Research Article
BibTex RIS Cite

Evaluation of radiation shielding potentials of Ni-based alloys, Inconel-617 and Incoloy-800HT, candidates for high temperature applications especially for nuclear reactors, by EpiXS and Phy-X/PSD codes

Year 2023, , 795 - 801, 05.07.2023
https://doi.org/10.2339/politeknik.1004657

Abstract

In this paper, our purpose is to calculate photon-matter interaction parameters of Ni-based alloys, Inconel-617 and Incoloy-800HT, which are the main candidates for high-temperature applications such as spacecraft, gas turbines, nuclear reactors and rocket motors. The radiation attenuation parameters and buildup factors were obtained in a wide energy range by using Phy-X/PSD and EpiXS softwares to determine the radiation protection capabilities of the alloys. Fast neutron removal cross sections of the alloys were also calculated. It was observed that Inconel-617 has higher shielding ability than Incoloy-800HT. The shielding potentials of the alloys were compared with those of other shielding materials (ordinary concrete, hematite-serpenite, ilmenite-limonite, steel-scrap, basalt-magnetite, steel-magnetite and ilmenite concretes) reported before, and it was concluded that Inconel-617 and Incoloy-800HT have more shielding ability than those.

References

  • [1] Archana M., Rao C.J., Ningshen S., Philip J., “High-Temperature Air and Steam Oxidation and Oxide Layer Characteristics of Alloy 617”, J Mater Engineer Performance, 30: 931–943, (2021).
  • [2] Rahman M.S., Ding J., Beheshti A., Zhang X., Polycarpou A.A., “Elevated temperature tribology of Ni alloys under helium environment for nuclear reactor applications”, Tribology Inter, 123: 372–384, (2018).
  • [3] Us H., “Oxıdatıon behavıor of very hıgh temperature reactor (vhtr) candıdate materıals: 316l staınless steel, Alloy 617, and incoloy 800-h”, A Dissertation presented to the Faculty of the Graduate School at the University of Missouri, (2016).
  • [4] Kumar S.A., Sathıya P., “Effects of heat ınput on the mechanıcal and metallurgıcal characterıstıcs of tıg welded ıncoloy 800HT joınts”, Arch Metall Mater, 62(3): 1673-1679, (2017).
  • [5] http://www.specialmetals.com. (accessed 15 July 2021)
  • [6] Alım B., “A comprehensive study on radiation shielding characteristics of Tin Silver, Manganin R, Hastelloy B, Hastelloy X and Dilver P alloys”, Appl Phys A, 126: 262, (2020).
  • [7] Singh V.P., Badiger N.M., “Gamma ray and neutron shielding properties of some alloy materials”, Annl Nucl Energy, 64: 301-310, (2014).
  • [8] Wang K., Hu J., Tianyou C., Tang J., Zhai Y., Feng Y., Zhao Z., Fan H., Wang K., “Radiation shielding properties of flexible liquid metal-GaIn alloy”, Progress in Nucl Energy, 135:103696 (2021).
  • [9] Aygun Z., Aygun M., Han I., “Magnetic and Structural Analysis of CuxNi12x and CuyNizMn12y2z Alloys Using EPR, XRD and SEM Methods”, Iranian J Sci Technol Trans Sci, 42: 951–957, (2018).
  • [10] Aygun Z., “Application of Spectroscopic Methods for Analysis of Ni-Based Alloys (Ni% ≥70)”, Cumhuriyet Sci J, 39: 144-151, (2018).
  • [11] Aygun Z., “Spectroscopic Characterization of Nickel Based Foils”, Kocaeli Unv J Sci Eng, 2(2): 39-44, (2019).
  • [12] Aygun Z., Aygun M., “A Theoretical Study on Radiation Shielding Characteristics of Magnetic Shielding Alloys, Ni80Fe15Mo5 and Ni77Fe14Cu5Mo4, by Determining the Photon Attenuation Parameters in the Energy Range of 15keV-100GeV”, Karaelmas Sci Engineer J, 11(2): 165-173, (2021).
  • [13] Hamad R.M., Mhareb M.H.A., Alajerami Y.S., Sayyed M.I., Saleh G., Hamad M.Kh., Ziq Kh.A. “A comprehensive ionizing radiation shielding study of FexSe0.5Te0.5 alloys with various iron concentrations”, J Alloys Comp, 858: 157636 (2021).
  • [14] Rammah Y.S., Mahmoud K.A., Mohammed F.Q., Sayyed M.I., Tashlykov O.L., El-Mallawany R., “Gamma ray exposure buildup factor and shielding features for some binary alloys using MCNP-5 simulation code”, Nucl Engineer Tech, 53(8): 2661-2668 (2021).
  • [15] Hasan M.H., “Effects of mechanical and metallurgical variables on creep, fracture toughness and crack growth behavior of Alloy 617”, UNLV Theses, Dissertations, Professional Papers, and Capstones 129, (2009).
  • [16] Jang C., Lee D., Kim D., “Oxidation behaviour of an Alloy 617 in very high-temperature air and helium environments”, Int J Pres Ves Pip, 85: 368–77, (2008).
  • [17] Pauly V., Kern J., Clark M., Grierson D.S., Sridharan K., “Wear Performance of Incoloy 800HT and Inconel 617 in various surface conditions for high-temperature gas-cooled reactor components”, Tribology Inter, 154: 106715, (2021).
  • [18] Wright R.N., "Summary of studies of aging and environmental effects on Inconel 617 and haynes 230”, Idaho National Laboratory Idaho Falls, Idaho 83415, 27, (2006).
  • [19] Wright J.K., Lybeck N.J., Wright R.N., “Tensile properties of alloy 617 bar stock”, United States, (2013).
  • [20] Ren W., Swindeman R., “A review of alloy 800H for applications in the GEN IV nuclear energy systems weiju”, Proceedings of the ASME Pressure Vessels & Piping Division / K PVP Conference, Bellevue, Washington, USA,1–16, (2010).
  • [21] Sakar E., Özpolat O.F., Alım B., Sayyed M.I., Kurudirek M., “Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry”, Radiat Phys Chem, 166: 1-12, (2020).
  • [22] Hila F.C., Astronomo A.A., Dingle C.A.M., Jecong J.F.M., Javier-Hila A.M.V. et al., “EpiXS: A Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8)”, Radiat Phys Chem, 182: 109331, (2021).
  • [23] Alim B., Sakar E., Baltakesmez A., Han I., Sayyed M.I., Demir L., “Experimental investigation of radiation shielding performances of some important AISI-coded stainless steels: part I.” Radiat Phys Chem, 166: 108455 (2020).
  • [24] Sakar E., “Determination of photon-shielding features and build-up factors of nickel–silver alloys”, Radiat Phys Chem, 172:108778 (2020).
  • [25] Harima Y., Sakamoto Y., Tanaka S., Kawai M., “Validity of the geometric-progression formula in approximating gamma-ray buildup factors”, Nucl Sci Engineer, 94(1): 24–35, (1986).
  • [26] Harima Y., “An historical review and current status of buildup factor calculations and applications”, Radiat Phys Chem, 41(4–5): 631–672, (1993).
  • [27] Mann K.S., Mann S.S., “Py-MLBUF: Development of an online-platform for gamma-ray shielding calculations and investigations”, Annl Nucl Energy, 150: 107845 (2021).
  • [28] ANSI/ANS 6.4.3, “Gamma-ray Attenuation Coefficients and Buildup Factors for Engineering Materials”, American Nuclear Society, La Grange Park, Illinois, (1991).
  • [29] Kurudirek M., Türkmen I., Özdemir Y., “A study of photon interaction in some building materials: High-volume admixture of blast furnace slag into Portland cement”, Radiat Phys Chem, 78:751–759, (2009).
  • [30] Alım B., “Determination of Radiation Protection Features of the Ag2O Doped Boro-Tellurite Glasses Using Phy-X / PSD Software”, J Inst Sci Tech, 10(1): 202-213, (2020).
  • [31] Sayyed M.I., Mohammed F.Q., Mahmoud K.A., Lacomme E., Kaky K.M. et al., “Evaluation of Radiation Shielding Features of Co and Ni-Based Superalloys Using MCNP-5 Code: Potential Use in Nuclear Safety”, Appl Sci, 10: 7680, (2020).
  • [32] Bashter I.I., “Calculation of radiation attenuation coefficients for shielding concretes”, Annl Nucl Energy, 24(17): 1389-1401, (1997).
  • [33] Cengiz G.B., Cağlar I., “Assessment of Mass Attenuation Coefficient, Effective Atomic Number and Electron Density of Some Aluminum Alloys”, Caucasian J Sci, 7: 109-122, (2020).
  • [34] Kücük N., Gezer O., “Determination of Build-up Factors for Natural Black Obsidian Ores”, AKU J Sci Engineer, 17: 872-880, (2017).
  • [35] Aygun Z., Aygun M., “A study on usability of Ahlat ignimbrites and pumice as radiation shielding materials, by using EpiXS code”, Inter J Environ Sci Tech, (2021) https://doi.org/10.1007/s13762-021- 03530-9
  • [36] Aygun Z., Yarbasi N., Aygun M., “Spectroscopic and radiation shielding features of Nemrut, Pasinler, Sarıkamıs and Ikizdere obsidians in Turkey: Experimental and theoretical study”, Ceramics Inter, 47: 34207–34217 (2021).

Özellikle nükleer reaktörler için yüksek sıcaklık uygulamalarına aday Ni bazlı alaşımların, Inconel-617 ve Incoloy-800HT, radyasyon zırhlama potansiyellerinin EpiXS ve Phy-X/PSD kodları ile değerlendirilmesi

Year 2023, , 795 - 801, 05.07.2023
https://doi.org/10.2339/politeknik.1004657

Abstract

Bu çalışmada, uzay aracı, gaz türbinleri, nükleer reaktörler ve roket motorları gibi yüksek sıcaklık uygulamaları için ana aday olan Ni bazlı alaşımlar Inconel-617 ve Incoloy-800HT'nin foton-madde etkileşim parametrelerinin hesaplanması amaçlanmıştır. Alaşımların radyasyondan korunma potansiyellerini belirlemek için radyasyon zayıflama ve yığılma faktörleri gibi parametreler geniş bir enerji aralığında Phy-X/PSD ve EpiXS yazılımları kullanılarak elde edilmiştir. Alaşımların hızlı nötron uzaklaştırma tesir kesitleri de belirlenmiştir. Inconel-617'nin Incoloy-800HT'den daha yüksek zırhlama kabiliyetine sahip olduğu gözlemlenmiştir. Alaşımların zırhlama potansiyelleri daha önce bildirilen diğer malzemelerin (sıradan beton, hematit-serpenit, ilmenit-limonit, çelik-hurda, bazalt-manyetit, çelik-manyetit ve ilmenit betonları) zırhlama potansiyelleriyle karşılaştırılmış, Inconel-617 ve Incoloy-800HT'nin bu malzemelerden daha fazla zırhlama kabiliyetine sahip olduğu sonucuna varılmıştır.

References

  • [1] Archana M., Rao C.J., Ningshen S., Philip J., “High-Temperature Air and Steam Oxidation and Oxide Layer Characteristics of Alloy 617”, J Mater Engineer Performance, 30: 931–943, (2021).
  • [2] Rahman M.S., Ding J., Beheshti A., Zhang X., Polycarpou A.A., “Elevated temperature tribology of Ni alloys under helium environment for nuclear reactor applications”, Tribology Inter, 123: 372–384, (2018).
  • [3] Us H., “Oxıdatıon behavıor of very hıgh temperature reactor (vhtr) candıdate materıals: 316l staınless steel, Alloy 617, and incoloy 800-h”, A Dissertation presented to the Faculty of the Graduate School at the University of Missouri, (2016).
  • [4] Kumar S.A., Sathıya P., “Effects of heat ınput on the mechanıcal and metallurgıcal characterıstıcs of tıg welded ıncoloy 800HT joınts”, Arch Metall Mater, 62(3): 1673-1679, (2017).
  • [5] http://www.specialmetals.com. (accessed 15 July 2021)
  • [6] Alım B., “A comprehensive study on radiation shielding characteristics of Tin Silver, Manganin R, Hastelloy B, Hastelloy X and Dilver P alloys”, Appl Phys A, 126: 262, (2020).
  • [7] Singh V.P., Badiger N.M., “Gamma ray and neutron shielding properties of some alloy materials”, Annl Nucl Energy, 64: 301-310, (2014).
  • [8] Wang K., Hu J., Tianyou C., Tang J., Zhai Y., Feng Y., Zhao Z., Fan H., Wang K., “Radiation shielding properties of flexible liquid metal-GaIn alloy”, Progress in Nucl Energy, 135:103696 (2021).
  • [9] Aygun Z., Aygun M., Han I., “Magnetic and Structural Analysis of CuxNi12x and CuyNizMn12y2z Alloys Using EPR, XRD and SEM Methods”, Iranian J Sci Technol Trans Sci, 42: 951–957, (2018).
  • [10] Aygun Z., “Application of Spectroscopic Methods for Analysis of Ni-Based Alloys (Ni% ≥70)”, Cumhuriyet Sci J, 39: 144-151, (2018).
  • [11] Aygun Z., “Spectroscopic Characterization of Nickel Based Foils”, Kocaeli Unv J Sci Eng, 2(2): 39-44, (2019).
  • [12] Aygun Z., Aygun M., “A Theoretical Study on Radiation Shielding Characteristics of Magnetic Shielding Alloys, Ni80Fe15Mo5 and Ni77Fe14Cu5Mo4, by Determining the Photon Attenuation Parameters in the Energy Range of 15keV-100GeV”, Karaelmas Sci Engineer J, 11(2): 165-173, (2021).
  • [13] Hamad R.M., Mhareb M.H.A., Alajerami Y.S., Sayyed M.I., Saleh G., Hamad M.Kh., Ziq Kh.A. “A comprehensive ionizing radiation shielding study of FexSe0.5Te0.5 alloys with various iron concentrations”, J Alloys Comp, 858: 157636 (2021).
  • [14] Rammah Y.S., Mahmoud K.A., Mohammed F.Q., Sayyed M.I., Tashlykov O.L., El-Mallawany R., “Gamma ray exposure buildup factor and shielding features for some binary alloys using MCNP-5 simulation code”, Nucl Engineer Tech, 53(8): 2661-2668 (2021).
  • [15] Hasan M.H., “Effects of mechanical and metallurgical variables on creep, fracture toughness and crack growth behavior of Alloy 617”, UNLV Theses, Dissertations, Professional Papers, and Capstones 129, (2009).
  • [16] Jang C., Lee D., Kim D., “Oxidation behaviour of an Alloy 617 in very high-temperature air and helium environments”, Int J Pres Ves Pip, 85: 368–77, (2008).
  • [17] Pauly V., Kern J., Clark M., Grierson D.S., Sridharan K., “Wear Performance of Incoloy 800HT and Inconel 617 in various surface conditions for high-temperature gas-cooled reactor components”, Tribology Inter, 154: 106715, (2021).
  • [18] Wright R.N., "Summary of studies of aging and environmental effects on Inconel 617 and haynes 230”, Idaho National Laboratory Idaho Falls, Idaho 83415, 27, (2006).
  • [19] Wright J.K., Lybeck N.J., Wright R.N., “Tensile properties of alloy 617 bar stock”, United States, (2013).
  • [20] Ren W., Swindeman R., “A review of alloy 800H for applications in the GEN IV nuclear energy systems weiju”, Proceedings of the ASME Pressure Vessels & Piping Division / K PVP Conference, Bellevue, Washington, USA,1–16, (2010).
  • [21] Sakar E., Özpolat O.F., Alım B., Sayyed M.I., Kurudirek M., “Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry”, Radiat Phys Chem, 166: 1-12, (2020).
  • [22] Hila F.C., Astronomo A.A., Dingle C.A.M., Jecong J.F.M., Javier-Hila A.M.V. et al., “EpiXS: A Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8)”, Radiat Phys Chem, 182: 109331, (2021).
  • [23] Alim B., Sakar E., Baltakesmez A., Han I., Sayyed M.I., Demir L., “Experimental investigation of radiation shielding performances of some important AISI-coded stainless steels: part I.” Radiat Phys Chem, 166: 108455 (2020).
  • [24] Sakar E., “Determination of photon-shielding features and build-up factors of nickel–silver alloys”, Radiat Phys Chem, 172:108778 (2020).
  • [25] Harima Y., Sakamoto Y., Tanaka S., Kawai M., “Validity of the geometric-progression formula in approximating gamma-ray buildup factors”, Nucl Sci Engineer, 94(1): 24–35, (1986).
  • [26] Harima Y., “An historical review and current status of buildup factor calculations and applications”, Radiat Phys Chem, 41(4–5): 631–672, (1993).
  • [27] Mann K.S., Mann S.S., “Py-MLBUF: Development of an online-platform for gamma-ray shielding calculations and investigations”, Annl Nucl Energy, 150: 107845 (2021).
  • [28] ANSI/ANS 6.4.3, “Gamma-ray Attenuation Coefficients and Buildup Factors for Engineering Materials”, American Nuclear Society, La Grange Park, Illinois, (1991).
  • [29] Kurudirek M., Türkmen I., Özdemir Y., “A study of photon interaction in some building materials: High-volume admixture of blast furnace slag into Portland cement”, Radiat Phys Chem, 78:751–759, (2009).
  • [30] Alım B., “Determination of Radiation Protection Features of the Ag2O Doped Boro-Tellurite Glasses Using Phy-X / PSD Software”, J Inst Sci Tech, 10(1): 202-213, (2020).
  • [31] Sayyed M.I., Mohammed F.Q., Mahmoud K.A., Lacomme E., Kaky K.M. et al., “Evaluation of Radiation Shielding Features of Co and Ni-Based Superalloys Using MCNP-5 Code: Potential Use in Nuclear Safety”, Appl Sci, 10: 7680, (2020).
  • [32] Bashter I.I., “Calculation of radiation attenuation coefficients for shielding concretes”, Annl Nucl Energy, 24(17): 1389-1401, (1997).
  • [33] Cengiz G.B., Cağlar I., “Assessment of Mass Attenuation Coefficient, Effective Atomic Number and Electron Density of Some Aluminum Alloys”, Caucasian J Sci, 7: 109-122, (2020).
  • [34] Kücük N., Gezer O., “Determination of Build-up Factors for Natural Black Obsidian Ores”, AKU J Sci Engineer, 17: 872-880, (2017).
  • [35] Aygun Z., Aygun M., “A study on usability of Ahlat ignimbrites and pumice as radiation shielding materials, by using EpiXS code”, Inter J Environ Sci Tech, (2021) https://doi.org/10.1007/s13762-021- 03530-9
  • [36] Aygun Z., Yarbasi N., Aygun M., “Spectroscopic and radiation shielding features of Nemrut, Pasinler, Sarıkamıs and Ikizdere obsidians in Turkey: Experimental and theoretical study”, Ceramics Inter, 47: 34207–34217 (2021).
There are 36 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Zeynep Aygun 0000-0002-2979-0283

Murat Aygün 0000-0002-4276-3511

Publication Date July 5, 2023
Submission Date October 4, 2021
Published in Issue Year 2023

Cite

APA Aygun, Z., & Aygün, M. (2023). Evaluation of radiation shielding potentials of Ni-based alloys, Inconel-617 and Incoloy-800HT, candidates for high temperature applications especially for nuclear reactors, by EpiXS and Phy-X/PSD codes. Politeknik Dergisi, 26(2), 795-801. https://doi.org/10.2339/politeknik.1004657
AMA Aygun Z, Aygün M. Evaluation of radiation shielding potentials of Ni-based alloys, Inconel-617 and Incoloy-800HT, candidates for high temperature applications especially for nuclear reactors, by EpiXS and Phy-X/PSD codes. Politeknik Dergisi. July 2023;26(2):795-801. doi:10.2339/politeknik.1004657
Chicago Aygun, Zeynep, and Murat Aygün. “Evaluation of Radiation Shielding Potentials of Ni-Based Alloys, Inconel-617 and Incoloy-800HT, Candidates for High Temperature Applications Especially for Nuclear Reactors, by EpiXS and Phy-X/PSD Codes”. Politeknik Dergisi 26, no. 2 (July 2023): 795-801. https://doi.org/10.2339/politeknik.1004657.
EndNote Aygun Z, Aygün M (July 1, 2023) Evaluation of radiation shielding potentials of Ni-based alloys, Inconel-617 and Incoloy-800HT, candidates for high temperature applications especially for nuclear reactors, by EpiXS and Phy-X/PSD codes. Politeknik Dergisi 26 2 795–801.
IEEE Z. Aygun and M. Aygün, “Evaluation of radiation shielding potentials of Ni-based alloys, Inconel-617 and Incoloy-800HT, candidates for high temperature applications especially for nuclear reactors, by EpiXS and Phy-X/PSD codes”, Politeknik Dergisi, vol. 26, no. 2, pp. 795–801, 2023, doi: 10.2339/politeknik.1004657.
ISNAD Aygun, Zeynep - Aygün, Murat. “Evaluation of Radiation Shielding Potentials of Ni-Based Alloys, Inconel-617 and Incoloy-800HT, Candidates for High Temperature Applications Especially for Nuclear Reactors, by EpiXS and Phy-X/PSD Codes”. Politeknik Dergisi 26/2 (July 2023), 795-801. https://doi.org/10.2339/politeknik.1004657.
JAMA Aygun Z, Aygün M. Evaluation of radiation shielding potentials of Ni-based alloys, Inconel-617 and Incoloy-800HT, candidates for high temperature applications especially for nuclear reactors, by EpiXS and Phy-X/PSD codes. Politeknik Dergisi. 2023;26:795–801.
MLA Aygun, Zeynep and Murat Aygün. “Evaluation of Radiation Shielding Potentials of Ni-Based Alloys, Inconel-617 and Incoloy-800HT, Candidates for High Temperature Applications Especially for Nuclear Reactors, by EpiXS and Phy-X/PSD Codes”. Politeknik Dergisi, vol. 26, no. 2, 2023, pp. 795-01, doi:10.2339/politeknik.1004657.
Vancouver Aygun Z, Aygün M. Evaluation of radiation shielding potentials of Ni-based alloys, Inconel-617 and Incoloy-800HT, candidates for high temperature applications especially for nuclear reactors, by EpiXS and Phy-X/PSD codes. Politeknik Dergisi. 2023;26(2):795-801.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.