Research Article
BibTex RIS Cite

The Microstructural, Mechanical and Electrical Properties of Pb-Sn and Lead-Free SC0.7 Solders Containing Sub Micron Active Carbon Particles

Year 2024, , 1505 - 1514, 25.09.2024
https://doi.org/10.2339/politeknik.1313792

Abstract

Soldering is performed in order to easily assemble electronic components and also to provide electrical conductivity. The strengths, hardness, physical properties and electronic properties of the solders, i.e. reduced energy loss, hardness, melting point and longer service life, can be achieved when their usage is improvised by the help of necessary alloying or neutral additions. In this study, the effect of the addition of sub micron sized activated carbon on the mechanical, physical and electrical properties of industrially used solders, i.e. Pb-Sn and lead free SC0.7 solder was investigated.The thermal studies showed that the melting point of Pb-Sn was lowered against lead free solders with increasing amount of activated carbon. The tensile shear strength of both solders did not improve with increasing amount of activated carbon. In lead-free solders, the electrical resistance values decrease with respect to increasing active carbon ratio, however, the resistance of Pb-Sn solders increased. The addition of active particles have positively affected the microstructure of Pb-Sn solders, resulting in a finer grains, whereas, the addition of active carbon particles have no effect on the grain structures of lead free solder.

Supporting Institution

TÜBİTAK (2209A) ve Afyon Kocatepe Üniversitesi BAPK

Project Number

15.FEN.BİL.43

Thanks

The authors are grateful to TÜBİTAK and Afyon Kocateoe University Scientific Research Project Commission for financially supoorting this project.

References

  • [1] Kotadia, H. R., Howes, P. D., Mannan, S. H., “A review: on the development of low melting temperature Pb-free solders”, Microelectronics Reliability, 54(6–7):1253-1273.
  • [2] Jones, W. K., Liu, Y. Q., Zampino, M. A., Gonzalez, G. L., “the at-temperature mechanical properties of lead-tin based alloys”, In: Harman G., Mach P. (eds) Microelectronic Interconnections and Assembly. NATO ASI Series (3. High Technology), Springer, Dordrecht, (1998).
  • [3] Karakaya, I., Thompson, W. T., “The Pb−Sn (lead-tin) system. Journal of Phase Equilibrium, 9: 144–152. (1988).
  • [4] Demayo, A., Taylor, M. C., Taylor, K. W., Hadson, P. V. and Hammond, P.B., “Toxic effects of lead and lead compounds on human health, aquatic life, wildlife plants, and livestock”, Critical Review in Environmental Science and Technology, 12(4);257-305, (1982).
  • [5] European Union, Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment. Official Journal of European Union, 46:19-23, (2002).
  • [6] Suganuma, K., “Advances in lead-free electronics soldering”, Current Opinion in Solid State Materials Science, 5(1):55-64, (2001).
  • [7] Aşçı, T., Keskin, H., "Strengthening the retention amount and leaching resistance of boron compounds used as impregnation material". Journal of Polytechnic, 24:103-112, (2021).
  • [8] Aydogan, T., Şenberber Dumanlı, F. T., Möröydor Derun, E., "Effect of lemon peel extract concentration on nano scale Fe/Fe3O4 synthesis". Journal of Polytechnic, 25:1423-1427, (2022).
  • [9] Laad, M., "Synthesis and characterization of copper metal matrix composite reinforced with ceramic oxide extracted by the green route". Journal of Polytechnic, 25:1185-1189, (2022).
  • [10] Zeng, K., Tu, K. N., “Six cases of reliability study of pb-free solder joints in electronic packaging technology”, Materials Science and Engineering R: Reports, 38(2):55–105, (2002).
  • [11] Seo, S-K., Kang, S. K., Shih, D-Y., Lee, H. M., “The evolution of microstructure and microhardness of Sn-Ag and Sn-Cu solders during high temperature aging”. Microelectronics Reliability, 49(3):288–295, (2009).
  • [12] Felberbaum, M., Ventura, T., Rappaz, M., Dahle, A. K., “Microstructure formation in Sn-Cu-Ni solder alloys”, Journal of Materials, 63(10):52–55, (2011).
  • [13] Wang, J-X., Xue, S-B., Han, Z-J., Yu, S-L., Chen, Y., Shi, Y-P., Wang, H., “Effects of rare earth ce on microstructures, solderability of Sn-Ag-Cu and Sn-Cu-Ni solders as well as mechanical properties of soldered joints”, Journal of Alloys and Compounds, 467(1):219–226, (2009).
  • [14] Reeve, K. N., Handwerker, C. A., “Beta-tin grain formation in aluminum modified lead-free solder alloys”, Journal of Electronic Materials, 47(1):61–76, (2018).
  • [15] Laurila, T., Vuorinen, V., Paulasto-Kröckel, M., “Impurity and alloying effects on interfacial reaction layers in Pb-free soldering”, Materials Science and Engineering: R Reports, 68(1-2):1-38, (2010).
  • [16] Nogita, K., Gourlay, C. M., Nishimura, T., Cracking and phase stability in reaction layers between Sn-Cu-Ni solders and Cu substrates”, Journal of Materials, 61(5):45–51, (2009).
  • [17] Satyanarayan, K. N. P., “Reactive wetting, evolution of interfacial and bulk imc’s and their effect on mechanical properties of eutectic Sn-Cu solder alloy”, Advances in Colloid and Interface Science, 166(1):87–118, (2011).
  • [18] Mohd Salleh, M. A. A., Mcdonald, S. D., Nogita, K., “Effects of Ni and TiO2 additions in as-reflowed and annealed Sn0.7Cu solders on Cu substrates”, Journal of Materials Processing Technology, 242:235–245, (2017).
  • [19] Lee, J., Chu, K., Patzelt, R., et al., Effects of Co addition in eutectic Sn-3.5Ag solder on shear strength and microstructural development”, Microelectronic Engineering, 85(7):1577–158, (2008).
  • [20] Alam, M. E., Nai, S. M. L., Gupta, M., “Development of high strength Sn-Cu solder using copper particles at nanolength scale”, Journal of Alloys and Compounds, 476(1):199–206, (2009).
  • [21] Ke, C. B., Zhou, M. B., Zhang, X. P., “Phase field simulation on microstructure evolution and growth kinetics of Cu6Sn5 intermetallic compound during early interfacial reaction in sn/cu soldering system”, Acta Metallurgica Sinica, 50(3):294–304, (2014).
  • [22] El-Daly, A. A., Hammad, A. E., “Enhancement of creep resistance and thermal behavior of eutectic sn-cu lead-free solder alloy by Ag and In additions”, Materials and Design, 40:292–298, (2012).
  • [23] Sabri, M. F. M., Salleh, M. F. M., Jaffery, S. H. A., Mahdavifard, M. H., “Properties of Sn0.7Cu solder alloys bearing Fe and Bi”, In: Salleh, M.A.A.M., Abdul Aziz, M.S., Jalar, A., Izwan Ramli, M.I. (eds) Recent Progress in Lead-Free Solder Technology. Topics in Mining, Metallurgy and Materials Engineering. Springer, (2022).
  • [24] Yang, L., “Effects of Ag particles content on properties of Sn0.7Cu solder”, Journal of Materials Science, 24(5):1405–1409, (2013).
  • [25] Zhao, N., Pan, X. M., Yu, D. Q., Ma, H. T., Wang, L., “Viscosity and surface tension of liquid Sn-Cu lead free solders”, Journal of Electronic Materials, 38(6):828–833, (2009).
  • [26] Eid, E. A., Fouda, A. N., Duraia, E. M., “Effect of adding 0.5 wt% ZnO nanoparticles, temperature and strain rate on tensile properties of sn-5.0 wt% Sb- 0.5 wt% Cu (SSC505) lead free solder alloy”, Materials Science Engineering A, 657:104–114, (2016).
  • [27] Talas, S., Gökçe, B. and Çakmakkaya, M., “Sn-Pb and lead free solders containing active carbon particles”, IOP Conf. Series: Materials Science and Engineering, 146:012043, (2016).
  • [28] Fürtauer, S., Li, D., Cupid, D., Flandorfer, H., “The Cu–Sn phase diagram, part ı: new experimental results”, Intermetallics, 34:142-147, (2013).
  • [29] Ventura, T., Terzi, S., Rappaz, M., Dahle, A. K., “Effects of solidification kinetics on microstructure formation in binary Sn-Cu solder alloys”, Acta Materialia, 59(4):1651–1658, (2011).
  • [30] Nazri, S. F., Salleh, M. A. A. M., “Effect of rare-element (Ga) addition on the microstructure and mechanical properties of Sn-0.7Cu and Sn-0.7Cu-0.05Ni lead-free solder alloys”, IOP Conf. Series: Materials Science and Engineering, 701: 012031, (2019).
  • [31] Nai, S., Wei, J., Gupta, M., “Effect of carbon nanotubes on the shear strength and electrical resistivity of a lead-free solder”, Journal of Electronic Materials, 37:515–522, (2008).
  • [32] Kang, S. K., Choi, W. K., Yim, M. J. et al., “Studies of the mechanical and electrical properties of lead-free solder joints”, Journal of Electronic Materials, 31:1292–1303, (2022).

Mikron Altı Aktif Karbon Parçacıkları İçeren Pb-Sn ve Kurşunsuz SC0.7 Lehimlerin Mikroyapısal, Mekanik ve Elektriksel Özellikleri

Year 2024, , 1505 - 1514, 25.09.2024
https://doi.org/10.2339/politeknik.1313792

Abstract

Lehimleme, elektronik bileşenlerin kolayca monte edilebilmesi ve aynı zamanda elektriksel iletkenliğin sağlanması amacıyla yapılmaktadır. Lehimlerin mukavemetleri, sertlikleri, fiziksel özellikleri ve elektronik özellikleri, yani azaltılmış enerji kaybı, sertlik, ergime noktası ve daha uzun hizmet ömrü, kullanımları, gerekli alaşımlama veya nötr ilaveler yardımıyla doğaçlama yapıldığında elde edilebilir. Bu çalışmada, endüstriyel olarak kullanılan lehimlerin yani Pb-Sn ve kurşunsuz SC0.7 lehiminin mekanik, fiziksel ve elektriksel özelliklerine mikron altı boyutta aktif karbon ilavesinin etkisi incelenmiştir. Termal çalışmalar, Pb-Sn'nin erime noktasının, artan aktif karbon miktarı ile kurşunsuz lehimlere karşı düştüğünü göstermiştir. Her iki lehimin çekme kesme mukavemeti, artan aktif karbon miktarı ile gelişmemiştir. Kurşunsuz lehimlerde artan aktif karbon oranına göre elektriksel direnç değerleri düşerken, Pb-Sn lehimlerin direnci artmıştır. Aktif partiküllerin eklenmesi, Pb-Sn lehimlerinin mikro yapısını olumlu yönde etkileyerek daha ince taneler oluşmasına neden olurken, aktif karbon partiküllerinin eklenmesinin kurşunsuz lehimin tane yapıları üzerinde hiçbir etkisi olmamıştır..

Project Number

15.FEN.BİL.43

References

  • [1] Kotadia, H. R., Howes, P. D., Mannan, S. H., “A review: on the development of low melting temperature Pb-free solders”, Microelectronics Reliability, 54(6–7):1253-1273.
  • [2] Jones, W. K., Liu, Y. Q., Zampino, M. A., Gonzalez, G. L., “the at-temperature mechanical properties of lead-tin based alloys”, In: Harman G., Mach P. (eds) Microelectronic Interconnections and Assembly. NATO ASI Series (3. High Technology), Springer, Dordrecht, (1998).
  • [3] Karakaya, I., Thompson, W. T., “The Pb−Sn (lead-tin) system. Journal of Phase Equilibrium, 9: 144–152. (1988).
  • [4] Demayo, A., Taylor, M. C., Taylor, K. W., Hadson, P. V. and Hammond, P.B., “Toxic effects of lead and lead compounds on human health, aquatic life, wildlife plants, and livestock”, Critical Review in Environmental Science and Technology, 12(4);257-305, (1982).
  • [5] European Union, Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment. Official Journal of European Union, 46:19-23, (2002).
  • [6] Suganuma, K., “Advances in lead-free electronics soldering”, Current Opinion in Solid State Materials Science, 5(1):55-64, (2001).
  • [7] Aşçı, T., Keskin, H., "Strengthening the retention amount and leaching resistance of boron compounds used as impregnation material". Journal of Polytechnic, 24:103-112, (2021).
  • [8] Aydogan, T., Şenberber Dumanlı, F. T., Möröydor Derun, E., "Effect of lemon peel extract concentration on nano scale Fe/Fe3O4 synthesis". Journal of Polytechnic, 25:1423-1427, (2022).
  • [9] Laad, M., "Synthesis and characterization of copper metal matrix composite reinforced with ceramic oxide extracted by the green route". Journal of Polytechnic, 25:1185-1189, (2022).
  • [10] Zeng, K., Tu, K. N., “Six cases of reliability study of pb-free solder joints in electronic packaging technology”, Materials Science and Engineering R: Reports, 38(2):55–105, (2002).
  • [11] Seo, S-K., Kang, S. K., Shih, D-Y., Lee, H. M., “The evolution of microstructure and microhardness of Sn-Ag and Sn-Cu solders during high temperature aging”. Microelectronics Reliability, 49(3):288–295, (2009).
  • [12] Felberbaum, M., Ventura, T., Rappaz, M., Dahle, A. K., “Microstructure formation in Sn-Cu-Ni solder alloys”, Journal of Materials, 63(10):52–55, (2011).
  • [13] Wang, J-X., Xue, S-B., Han, Z-J., Yu, S-L., Chen, Y., Shi, Y-P., Wang, H., “Effects of rare earth ce on microstructures, solderability of Sn-Ag-Cu and Sn-Cu-Ni solders as well as mechanical properties of soldered joints”, Journal of Alloys and Compounds, 467(1):219–226, (2009).
  • [14] Reeve, K. N., Handwerker, C. A., “Beta-tin grain formation in aluminum modified lead-free solder alloys”, Journal of Electronic Materials, 47(1):61–76, (2018).
  • [15] Laurila, T., Vuorinen, V., Paulasto-Kröckel, M., “Impurity and alloying effects on interfacial reaction layers in Pb-free soldering”, Materials Science and Engineering: R Reports, 68(1-2):1-38, (2010).
  • [16] Nogita, K., Gourlay, C. M., Nishimura, T., Cracking and phase stability in reaction layers between Sn-Cu-Ni solders and Cu substrates”, Journal of Materials, 61(5):45–51, (2009).
  • [17] Satyanarayan, K. N. P., “Reactive wetting, evolution of interfacial and bulk imc’s and their effect on mechanical properties of eutectic Sn-Cu solder alloy”, Advances in Colloid and Interface Science, 166(1):87–118, (2011).
  • [18] Mohd Salleh, M. A. A., Mcdonald, S. D., Nogita, K., “Effects of Ni and TiO2 additions in as-reflowed and annealed Sn0.7Cu solders on Cu substrates”, Journal of Materials Processing Technology, 242:235–245, (2017).
  • [19] Lee, J., Chu, K., Patzelt, R., et al., Effects of Co addition in eutectic Sn-3.5Ag solder on shear strength and microstructural development”, Microelectronic Engineering, 85(7):1577–158, (2008).
  • [20] Alam, M. E., Nai, S. M. L., Gupta, M., “Development of high strength Sn-Cu solder using copper particles at nanolength scale”, Journal of Alloys and Compounds, 476(1):199–206, (2009).
  • [21] Ke, C. B., Zhou, M. B., Zhang, X. P., “Phase field simulation on microstructure evolution and growth kinetics of Cu6Sn5 intermetallic compound during early interfacial reaction in sn/cu soldering system”, Acta Metallurgica Sinica, 50(3):294–304, (2014).
  • [22] El-Daly, A. A., Hammad, A. E., “Enhancement of creep resistance and thermal behavior of eutectic sn-cu lead-free solder alloy by Ag and In additions”, Materials and Design, 40:292–298, (2012).
  • [23] Sabri, M. F. M., Salleh, M. F. M., Jaffery, S. H. A., Mahdavifard, M. H., “Properties of Sn0.7Cu solder alloys bearing Fe and Bi”, In: Salleh, M.A.A.M., Abdul Aziz, M.S., Jalar, A., Izwan Ramli, M.I. (eds) Recent Progress in Lead-Free Solder Technology. Topics in Mining, Metallurgy and Materials Engineering. Springer, (2022).
  • [24] Yang, L., “Effects of Ag particles content on properties of Sn0.7Cu solder”, Journal of Materials Science, 24(5):1405–1409, (2013).
  • [25] Zhao, N., Pan, X. M., Yu, D. Q., Ma, H. T., Wang, L., “Viscosity and surface tension of liquid Sn-Cu lead free solders”, Journal of Electronic Materials, 38(6):828–833, (2009).
  • [26] Eid, E. A., Fouda, A. N., Duraia, E. M., “Effect of adding 0.5 wt% ZnO nanoparticles, temperature and strain rate on tensile properties of sn-5.0 wt% Sb- 0.5 wt% Cu (SSC505) lead free solder alloy”, Materials Science Engineering A, 657:104–114, (2016).
  • [27] Talas, S., Gökçe, B. and Çakmakkaya, M., “Sn-Pb and lead free solders containing active carbon particles”, IOP Conf. Series: Materials Science and Engineering, 146:012043, (2016).
  • [28] Fürtauer, S., Li, D., Cupid, D., Flandorfer, H., “The Cu–Sn phase diagram, part ı: new experimental results”, Intermetallics, 34:142-147, (2013).
  • [29] Ventura, T., Terzi, S., Rappaz, M., Dahle, A. K., “Effects of solidification kinetics on microstructure formation in binary Sn-Cu solder alloys”, Acta Materialia, 59(4):1651–1658, (2011).
  • [30] Nazri, S. F., Salleh, M. A. A. M., “Effect of rare-element (Ga) addition on the microstructure and mechanical properties of Sn-0.7Cu and Sn-0.7Cu-0.05Ni lead-free solder alloys”, IOP Conf. Series: Materials Science and Engineering, 701: 012031, (2019).
  • [31] Nai, S., Wei, J., Gupta, M., “Effect of carbon nanotubes on the shear strength and electrical resistivity of a lead-free solder”, Journal of Electronic Materials, 37:515–522, (2008).
  • [32] Kang, S. K., Choi, W. K., Yim, M. J. et al., “Studies of the mechanical and electrical properties of lead-free solder joints”, Journal of Electronic Materials, 31:1292–1303, (2022).
There are 32 citations in total.

Details

Primary Language English
Subjects Resource Technologies
Journal Section Research Article
Authors

Şükrü Talaş 0000-0002-4721-0844

Elif Özkan 0000-0002-1091-8902

Bahattin Ayar 0000-0002-9870-6276

Project Number 15.FEN.BİL.43
Early Pub Date September 8, 2023
Publication Date September 25, 2024
Submission Date June 13, 2023
Published in Issue Year 2024

Cite

APA Talaş, Ş., Özkan, E., & Ayar, B. (2024). The Microstructural, Mechanical and Electrical Properties of Pb-Sn and Lead-Free SC0.7 Solders Containing Sub Micron Active Carbon Particles. Politeknik Dergisi, 27(4), 1505-1514. https://doi.org/10.2339/politeknik.1313792
AMA Talaş Ş, Özkan E, Ayar B. The Microstructural, Mechanical and Electrical Properties of Pb-Sn and Lead-Free SC0.7 Solders Containing Sub Micron Active Carbon Particles. Politeknik Dergisi. September 2024;27(4):1505-1514. doi:10.2339/politeknik.1313792
Chicago Talaş, Şükrü, Elif Özkan, and Bahattin Ayar. “The Microstructural, Mechanical and Electrical Properties of Pb-Sn and Lead-Free SC0.7 Solders Containing Sub Micron Active Carbon Particles”. Politeknik Dergisi 27, no. 4 (September 2024): 1505-14. https://doi.org/10.2339/politeknik.1313792.
EndNote Talaş Ş, Özkan E, Ayar B (September 1, 2024) The Microstructural, Mechanical and Electrical Properties of Pb-Sn and Lead-Free SC0.7 Solders Containing Sub Micron Active Carbon Particles. Politeknik Dergisi 27 4 1505–1514.
IEEE Ş. Talaş, E. Özkan, and B. Ayar, “The Microstructural, Mechanical and Electrical Properties of Pb-Sn and Lead-Free SC0.7 Solders Containing Sub Micron Active Carbon Particles”, Politeknik Dergisi, vol. 27, no. 4, pp. 1505–1514, 2024, doi: 10.2339/politeknik.1313792.
ISNAD Talaş, Şükrü et al. “The Microstructural, Mechanical and Electrical Properties of Pb-Sn and Lead-Free SC0.7 Solders Containing Sub Micron Active Carbon Particles”. Politeknik Dergisi 27/4 (September 2024), 1505-1514. https://doi.org/10.2339/politeknik.1313792.
JAMA Talaş Ş, Özkan E, Ayar B. The Microstructural, Mechanical and Electrical Properties of Pb-Sn and Lead-Free SC0.7 Solders Containing Sub Micron Active Carbon Particles. Politeknik Dergisi. 2024;27:1505–1514.
MLA Talaş, Şükrü et al. “The Microstructural, Mechanical and Electrical Properties of Pb-Sn and Lead-Free SC0.7 Solders Containing Sub Micron Active Carbon Particles”. Politeknik Dergisi, vol. 27, no. 4, 2024, pp. 1505-14, doi:10.2339/politeknik.1313792.
Vancouver Talaş Ş, Özkan E, Ayar B. The Microstructural, Mechanical and Electrical Properties of Pb-Sn and Lead-Free SC0.7 Solders Containing Sub Micron Active Carbon Particles. Politeknik Dergisi. 2024;27(4):1505-14.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.