Research Article
BibTex RIS Cite
Year 2024, Volume: 6 Issue: 2, 68 - 76
https://doi.org/10.47086/pims.1577951

Abstract

References

  • R. P. Agarwal, M. Benchohra and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Applicandae Mathematicae, 109(3) (2010), 973--1033.
  • I. Altun, M. Aslantas and H. Sahin, Best proximity point results for p-proximal contractions, Acta Math. Hungar., 162 (2020), 393--402.
  • M. Aslantaş, Best proximity point theorems for proximal b-cyclic contractions on b-metric spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1) (2021), 483--496.
  • S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math, 3 (1922), 133-181.
  • S. S. Basha, Extensions of Banach's contraction principle, Numer. Funct. Anal. Optim., 31 (2010), 569--576.
  • S. S. Basha and P. Veeramani, Best approximations and best proximity pairs, Acta Sci. Math., 63 (1997), 289--300.
  • V. Berinde, Contractii generalizate şi aplicatii, Editura Club Press 22, Baia Mare, 1997.
  • N. Hussain, Z. D. Mitrovic and S. Radenovic, A common fixed point theorem of isher in b-metric spaces, Revista de la Real Academia de Ciencias Exactas, Fisicasy Naturales. Serie A. Matematicas, 113 (2019), 949--956.
  • M. Jleli, B. Samet, Best proximity points for alpha-psi-proximal contractive type mappings and applications. Bulletin des Sciences Math’ematiques 137(8) (2013), 977--995.
  • P. D. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, Journal of Fixed Point Theory and Applications, 22 (2020).
  • S. Reich and A. J. Zaslavski, Existence of a unique fixed point for nonlinear contractive mappings, Mathematics, 8 (2020).
  • I. A. Rus, Generalized contractions and applications, Cluj University Press, Cluj-Napoca, (2001).
  • H. Sahin, M. Aslantas and I. Altun, Feng-Liu type approach to best proximity point results for multivalued mappings, J. Fixed Point Theory Appl, 22 (2020), https://doi.org/10.1007/s11784-019-0740-9.
  • V. Sankar Raj, A best proximity point theorem for weakly contractive non-self-mappings,Nonlinear Anal. TMA, 74, 4804-4808, 2011.
  • V. Sankar Raj, Best proximity point theorems for non-self mappings, Fixed Point Theory, 14 (2013), 447-454.
  • W. Shatanawi, E. Karapinar, H. Aydi, and A. Fulga, Wardowski type contractions with applications on Caputo type nonlinear fractional differential equations, University Politechnica of Bucharest Scientfic Bulletin, Series A, 82(2) (2020), 157-170.
  • O. Popescu, A new type of contractive mappings in complete metric spaces, Bull. Transilv. Univ. Brasov, Ser. III, Math. Inform. Phys., 1(50) (2008), 479--482.

Some best proximity point results on b-metric spaces with an application

Year 2024, Volume: 6 Issue: 2, 68 - 76
https://doi.org/10.47086/pims.1577951

Abstract

In this paper, we introduce the concept of \vartheta -p-contraction mapping on b-metric spaces. Then, we obtain some best proximity results for these mappings. Also, an example to support the validity and superiority of our result has been given. Lastly, for the existence of solutions of nonlinear fractional differential equations of Caputo type we provide an application.

References

  • R. P. Agarwal, M. Benchohra and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Applicandae Mathematicae, 109(3) (2010), 973--1033.
  • I. Altun, M. Aslantas and H. Sahin, Best proximity point results for p-proximal contractions, Acta Math. Hungar., 162 (2020), 393--402.
  • M. Aslantaş, Best proximity point theorems for proximal b-cyclic contractions on b-metric spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1) (2021), 483--496.
  • S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math, 3 (1922), 133-181.
  • S. S. Basha, Extensions of Banach's contraction principle, Numer. Funct. Anal. Optim., 31 (2010), 569--576.
  • S. S. Basha and P. Veeramani, Best approximations and best proximity pairs, Acta Sci. Math., 63 (1997), 289--300.
  • V. Berinde, Contractii generalizate şi aplicatii, Editura Club Press 22, Baia Mare, 1997.
  • N. Hussain, Z. D. Mitrovic and S. Radenovic, A common fixed point theorem of isher in b-metric spaces, Revista de la Real Academia de Ciencias Exactas, Fisicasy Naturales. Serie A. Matematicas, 113 (2019), 949--956.
  • M. Jleli, B. Samet, Best proximity points for alpha-psi-proximal contractive type mappings and applications. Bulletin des Sciences Math’ematiques 137(8) (2013), 977--995.
  • P. D. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, Journal of Fixed Point Theory and Applications, 22 (2020).
  • S. Reich and A. J. Zaslavski, Existence of a unique fixed point for nonlinear contractive mappings, Mathematics, 8 (2020).
  • I. A. Rus, Generalized contractions and applications, Cluj University Press, Cluj-Napoca, (2001).
  • H. Sahin, M. Aslantas and I. Altun, Feng-Liu type approach to best proximity point results for multivalued mappings, J. Fixed Point Theory Appl, 22 (2020), https://doi.org/10.1007/s11784-019-0740-9.
  • V. Sankar Raj, A best proximity point theorem for weakly contractive non-self-mappings,Nonlinear Anal. TMA, 74, 4804-4808, 2011.
  • V. Sankar Raj, Best proximity point theorems for non-self mappings, Fixed Point Theory, 14 (2013), 447-454.
  • W. Shatanawi, E. Karapinar, H. Aydi, and A. Fulga, Wardowski type contractions with applications on Caputo type nonlinear fractional differential equations, University Politechnica of Bucharest Scientfic Bulletin, Series A, 82(2) (2020), 157-170.
  • O. Popescu, A new type of contractive mappings in complete metric spaces, Bull. Transilv. Univ. Brasov, Ser. III, Math. Inform. Phys., 1(50) (2008), 479--482.
There are 17 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Mustafa Aslantaş 0000-0003-4338-3518

Hakan Şahin 0000-0002-4671-7950

Early Pub Date December 20, 2024
Publication Date
Submission Date November 1, 2024
Acceptance Date December 9, 2024
Published in Issue Year 2024 Volume: 6 Issue: 2

Cite

Creative Commons License
The published articles in PIMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.