Research Article
BibTex RIS Cite

A new analytical method for the determination of iron content in drugs

Year 2025, Volume: 5 Issue: 2, 38 - 45, 25.07.2025
https://doi.org/10.62425/pharmata.1630964

Abstract

Objective: This study is based on the determination of iron, which is found in iron-containing drugs, by a simple, precise, and economical method.
Methods: In our study, Flame Atomic Absorption Spectroscopy (FAAS) was used for measurements due to its ease of use and low cost. The disadvantage of FAAS in terms of insufficient precision was turned into an advantage by adding a slotted quartz tube (SQT) to the device and using an enrichment method. Accordingly, a solid-phase microextraction (SPME) method interconnected with slotted quartz tube-flame atomic absorption spectrometry (SQT-FAAS) was developed.
Results: While the LOD value for Fe³⁺ ions measured by FAAS was 108.0 mg/L, the LOD value was determined to be 1.12 mg/L with the method developed using CoMNP-SPME-SQT. This indicates a 96.43-fold improvement in the LOD.
Conclusion: The developed Co-MNP-DSPE-SQT-FAAS method has been successfully and easily applied for the determination of iron in iron-containing drug samples. These results indicate that the method can also be applied to different samples.

References

  • 1. Kurugöl, S., & Küçük, SG (2015). Use and application techniques of iron materials in historical artifacts. 5th Symposium on Strengthening Historical Artifacts and Safely Transferring Them to the Future, Erzurum, 521-536.
  • 2. Atsever N, Borahan T, Bakırdere E. G, Bakırdere S. Determination of iron in hair samples by slotted quartz tube-flame atomic absorption spectrometry after switchable solvent liquid phase extraction. J. Pharm. Biomed. Anal. 2020;186:113274. [CrossRef]
  • 3. Borzoei M, Zanjanchi M. A, Sadeghi-Aliabadi H, Saghaie L. Optimization of a methodology for determination of iron concentration in aqueous samples using a newly synthesized chelating agent in dispersive liquid-liquid microextraction. Food Chem. 2018;264:9-15. [CrossRef]
  • 4. MacKenzie E. L, Iwasaki K, Tsuji Y. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid. Redox Signal. 2008;10: 997-1030. [CrossRef]
  • 5. Salnikow. K. Role of Iron in Cancer. in Seminars in Cancer Biology, 2021. [CrossRef]
  • 6. Trivedi R, Barve K. Delivery systems for improving iron uptake in anemia. Int. J. Pharm. 2021;601:120590. [CrossRef]
  • 7. Gkouvatsos K, Papanikolaou G, Pantopoulos K. Regulation of iron transport and the role of transferrin. Biochim. Biophys. Acta. 2012;1820:88-202. [CrossRef]
  • 8. Lynch S. Case studies: iron. Am J. Clin. Nutr. 2011;94:673-678. [CrossRef]
  • 9. Uysal Z. Innovations in Iron Metabolism, Iron Deficiency and Iron Excess. Ankara University Medical Faculty Journal. 1999;52:157-164.
  • 10. Chifman J, Laubenbacher R. Torti S. V. A systems biology approach to iron metabolism. Adv. Exp. Med. Biol. 2014;844:201-225. [CrossRef]
  • 11. Klasen H. J. Historical review of the use of silver in the treatment of burns. I. Early uses. Burns. 2000;26:117-130. [CrossRef]
  • 12. Rastogi L, Ankam D. P, Dash K. Intrinsic peroxidase-like activity of 4- amino hippuric acid reduced/stabilized gold nanoparticles and its application in the selective determination of mercury and iron in ground water. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020;228:117805. [CrossRef]
  • 13. Duran C, Gundogdu A, Bulut VN, Soylak M, Elci L, Sentürk H.B, Tüfekci M. Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from environmental samples by flame atomic absorption spectrometry (FAAS) determination of cobalt. J. Hazard. Mater. 2007;146(1-2):347-355. [CrossRef]
  • 14. Arain MB, Ahmed HEH, Soylak M. Dispersive solid phase microextraction (DSP-μE) by using nanodiamond@Bi2MoO6 composite for the separation-preconcentration of Pb(II) in food and water samples. Microchem. J. 2023;195:109495. [CrossRef]
  • 15. Unutkan T, Borahan T, Girgin A, Bakırdere S. A sieve-conducted two-syringe-based pressurized liquid-phase microextraction for the determination of indium by slotted quartz tube-flame atomic absorption spectrometry. Environ. Monit. Assess. 2020;192(2):133. [CrossRef]
  • 16. Şaylan M, Metin B, Akbıyık H, Turak F, Çetin G, Bakırdere S. Microwave assisted effective synthesis of CdS nanoparticles to determine the copper ions in artichoke leaves extract samples by flame atomic absorption spectrometry. J. Food Compos. Anal. 2023;115:104965. [CrossRef]
  • 17. Çelik B, Akkaya E, Bakirdere S, Aydin F. Determination of indium using vortex assisted solid phase microextraction based on oleic acid coated magnetic nanoparticles combined with slotted quartz tube-flame atomic absorption spectrometry. Microchem. J. 2018;141:7–11. [CrossRef]
  • 18. Zaman BT, Erulaş AF, Chormey DS, Bakirdere S. Combination of stearic acid coated magnetic nanoparticle based sonication assisted dispersive solid phase extraction and slotted quartz tube-flame atomic absorption spectrophotometry for the accurate and sensitive determination of lead in red pepper samples and assessment of green profile. Food Chem. 2020;303:125396. [CrossRef]

İlaçlardaki Demir İçeriğinin Belirlenmesi için Yeni Bir Analitik Yöntem

Year 2025, Volume: 5 Issue: 2, 38 - 45, 25.07.2025
https://doi.org/10.62425/pharmata.1630964

Abstract

Amaç: Bu çalışma, demir içeren ilaçlarda bulunan demirin basit, hassas ve ekonomik bir yöntemle belirlenmesine dayanmaktadır.
Yöntemler: Çalışmamızda, kullanım kolaylığı ve düşük maliyeti nedeniyle ölçümler için Alevli Atomik Absorpsiyon Spektroskopisi (FAAS) kullanılmıştır. FAAS'in yetersiz hassasiyeti dezavantajı, cihaza yarıklı kuvars tüp (SQT) eklenerek ve bir zenginleştirme yöntemi kullanılarak avantaja dönüştürülmüştür. Buna göre, yarıklı kuvars tüp-alevli atomik absorpsiyon spektrometresi (SQT-FAAS) ile bağlantılı katı faz mikroekstraksiyon (SPME) yöntemi geliştirilmiştir.
Bulgular: FAAS ile ölçülen Fe³⁺ iyonları için belirlenen LOD (tespit sınırı) değeri 108,0 mg/L iken, CoMNP-SPME-SQT yöntemi ile geliştirilen yöntemde LOD değeri 1,12 mg/L olarak belirlenmiştir. Bu, LOD değerinde 96,43 kat iyileşme sağlandığını göstermektedir.
Sonuç: Geliştirilen Co-MNP-DSPE-SQT-FAAS yöntemi, demir içeren ilaç örneklerinde demirin belirlenmesi için başarılı ve kolay bir şekilde uygulanmıştır. Bu sonuçlar, yöntemin farklı örneklere de uygulanabileceğini göstermektedir.

References

  • 1. Kurugöl, S., & Küçük, SG (2015). Use and application techniques of iron materials in historical artifacts. 5th Symposium on Strengthening Historical Artifacts and Safely Transferring Them to the Future, Erzurum, 521-536.
  • 2. Atsever N, Borahan T, Bakırdere E. G, Bakırdere S. Determination of iron in hair samples by slotted quartz tube-flame atomic absorption spectrometry after switchable solvent liquid phase extraction. J. Pharm. Biomed. Anal. 2020;186:113274. [CrossRef]
  • 3. Borzoei M, Zanjanchi M. A, Sadeghi-Aliabadi H, Saghaie L. Optimization of a methodology for determination of iron concentration in aqueous samples using a newly synthesized chelating agent in dispersive liquid-liquid microextraction. Food Chem. 2018;264:9-15. [CrossRef]
  • 4. MacKenzie E. L, Iwasaki K, Tsuji Y. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid. Redox Signal. 2008;10: 997-1030. [CrossRef]
  • 5. Salnikow. K. Role of Iron in Cancer. in Seminars in Cancer Biology, 2021. [CrossRef]
  • 6. Trivedi R, Barve K. Delivery systems for improving iron uptake in anemia. Int. J. Pharm. 2021;601:120590. [CrossRef]
  • 7. Gkouvatsos K, Papanikolaou G, Pantopoulos K. Regulation of iron transport and the role of transferrin. Biochim. Biophys. Acta. 2012;1820:88-202. [CrossRef]
  • 8. Lynch S. Case studies: iron. Am J. Clin. Nutr. 2011;94:673-678. [CrossRef]
  • 9. Uysal Z. Innovations in Iron Metabolism, Iron Deficiency and Iron Excess. Ankara University Medical Faculty Journal. 1999;52:157-164.
  • 10. Chifman J, Laubenbacher R. Torti S. V. A systems biology approach to iron metabolism. Adv. Exp. Med. Biol. 2014;844:201-225. [CrossRef]
  • 11. Klasen H. J. Historical review of the use of silver in the treatment of burns. I. Early uses. Burns. 2000;26:117-130. [CrossRef]
  • 12. Rastogi L, Ankam D. P, Dash K. Intrinsic peroxidase-like activity of 4- amino hippuric acid reduced/stabilized gold nanoparticles and its application in the selective determination of mercury and iron in ground water. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020;228:117805. [CrossRef]
  • 13. Duran C, Gundogdu A, Bulut VN, Soylak M, Elci L, Sentürk H.B, Tüfekci M. Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from environmental samples by flame atomic absorption spectrometry (FAAS) determination of cobalt. J. Hazard. Mater. 2007;146(1-2):347-355. [CrossRef]
  • 14. Arain MB, Ahmed HEH, Soylak M. Dispersive solid phase microextraction (DSP-μE) by using nanodiamond@Bi2MoO6 composite for the separation-preconcentration of Pb(II) in food and water samples. Microchem. J. 2023;195:109495. [CrossRef]
  • 15. Unutkan T, Borahan T, Girgin A, Bakırdere S. A sieve-conducted two-syringe-based pressurized liquid-phase microextraction for the determination of indium by slotted quartz tube-flame atomic absorption spectrometry. Environ. Monit. Assess. 2020;192(2):133. [CrossRef]
  • 16. Şaylan M, Metin B, Akbıyık H, Turak F, Çetin G, Bakırdere S. Microwave assisted effective synthesis of CdS nanoparticles to determine the copper ions in artichoke leaves extract samples by flame atomic absorption spectrometry. J. Food Compos. Anal. 2023;115:104965. [CrossRef]
  • 17. Çelik B, Akkaya E, Bakirdere S, Aydin F. Determination of indium using vortex assisted solid phase microextraction based on oleic acid coated magnetic nanoparticles combined with slotted quartz tube-flame atomic absorption spectrometry. Microchem. J. 2018;141:7–11. [CrossRef]
  • 18. Zaman BT, Erulaş AF, Chormey DS, Bakirdere S. Combination of stearic acid coated magnetic nanoparticle based sonication assisted dispersive solid phase extraction and slotted quartz tube-flame atomic absorption spectrophotometry for the accurate and sensitive determination of lead in red pepper samples and assessment of green profile. Food Chem. 2020;303:125396. [CrossRef]
There are 18 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section Research Articles
Authors

Ayfer Turan 0000-0002-4865-1289

Işıl Aydın 0000-0001-6571-6032

Fırat Aydın 0000-0002-0868-2769

Publication Date July 25, 2025
Submission Date February 1, 2025
Acceptance Date June 23, 2025
Published in Issue Year 2025 Volume: 5 Issue: 2

Cite

EndNote Turan A, Aydın I, Aydın F (July 1, 2025) A new analytical method for the determination of iron content in drugs. Pharmata 5 2 38–45.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929