affect behavioral intentions?. Tourism management, 28(4), 1115-1122.
  • Choe, J. Y., Kim, J. J., & Hwang, J. (2021). Perceived risks from drone food delivery services before and after COVID-19. International Journal of Contemporary Hospitality Management, 33(4), 1276-1296.
  • Choi, S. M., & Rifon, N. J. (2002). Antecedents and consequences of web advertising credibility: A study of consumer response to banner ads. Journal of interactive Advertising, 3(1), 12-24.
  • Choi, J., Lee, A., & Ok, C. (2013). The effects of consumers' perceived risk and benefit on attitude and behavioral intention: A study of street food. Journal of Travel & Tourism Marketing, 30(3), 222-237.
  • Choudhury, A., & Shamszare, H. (2023). Investigating the impact of user trust on the adoption and use of ChatGPT: survey analysis. Journal of Medical Internet Research, 25, e47184.
  • Curras-Perez, R., Ruiz, C., Sanchez-Garcia, I., & Sanz, S. (2017). Determinants of customer retention in virtual environments. The role of perceived risk in a tourism services context. Spanish journal of marketing-ESIC, 21(2), 131-145.
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
  • Demir, M., & Demir, Ş. Ş. (2023). Is ChatGPT the right technology for service individualization and value co-creation? evidence from the travel industry. Journal of Travel & Tourism Marketing, 40(5), 383-398.
  • Di Domenico, G., Nunan, D., Sit, J., & Pitardi, V. (2021). Free but fake speech: When giving primacy to the source decreases misinformation sharing on social media. Psychology & Marketing, 38(10), 1700-1711.
  • Doborjeh, Z., Hemmington, N., Doborjeh, M., & Kasabov, N. (2021). Artificial intelligence: a systematic review of methods and applications in hospitality and tourism. International Journal of Contemporary Hospitality Management, 34(3), 1154-1176.
  • Doney, P. M., & Cannon, J. P. (1997). An examination of the nature of trust in buyer–seller relationships. Journal of marketing, 61(2), 35-51.
  • Dowling, G. R., & Staelin, R. (1994). A model of perceived risk and intended risk-handling activity. Journal of consumer research, 21(1), 119-134.
  • Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., ... & Wright, R. (2023). Opinion Paper:“So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642.
  • Dwivedi, Y. K., Pandey, N., Currie, W., & Micu, A. (2024). Leveraging ChatGPT and other generative artificial intelligence (AI)-based applications in the hospitality and tourism industry: practices, challenges and research agenda. International Journal of Contemporary Hospitality Management, 36(1), 1-12.
  • Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International journal of human-computer studies, 59(4), 451-474.
  • Gaudiello, I., Zibetti, E., Lefort, S., Chetouani, M., & Ivaldi, S. (2016). Trust as indicator of robot functional and social acceptance. An experimental study on user conformation to iCub answers. Computers in Human Behavior, 61, 633-655.
  • Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS quarterly, 51-90.
  • Geng, S., Yang, P., Gao, Y., Tan, Y., & Yang, C. (2021). The effects of ad social and personal relevance on consumer ad engagement on social media: The moderating role of platform trust. Computers in human behavior, 122, 106834.
  • Göktaş, L. S. (2023a). ChatGPT Uzaktan Eğitim Sınavlarında Başarılı Olabilir Mi? Turizm Alanında Doğruluk ve Doğrulama Üzerine Bir Araştırma. Journal of Tourism & Gastronomy Studies, 11(2), 892-905.
  • Göktaş, L. S. (2023b). The role of ChatGPT in vegetarian menus. Tourism and Recreation, 5(2), 79-86. Gu, C., Jia, S., Lai, J., Chen, R., & Chang, X. (2024). Exploring Consumer Acceptance of AI-Generated Advertisements: From the Perspectives of Perceived Eeriness and Perceived Intelligence. Journal of Theoretical and Applied Electronic Commerce Research, 19(3), 2218-2238.
  • Gupta, B., Mufti, T., Sohail, S. S., & Madsen, D. Ø. (2023). ChatGPT: A brief narrative review. Cogent Business & Management, 10(3), 2275851.
  • Gursoy, D., Chi, O. H., Lu, L., & Nunkoo, R. (2019). Consumers acceptance of artificially intelligent (AI) device use in service delivery. International Journal of Information Management, 49, 157-169.
  • Gursoy, D., Li, Y., & Song, H. (2023). ChatGPT and the hospitality and tourism industry: an overview of current trends and future research directions. Journal of Hospitality Marketing & Management, 32(5), 579-592.
  • Haleem, A., Javaid, M., Qadri, M. A., & Suman, R. (2022). Understanding the role of digital technologies in education: A review. Sustainable operations and computers, 3, 275-285.
  • Harrigan, M., Feddema, K., Wang, S., Harrigan, P., & Diot, E. (2021). How trust leads to online purchase intention founded in perceived usefulness and peer communication. Journal of Consumer Behaviour, 20(5), 1297-1312.
  • Helberger, N., & Diakopoulos, N. (2023). ChatGPT and the AI Act. Internet Policy Review, 12(1).
  • Hmoud, M., Swaity, H., Hamad, N., Karram, O., & Daher, W. (2024). Higher education students’ task motivation in the generative artificial intelligence context: the case of chatgpt. Information, 15(1), 33.
  • Hooper, D., Coughlan, J., & Mullen, M. (2008). Evaluating model fit: a synthesis of the structural equation modelling literature. In 7th European Conference on research methodology for business and management studies (Vol. 2008, pp. 195-200).
  • Hsiao, K. L., & Chen, C. C. (2022). What drives continuance intention to use a food-ordering chatbot? An examination of trust and satisfaction. Library Hi Tech, 40(4), 929-946.
  • Ivanov, S., & Soliman, M. (2023). Game of algorithms: ChatGPT implications for the future of tourism education and research. Journal of Tourism Futures, 9(2), 214-221.
  • Jarvenpaa, S. L., Tractinsky, N., & Vitale, M. (2000). Consumer trust in an Internet store. Information technology and management, 1, 45-71.
  • Jo, H. (2023). Decoding the ChatGPT mystery: A comprehensive exploration of factors driving AI language model adoption. Information Development, 02666669231202764.
  • Kasilingam, D. L. (2020). Understanding the attitude and intention to use smartphone chatbots for shopping. Technology in society, 62, 101280.
  • Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., ... & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and individual differences, 103, 102274.
  • Kaur, S., & Arora, S. (2020). Role of perceived risk in online banking and its impact on behavioral intention: trust as a moderator. Journal of Asia Business Studies, 15(1), 1-30.
  • Kim, D. J., Ferrin, D. L., & Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision support systems, 44(2), 544-564.
  • Kim, J. H., Kim, J., Park, J., Kim, C., Jhang, J., & King, B. (2023a). When ChatGPT gives incorrect answers: the impact of inaccurate information by generative AI on tourism decision-making. Journal of Travel Research, 00472875231212996.
  • Kim, J. H., Kim, J., Kim, S., & Hailu, T. B. (2023b). Effects of AI ChatGPT on travelers’ travel decision-making. Tourism Review.
  • Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford publications. New York.
  • Kogan, N., & Wallach, M. A. (1964). Risk taking: A study in cognition and personality.
  • Konuk, F. A. (2018). Price fairness, satisfaction, and trust as antecedents of purchase intentions towards organic food. Journal of Consumer Behaviour, 17(2), 141-148.
  • Ku, E. C. (2012). Beyond price: how does trust encourage online group's buying intention?. Internet Research, 22(5), 569-590.
  • Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. Human factors, 46(1), 50-80.
  • Lei, S. I., Shen, H., & Ye, S. (2021). A comparison between chatbot and human service: customer perception and reuse intention. International Journal of Contemporary Hospitality Management, 33(11), 3977-3995.
  • Li, L., Lee, K. Y., Emokpae, E., & Yang, S. B. (2021). What makes you continuously use chatbot services? Evidence from chinese online travel agencies. Electronic Markets, 1-25.
  • Li, W., Jiang, M., & Zhan, W. (2022a). Why advertise on short video platforms? Optimizing online advertising using advertisement quality. Journal of Theoretical and Applied Electronic Commerce Research, 17(3), 1057-1074.
  • Li, W., Chen, G., Wu, L., Zeng, Y., Wei, J., & Liu, Y. (2022b). Travel intention during the COVID-19 epidemic: The influence of institutional and interpersonal trust. Frontiers in Psychology, 13, 1015900.
  • Li, B., Yao, R., & Nan, Y. (2023). How do friendship artificial intelligence chatbots (FAIC) benefit the continuance using intention and customer engagement?. Journal of Consumer Behaviour, 22(6), 1376-1398.
  • Lim, W. M., Jasim, K. M., & Das, M. (2024). Augmented and virtual reality in hotels: Impact on tourist satisfaction and intention to stay and return. International Journal of Hospitality Management, 116, 103631.
  • Ling, E. C., Tussyadiah, I., Liu, A., & Stienmetz, J. (2023). Perceived intelligence of artificially intelligent assistants for travel: Scale development and validation. Journal of travel research, 00472875231217899.
  • Liu, M., Yang, Y., Ren, Y., Jia, Y., Ma, H., Luo, J., ... & Zhang, L. (2024). What influences consumer AI chatbot use intention? An application of the extended technology acceptance model. Journal of Hospitality and Tourism Technology, 15(4), 667-689.
  • Longoni, C., Bonezzi, A., & Morewedge, C. K. (2019). Resistance to medical artificial intelligence. Journal of Consumer Research, 46(4), 629-650.
  • Madsen, M., & Gregor, S. (2000). Measuring human-computer trust. In 11th australasian conference on information systems (Vol. 53, pp. 6-8).
  • Margono, H., Bastian, D., & Faiza, N. A. (2024). Narrative literature review: Efficiency enhancement-user trust in chatbots as a tool for improving service quality by humans. Journal of Soft Computing Exploration, 5(2), 107-114.
  • Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of management review, 20(3), 709-734.
  • McAllister, D. J. (1995). Affect-and cognition-based trust as foundations for interpersonal cooperation in organizations. Academy of management journal, 38(1), 24-59.
  • Mcknight, D. H., Carter, M., Thatcher, J. B., & Clay, P. F. (2011). Trust in a specific technology: An investigation of its components and measures. ACM Transactions on management information systems (TMIS), 2(2), 1-25.
  • Mich, L., & Garigliano, R. (2023). ChatGPT for e-Tourism: a technological perspective. Information Technology & Tourism, 25(1), 1-12.
  • Mirnig, N., Stollnberger, G., Miksch, M., Stadler, S., Giuliani, M., & Tscheligi, M. (2017). To err is robot: How humans assess and act toward an erroneous social robot. Frontiers in Robotics and AI, 4, 251625.
  • Morosan, C. (2012). Theoretical and empirical considerations of guests’ perceptions of biometric systems in hotels: Extending the technology acceptance model. Journal of Hospitality & Tourism Research, 36(1), 52-84.
  • Moussawi, S., & Koufaris, M. (2019). Perceived intelligence and perceived anthropomorphism of personal intelligent agents: Scale development and validation. Proceedings of the 52nd Hawaii International Conference on System Sciences.
  • Nasrolahi Vosta, L., & Jalilvand, M. R. (2023). Electronic trust-building for hotel websites: a social exchange theory perspective. Journal of Islamic Marketing, 14(11), 2689-2714.
  • Nautiyal, R., Albrecht, J. N., & Nautiyal, A. (2023). ChatGPT and tourism academia. Annals of Tourism Research, 99. Newsom, J. T. (2015). Longitudinal structural equation modeling: A comprehensive introduction. Routledge.
  • Nordheim, C. B., Følstad, A., & Bjørkli, C. A. (2019). An initial model of trust in chatbots for customer service—findings from a questionnaire study. Interacting with Computers, 31(3), 317-335.
  • Orden-Mejía, M., Carvache-Franco, M., Huertas, A., Carvache-Franco, O., & Carvache-Franco, W. (2023). Modeling users’ satisfaction and visit intention using AI-based chatbots. Plos one, 18(9).
  • Orel, F. D., & Arık, A. (2020). Sosyal medya pazarlamasının tüketici satın alma niyetine etkisinin teknoloji kabul modeli aracılığıyla incelenmesi. Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, (57), 205-232.
  • Ozdemir, O., Dogru, T., Kizildag, M., & Erkmen, E. (2023). A critical reflection on digitalization for the hospitality and tourism industry: value implications for stakeholders. International Journal of Contemporary Hospitality Management, 35(9), 3305-3321.
  • Özer, S., & Bayram, M. (2024). ChatGPT ve Turizm: Araştırmalar Ne Söylüyor?. Journal of Global Tourism and Technology Research, 5(1), 1-11.
  • Paraskevi, G., Saprikis, V., & Avlogiaris, G. (2023). Modeling Nonusers’ Behavioral Intention towards Mobile Chatbot Adoption: An Extension of the UTAUT2 Model with Mobile Service Quality Determinants. Human Behavior and Emerging Technologies, 2023(1), 8859989.
  • Pavlou, P. A., & Gefen, D. (2004). Building effective online marketplaces with institution-based trust. Information systems research, 15(1), 37-59.
  • Pham, H. C., Duong, C. D., & Nguyen, G. K. H. (2024). What drives tourists’ continuance intention to use ChatGPT for travel services? A stimulus-organism-response perspective. Journal of Retailing and Consumer Services, 78, 103758.
  • Pillai, R., & Sivathanu, B. (2020). Adoption of AI-based chatbots for hospitality and tourism. International Journal of Contemporary Hospitality Management, 32(10), 3199-3226.
  • Rafiq, F., Dogra, N., Adil, M., & Wu, J. (2022). Examining consumer’s intention to adopt ai-chatbots in tourism using partial least squares structural equation modeling method. Mathematics, 10(13), 2190.
  • Rather, R. A. (2024). AI-powered ChatGPT in the hospitality and tourism industry: benefits, challenges, theoretical framework, propositions and future research directions. Tourism Recreation Research, 1-11.
  • Ranieri, A., Di Bernardo, I., & Mele, C. (2024). Serving customers through chatbots: positive and negative effects on customer experience. Journal of Service Theory and Practice. Ravich, T. M. (2015). Courts in the drone age. Northern Kentucky Law Review, 42(2), 161–190.
  • Ribeiro, M. A., Gursoy, D., & Chi, O. H. (2022). Customer acceptance of autonomous vehicles in travel and tourism. Journal of Travel Research, 61(3), 620-636.
  • Rivas, P., & Zhao, L. (2023). Marketing with chatgpt: Navigating the ethical terrain of gpt-based chatbot technology. AI, 4(2), 375-384.
  • Rogers, E. M. (2003). Diffusion of innovations. The Free Press, (5th ed.), New York.
  • Rostami, M., & Navabinejad, S. (2023). Artificial Empathy: User Experiences with Emotionally Intelligent Chatbots. AI and Tech in Behavioral and Social Sciences, 1(3), 19-27.
  • Seo, K. H., & Lee, J. H. (2021). The emergence of service robots at restaurants: Integrating trust, perceived risk, and satisfaction. Sustainability, 13(8), 4431.
  • Shi, S., Gong, Y., & Gursoy, D. (2021). Antecedents of trust and adoption intention toward artificially intelligent recommendation systems in travel planning: a heuristic–systematic model. Journal of Travel Research, 60(8), 1714-1734.
  • Shi, J., Lee, M., Girish, V. G., Xiao, G., & Lee, C. K. (2024). Embracing the ChatGPT revolution: unlocking new horizons for tourism. Journal of Hospitality and Tourism Technology, 15(3), 433-448.
  • Shum, H. Y., He, X. D., & Li, D. (2018). From Eliza to XiaoIce: challenges and opportunities with social chatbots. Frontiers of Information Technology & Electronic Engineering, 19, 10-26.
  • Smith, T. D., & McMillan, B. F. (2001). A Primer of Model Fit Indices in Structural Equation Modeling.
  • Steiger, J. H. (2007). Understanding the limitations of global fit assessment in structural equation modeling. Personality and Individual differences, 42(5), 893-898.
  • Syaharani, D. P., & Yasa, N. K. (2022). The role of trust as mediation between perceived usefulness and perceived ease of use on repurchase intention. European Journal of Development Studies, 2(3), 36-40.
  • Tian, Y., Zhang, H., Jiang, Y., & Yang, Y. (2022). Understanding trust and perceived risk in sharing accommodation: An extended elaboration likelihood model and moderated by risk attitude. Journal of Hospitality Marketing & Management, 31(3), 348-368.
  • Tourism and Hospitality Market Forecast (THMF) (2024). Global tourism and hospitality market size (2024-2029). https://www.marketdataforecast.com/market-reports/tourism-and-hospitality-market adresinden erişildi. Erişim tarihi: 11.03.2024.
  • Tussyadiah, I. P., Zach, F. J., & Wang, J. (2017). Attitudes toward autonomous on demand mobility system: The case of self-driving taxi. In Information and Communication Technologies in Tourism 2017: Proceedings of the International Conference in Rome, Italy, January 24-26, 2017 (pp. 755-766). Springer International Publishing.
  • Udo, G. J., Bagchi, K. K., & Kirs, P. J. (2010). An assessment of customers’ e-service quality perception, satisfaction and intention. International Journal of Information Management, 30(6), 481-492.
  • Ustasüleyman, T., & Eyüboğlu, K. (2010). Bireylerin internet bankacılığını benimsemesini etkileyen faktörlerin yapısal eşitlik modeli ile belirlenmesi. BDDK Bankacılık ve Finansal Piyasalar Dergisi, 4(2), 11-38.
  • Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 157-178.
  • Van Dis, E. A., Bollen, J., Zuidema, W., Van Rooij, R., & Bockting, C. L. (2023). ChatGPT: five priorities for research. Nature, 614(7947), 224-226.
  • Wilson, N., Keni, K., & Tan, P. H. P. (2021). The role of perceived usefulness and perceived ease-of-use toward satisfaction and trust which influence computer consumers' loyalty in China. Gadjah Mada International Journal of Business, 23(3), 262-294.
  • Wang, C., Li, Y., Fu, W., & Jin, J. (2023). Whether to trust chatbots: Applying the event-related approach to understand consumers’ emotional experiences in interactions with chatbots in e-commerce. Journal of Retailing and Consumer Services, 73, 103325.
  • Wong, I. A., Lian, Q. L., & Sun, D. (2023). Autonomous travel decision-making: An early glimpse into ChatGPT and generative AI. Journal of Hospitality and Tourism Management, 56, 253-263.
  • Xiong, Y., Shi, Y., Pu, Q., & Liu, N. (2024). More trust or more risk? User acceptance of artificial intelligence virtual assistant. Human Factors and Ergonomics in Manufacturing & Service Industries, 34(3), 190-205.
  • Yarış, A., & Kanik, E. (2023). Turistlerin Yeni Gastronomi Etkinliklerine Katılma Niyeti. Aydın Gastronomy, 7(2), 223-240.
  • Yu, J., Lee, K., Ariza-Montes, A., Vega-Muñoz, A., & Han, H. (2021). How do air quality issues caused by particulate matter affect consumers’ emotional response to tourism destinations and willingness to visit?. International Journal of Environmental Research and Public Health, 18(19), 10364.
  • Zhang, B., Zhu, Y., Deng, J., Zheng, W., Liu, Y., Wang, C., & Zeng, R. (2023). “I am here to assist your tourism”: predicting continuance intention to use ai-based chatbots for tourism. does gender really matter?. International Journal of Human–Computer Interaction, 39(9), 1887-1903.
  • Zhang, W., Wen, Y., Zhou, S., Ge, R., & Xie, X. (2024). Research on the influencing factors of online tourism product purchase intention in ethnic minority areas—taking ganzi tibetan autonomous prefecture as an example. Modern Management Science &Amp; Engineering, 6(1), s.190.
There are 118 citations in total.

Details

Primary Language Turkish
Subjects Tourism Marketing
Journal Section Research Article
Authors

Ahmet Aslan 0000-0003-4394-4573

Early Pub Date July 7, 2025
Publication Date July 18, 2025
Submission Date October 1, 2024
Acceptance Date April 20, 2025
Published in Issue Year 2025 Issue: 69

Cite

APA Aslan, A. (2025). CHATGPT’NİN SEYAHAT ÖNERİLERİNE DUYULAN GÜVENİN GEZGİNLERİN DAVRANIŞSAL NİYETİNE ETKİSİ: ALGILANAN RİSKİN ARACILIK ROLÜ. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi(69), 1-19. https://doi.org/10.30794/pausbed.1559251
AMA Aslan A. CHATGPT’NİN SEYAHAT ÖNERİLERİNE DUYULAN GÜVENİN GEZGİNLERİN DAVRANIŞSAL NİYETİNE ETKİSİ: ALGILANAN RİSKİN ARACILIK ROLÜ. PAUSBED. July 2025;(69):1-19. doi:10.30794/pausbed.1559251
Chicago Aslan, Ahmet. “CHATGPT’NİN SEYAHAT ÖNERİLERİNE DUYULAN GÜVENİN GEZGİNLERİN DAVRANIŞSAL NİYETİNE ETKİSİ: ALGILANAN RİSKİN ARACILIK ROLÜ”. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, no. 69 (July 2025): 1-19. https://doi.org/10.30794/pausbed.1559251.
EndNote Aslan A (July 1, 2025) CHATGPT’NİN SEYAHAT ÖNERİLERİNE DUYULAN GÜVENİN GEZGİNLERİN DAVRANIŞSAL NİYETİNE ETKİSİ: ALGILANAN RİSKİN ARACILIK ROLÜ. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 69 1–19.
IEEE A. Aslan, “CHATGPT’NİN SEYAHAT ÖNERİLERİNE DUYULAN GÜVENİN GEZGİNLERİN DAVRANIŞSAL NİYETİNE ETKİSİ: ALGILANAN RİSKİN ARACILIK ROLÜ”, PAUSBED, no. 69, pp. 1–19, July 2025, doi: 10.30794/pausbed.1559251.
ISNAD Aslan, Ahmet. “CHATGPT’NİN SEYAHAT ÖNERİLERİNE DUYULAN GÜVENİN GEZGİNLERİN DAVRANIŞSAL NİYETİNE ETKİSİ: ALGILANAN RİSKİN ARACILIK ROLÜ”. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 69 (July 2025), 1-19. https://doi.org/10.30794/pausbed.1559251.
JAMA Aslan A. CHATGPT’NİN SEYAHAT ÖNERİLERİNE DUYULAN GÜVENİN GEZGİNLERİN DAVRANIŞSAL NİYETİNE ETKİSİ: ALGILANAN RİSKİN ARACILIK ROLÜ. PAUSBED. 2025;:1–19.
MLA Aslan, Ahmet. “CHATGPT’NİN SEYAHAT ÖNERİLERİNE DUYULAN GÜVENİN GEZGİNLERİN DAVRANIŞSAL NİYETİNE ETKİSİ: ALGILANAN RİSKİN ARACILIK ROLÜ”. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, no. 69, 2025, pp. 1-19, doi:10.30794/pausbed.1559251.
Vancouver Aslan A. CHATGPT’NİN SEYAHAT ÖNERİLERİNE DUYULAN GÜVENİN GEZGİNLERİN DAVRANIŞSAL NİYETİNE ETKİSİ: ALGILANAN RİSKİN ARACILIK ROLÜ. PAUSBED. 2025(69):1-19.