Research Article
BibTex RIS Cite

Sol-Jel Yöntemiyle IGZO Partiküllerin Üretimi, Peletlenmesi ve Karakterizasyonu

Year 2021, , 1317 - 1325, 01.09.2021
https://doi.org/10.2339/politeknik.724867

Abstract

Yüksek elektron mobilitesi, düşük eşik gerilimi ve kaplama sonrası şeffaf özellik gösteren İndiyum Galyum Çinko Oksit (InGaZnO4, IGZO) malzemesi ekran teknolojilerinde artan bir ivmeyle kullanılmaya başlamıştır. Bu çalışmada sol-jel yöntemi kullanılarak IGZO partikülleri başarılı bir şekilde üretildi. Sentezlenen tozlar 1100 ve 1250 °C ‘de kalsine edildi. Benzer şekilde tozlardan üretilen peletlere farklı sinterleme sıcaklıklarında ısıl işlem uygulandı. Sentezlenen partiküllerin ve peletlerin yüzey morfolojisi ve partikül boyutu, kristal ve faz yapısı, kimyasal kompozisyonu ve termal davranışları sırasıyla taramalı elektron mikroskobu (SEM), X-ışınları kırınımı (XRD), X-ışını fotoelektron spektroskopisi (XPS) ve Diferansiyel Termal Analiz-Termogravimetrik Analiz (DTA-TGA) cihazları ile gerçekleştirildi. Faz analizi sonucu tamamen kristalin InGaZnO4 fazı elde edildi. 12 saat boyunca 1300 oC ‘de sinterlenen IGZO peletlerin bağıl yoğunluğu, %93 olarak belirlenmiş olup, yüksek IGZO kristal yapısı ve büyük tane boyutu göstermiştir. Çalışmamda geliştirilen IGZO partikülleri ve peletler elektronik cihazların uygulanmasında kullanılan yüksek kaliteli hedef malzemeler için potansiyele sahiptir.  

Thanks

Bu çalışmanın üretim ve karakterizasyon çalışmalarında destek veren Dokuz Eylül Üniversitesi, Elektronik malzemeler üretimi ve Uygulama merkezine teşekkür ederim. Ayrıca çalışmaya katkı sunan öğrencilerim Sinan Öge, Ümit Kızıltaş ve Hande Erdoğdu’ ya da değerli katkıları için teşekkür ederim.

References

  • [1] Krishnan R., Thirumalai J., and Chandramohan R., "Room temperature photo-induced, Eu3+-doped IGZO transparent thin films fabricated using sol–gel method", Journal of Nanostructure in Chemistry., 3: 1–4, (2013)
  • [2] Kamiya T., Nomura K., and Hosono H., "Present status of amorphous In–Ga–Zn–O thin-film transistors", Science and Technology of Advanced Materials., 11: 044305, (2010)
  • [3] Dehuff N.L., Kettenring E.S., Hong D., Chiang H.Q., Wager J.F., Hoffman R.L., Park C.H., and Keszler D.A., "Transparent thin-film transistors with zinc indium oxide channel layer", Journal of Applied Physics., 97: 064505, (2005)
  • [4] Kim M.G., Kanatzidis M.G., Facchetti A., and Marks T.J., "Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing", Nature Materials., 10: 382–388, (2011)
  • [5] Fortunato E.M.C., Barquinha P.M.C., Pimentel A.C.M.B.G., Gonçalves A.M.F., Marques A.J.S., Martins R.F.P., and Pereira L.M.N., "Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature", Applied Physics Letters., 85: 2541–2543, (2004)
  • [6] Kim Y.H., Heo J.S., Kim T.H., Park S., Yoon M.H., Kim J., Oh M.S., Yi G.R., Noh Y.Y., and Park S.K., "Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films", Nature., 489: 128–132, (2012)
  • [7] Nomura K., Ohta H., Takagi A., Kamiya T., Hirano M., and Hosono H., "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors", Nature., 432: 488–492, (2004)
  • [8] Lo C.C., and Hsieh T.E., "Preparation of IGZO sputtering target and its applications to thin-film transistor devices", Ceramics International., 38: 3977–3983, (2012)
  • [9] Nomura K., Takagi A., Kamiya T., Ohta H., Hirano M., and Hosono H., "Amorphous oxide semiconductors for high-performance flexible thin-film transistors", Japanese journal of applied physics., 45: 4303, (2006)
  • [10] Shin J., and Choi D., "Effect of Oxygen on the Optical and the Electrical Properties of Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering", Journal of the Korean Physical Society., 53: 2019–2023, (2008)
  • [11] Takagi A., Nomura K., Ohta H., Yanagi H., Kamiya T., Hirano M., and Hosono H., "Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4", Thin Solid Films., 486: 38–41, (2005)
  • [12] Hosono H., Yasukawa M., and Kawazoe H., "Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides", Journal of Non-Crystalline Solids., 203: 334–344, (1996)
  • [13] Dehuff N.L., Kettenring E.S., Hong D., Chiang H.Q., Wager J.F., Hoffman R.L., Park C.H., and Keszler D.A., "Transparent thin-film transistors with zinc indium oxide channel layer", Journal of Applied Physics., 97: 064505, (2005)
  • [14] Tominaga K., Tsuzuki T., Maruyama T., Mikawa M., and Moriga T., "Properties of Amorphous Transparent Conductive In-Ga-Zn Oxide Films Deposited on Fused Quartz by the PLD Method", Surface Science and Nanotechnology., 7: 273–276, (2009)
  • [15] Yang S., Bak J.Y., Yoon S.M., Ryu M.K., Oh H., Hwang C.S., Kim G.H., Park S.H.K., and Jang J., "Low-temperature processed flexible In-Ga-Zn-O thin-film transistors exhibiting high electrical performance", IEEE Electron Device Letters., 32: 1692–1694, (2011)
  • [16] Kim Y.H., Han M.K., Han J.I., and Park S.K., "Effect of metallic composition on electrical properties of solution-processed indium-gallium-zinc-oxide thin-film transistors", IEEE Transactions on Electron Devices., 57: 1009–1014, (2010)
  • [17] An S., Mativenga M., Kim Y., and Jang J., "Improvement of bias-stability in amorphous-indium-gallium-zinc-oxide thin-film transistors by using solution-processed Y2O3 passivation", Applied Physics Letters., 105: 053507, (2014)
  • [18] Wu M.W., Lai P.H., Hong C.H., and Chou F.C., "The sintering behavior, microstructure, and electrical properties of gallium-doped zinc oxide ceramic targets", Journal of the European Ceramic Society., 34: 3715–3722, (2014)
  • [19] Chen J., Zhong J., Luo W., Qi C., Sun B., Liu S., Liu B., Shu Y., and He J., "Study on powder preparation of IGZO target and its effect on sintering", Journal of Alloys and Compounds., 800: 468–477, (2019)
  • [20] Wu M.W., Lai P.H., Hong C.H., and Chou F.C., "The sintering behavior, microstructure, and electrical properties of gallium-doped zinc oxide ceramic targets", Journal of the European Ceramic Society., 34: 3715–3722, (2014)
  • [21] Chen Z., Li F., Chen X., Xu S., Xiong D.K., Huang Y.Y., and Deng W., "Influence of sintering temperatures of ceramic targets on microstructures and photoelectric properties of titanium-doped ZnO nano-films", Journal of Materials Science: Materials in Electronics., 28: 4654–4660, (2017)
  • [22] Mei F., Yuan T., Li R., Qin K., and Huang J., "Improving the densification of indium tin oxide targets via secondary cold isostatic pressing and oxygen exchange treatments", Scripta Materialia., 155: 109–113, (2018)
  • [23] Omata T., Kita M., Okada H., Otsuka-Yao-Matsuo S., Ono N., and Ikawa H., "Characterization of indium-tin oxide sputtering targets showing various densities of nodule formation", Thin Solid Films., 503: 22–28, (2006)
  • [24] Wang K., Gan X., Li Z., Zhang D., and Zhou K., "Rheological properties of ITO slurries prepared from nano-powders for gelcasting process", Ceramics International., 40: 12623–12628, (2014)
  • [25] Medvedovski E., Alvarez N., Yankov O., and Olsson M.K., "Advanced indium-tin oxide ceramics for sputtering targets", Ceramics International., 34: 1173–1182, (2008)
  • [26] Chen J., Zhong J., Luo W., Qi C., Sun B., Liu S., Liu B., Shu Y., and He J., "Study on powder preparation of IGZO target and its effect on sintering", Journal of Alloys and Compounds., 800: 468–477, (2019)
  • [27] Ma X., Zhang W., Wang D., Sun B., and Zhong J., "Comparing microstructures of ITO sputtering targets prepared by tin doped indium oxide powders and In2O3-SnO2 mixed powders", Rare Metal Materials and Engineering., 44: 2937–2942, (2015)
  • [28] Liu J., Zhang W., Song D., Ma Q., Zhang L., Zhang H., Zhang L., and Wu R., "Investigation of aluminum-gallium co-doped zinc oxide targets for sputtering thin film and photovoltaic application", Journal of Alloys and Compounds., 575: 174–182, (2013)
  • [29] Wu M.W., "Two-step sintering of aluminum-doped zinc oxide sputtering target by using a submicrometer zinc oxide powder", Ceramics International., 38: 6229–6234, (2012)
  • [30] Mei F., Yuan T., Li R., Qin K., Zhou L., and Wang W., "Micro-structure of ITO ceramics sintered at different temperatures and its effect on the properties of deposited ITO films", Journal of the European Ceramic Society., 38: 521–533, (2018)
  • [31] Omata T., Kita M., Okada H., Otsuka-Yao-Matsuo S., Ono N., and Ikawa H., "Characterization of indium-tin oxide sputtering targets showing various densities of nodule formation", Thin Solid Films., 503: 22–28, (2006)
  • [32] Mei F., Yuan T., Li R., Qin K., and Huang J., "Improving the densification of indium tin oxide targets via secondary cold isostatic pressing and oxygen exchange treatments", Scripta Materialia., 155: 109–113, (2018)
  • [33] Lo C.C., and Hsieh T.E., "Preparation of IGZO sputtering target and its applications to thin-film transistor devices", Ceramics International., 38: 3977–3983, (2012)
  • [34] Liu Y., Shu Y., Zeng X., Sun B., Liang P., Zhang Y., Qiu C., Yi J., and He J., "Study on the sintering behavior and characterization of the IGZO ceramics by slip casting", International Journal of Applied Ceramic Technology., 16: 585–594, (2019)
  • [35] Liu Y., Zhang Y., Qiu C., Qi C., Sun B., Zeng X., Zhu J., Shu Y., and He J., "Hydrothermal synthesis and characterization of In2O3-ZnGa2O4 nanocomposites and their application in IGZO ceramics", Ceramics International., 45: 4381–4391, (2019)
  • [36] Seo S.J., Cho J.H., Jang Y.H., and Kim C.H., "Size control of nanocrystals in InGaZnO4 thin films fabricated by using the sol-gel method", Journal of the Korean Physical Society., 60: 267–271, (2012)
  • [37] Jeon H., Song J., Na S., Moon M., Lim J., Joo J., Jung D., Kim H., Noh J., and Lee H.J., "A study on the microstructural and chemical evolution of In-Ga-Zn-O sol-gel films and the effects on the electrical properties", Thin Solid Films., 540: 31–35, (2013)
  • [38] Cheong H.J., Fukuda N., Sakai H., Ogura S., Takeuchi K., Nagahata R., and Uemura S., Characterization of an oxide semiconductor prepared by microwave sintering, in: Japanese Journal of Applied Physics, Japan Society of Applied Physics, 2014: p. 05HA12
  • [39] Pu H., Zhou Q., Yue L., and Zhang Q., "Solution-processed indium gallium zinc oxide thin-film transistors with infrared irradiation annealing", Semiconductor Science and Technology., 28: 105002, (2013)
  • [40] Jeon H., Song J., Na S., Moon M., Lim J., Joo J., Jung D., Kim H., Noh J., and Lee H.J., "A study on the microstructural and chemical evolution of In-Ga-Zn-O sol-gel films and the effects on the electrical properties", Thin Solid Films., 540: 31–35, (2013)
  • [41] Liu Y., Shu Y., Zeng X., Sun B., Liang P., Zhang Y., Qiu C., Yi J., and He J., "Study on the sintering behavior and characterization of the IGZO ceramics by slip casting", International Journal of Applied Ceramic Technology., 16: 585–594, (2019)
  • [42] Wu M.C., Hsiao K.C., and Lu H.C., "Synthesis of InGaZnO4 nanoparticles using low temperature multistep co-precipitation method", Materials Chemistry and Physics., 162: 386–391, (2015)
  • [43] Liu J.A., Li C.H., Shan J.J., Wu J.M., Gui R.F., and Shi Y.S., "Preparation of high-density InGaZnO4 target by the assistance of cold sintering", Materials Science in Semiconductor Processing., 84: 17–23, (2018)
  • [44] Chen J., Wang L., Su X., Kong L., Liu G., and Zhang X., "InGaZnO semiconductor thin film fabricated using pulsed laser deposition", Optics Express., 18: 1398, (2010)
  • [45] Wu G.M., Liu C.Y., and Sahoo A.K., "RF sputtering deposited a-IGZO films for LCD alignment layer application", Applied Surface Science., 354: 48–54, (2015)
  • [46] Wang X.M., Bai X., Duan H.Y., Shi Z.X., Sun J., Lu S.G., and Huang S.T., "Preparation of Al-doped ZnO sputter target by hot pressing", Transactions of Nonferrous Metals Society of China (English Edition)., 21: 1550–1556, (2011)

Production, Pelleting and Characterization of IGZO particles by Sol-Gel Method

Year 2021, , 1317 - 1325, 01.09.2021
https://doi.org/10.2339/politeknik.724867

Abstract

Indium Gallium Zinc Oxide (InGaZnO4, IGZO) material, which shows high electron mobility, low threshold voltage and transparent after coating, has been used with increasing acceleration in screen technologies. In this study, IGZO nanoparticles were successfully produced using the sol-gel method. The synthesized powders were calcined at 1100 and 1250 °C. Similarly, pellets produced from powders were heat treated at different sintering temperatures. Surface morphology and particle size, crystal and phase structure, chemical composition and thermal behavior of synthesized particles and pellets were carried out by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Differential Thermal Analysis-Thermogravimetric analysis (DTA-TGA), respectively. As a result of phase analysis, completely crystalline InGaZnO4 phase was obtained. The relative density of IGZO pellets sintered at 1300 oC for 12 hours was 93% and it showed highly IGZO crystalline structure and the large. IGZO particles and pellets developed in my study have the potential for high-quality target materials used in the application of electronic devices.

References

  • [1] Krishnan R., Thirumalai J., and Chandramohan R., "Room temperature photo-induced, Eu3+-doped IGZO transparent thin films fabricated using sol–gel method", Journal of Nanostructure in Chemistry., 3: 1–4, (2013)
  • [2] Kamiya T., Nomura K., and Hosono H., "Present status of amorphous In–Ga–Zn–O thin-film transistors", Science and Technology of Advanced Materials., 11: 044305, (2010)
  • [3] Dehuff N.L., Kettenring E.S., Hong D., Chiang H.Q., Wager J.F., Hoffman R.L., Park C.H., and Keszler D.A., "Transparent thin-film transistors with zinc indium oxide channel layer", Journal of Applied Physics., 97: 064505, (2005)
  • [4] Kim M.G., Kanatzidis M.G., Facchetti A., and Marks T.J., "Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing", Nature Materials., 10: 382–388, (2011)
  • [5] Fortunato E.M.C., Barquinha P.M.C., Pimentel A.C.M.B.G., Gonçalves A.M.F., Marques A.J.S., Martins R.F.P., and Pereira L.M.N., "Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature", Applied Physics Letters., 85: 2541–2543, (2004)
  • [6] Kim Y.H., Heo J.S., Kim T.H., Park S., Yoon M.H., Kim J., Oh M.S., Yi G.R., Noh Y.Y., and Park S.K., "Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films", Nature., 489: 128–132, (2012)
  • [7] Nomura K., Ohta H., Takagi A., Kamiya T., Hirano M., and Hosono H., "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors", Nature., 432: 488–492, (2004)
  • [8] Lo C.C., and Hsieh T.E., "Preparation of IGZO sputtering target and its applications to thin-film transistor devices", Ceramics International., 38: 3977–3983, (2012)
  • [9] Nomura K., Takagi A., Kamiya T., Ohta H., Hirano M., and Hosono H., "Amorphous oxide semiconductors for high-performance flexible thin-film transistors", Japanese journal of applied physics., 45: 4303, (2006)
  • [10] Shin J., and Choi D., "Effect of Oxygen on the Optical and the Electrical Properties of Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering", Journal of the Korean Physical Society., 53: 2019–2023, (2008)
  • [11] Takagi A., Nomura K., Ohta H., Yanagi H., Kamiya T., Hirano M., and Hosono H., "Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4", Thin Solid Films., 486: 38–41, (2005)
  • [12] Hosono H., Yasukawa M., and Kawazoe H., "Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides", Journal of Non-Crystalline Solids., 203: 334–344, (1996)
  • [13] Dehuff N.L., Kettenring E.S., Hong D., Chiang H.Q., Wager J.F., Hoffman R.L., Park C.H., and Keszler D.A., "Transparent thin-film transistors with zinc indium oxide channel layer", Journal of Applied Physics., 97: 064505, (2005)
  • [14] Tominaga K., Tsuzuki T., Maruyama T., Mikawa M., and Moriga T., "Properties of Amorphous Transparent Conductive In-Ga-Zn Oxide Films Deposited on Fused Quartz by the PLD Method", Surface Science and Nanotechnology., 7: 273–276, (2009)
  • [15] Yang S., Bak J.Y., Yoon S.M., Ryu M.K., Oh H., Hwang C.S., Kim G.H., Park S.H.K., and Jang J., "Low-temperature processed flexible In-Ga-Zn-O thin-film transistors exhibiting high electrical performance", IEEE Electron Device Letters., 32: 1692–1694, (2011)
  • [16] Kim Y.H., Han M.K., Han J.I., and Park S.K., "Effect of metallic composition on electrical properties of solution-processed indium-gallium-zinc-oxide thin-film transistors", IEEE Transactions on Electron Devices., 57: 1009–1014, (2010)
  • [17] An S., Mativenga M., Kim Y., and Jang J., "Improvement of bias-stability in amorphous-indium-gallium-zinc-oxide thin-film transistors by using solution-processed Y2O3 passivation", Applied Physics Letters., 105: 053507, (2014)
  • [18] Wu M.W., Lai P.H., Hong C.H., and Chou F.C., "The sintering behavior, microstructure, and electrical properties of gallium-doped zinc oxide ceramic targets", Journal of the European Ceramic Society., 34: 3715–3722, (2014)
  • [19] Chen J., Zhong J., Luo W., Qi C., Sun B., Liu S., Liu B., Shu Y., and He J., "Study on powder preparation of IGZO target and its effect on sintering", Journal of Alloys and Compounds., 800: 468–477, (2019)
  • [20] Wu M.W., Lai P.H., Hong C.H., and Chou F.C., "The sintering behavior, microstructure, and electrical properties of gallium-doped zinc oxide ceramic targets", Journal of the European Ceramic Society., 34: 3715–3722, (2014)
  • [21] Chen Z., Li F., Chen X., Xu S., Xiong D.K., Huang Y.Y., and Deng W., "Influence of sintering temperatures of ceramic targets on microstructures and photoelectric properties of titanium-doped ZnO nano-films", Journal of Materials Science: Materials in Electronics., 28: 4654–4660, (2017)
  • [22] Mei F., Yuan T., Li R., Qin K., and Huang J., "Improving the densification of indium tin oxide targets via secondary cold isostatic pressing and oxygen exchange treatments", Scripta Materialia., 155: 109–113, (2018)
  • [23] Omata T., Kita M., Okada H., Otsuka-Yao-Matsuo S., Ono N., and Ikawa H., "Characterization of indium-tin oxide sputtering targets showing various densities of nodule formation", Thin Solid Films., 503: 22–28, (2006)
  • [24] Wang K., Gan X., Li Z., Zhang D., and Zhou K., "Rheological properties of ITO slurries prepared from nano-powders for gelcasting process", Ceramics International., 40: 12623–12628, (2014)
  • [25] Medvedovski E., Alvarez N., Yankov O., and Olsson M.K., "Advanced indium-tin oxide ceramics for sputtering targets", Ceramics International., 34: 1173–1182, (2008)
  • [26] Chen J., Zhong J., Luo W., Qi C., Sun B., Liu S., Liu B., Shu Y., and He J., "Study on powder preparation of IGZO target and its effect on sintering", Journal of Alloys and Compounds., 800: 468–477, (2019)
  • [27] Ma X., Zhang W., Wang D., Sun B., and Zhong J., "Comparing microstructures of ITO sputtering targets prepared by tin doped indium oxide powders and In2O3-SnO2 mixed powders", Rare Metal Materials and Engineering., 44: 2937–2942, (2015)
  • [28] Liu J., Zhang W., Song D., Ma Q., Zhang L., Zhang H., Zhang L., and Wu R., "Investigation of aluminum-gallium co-doped zinc oxide targets for sputtering thin film and photovoltaic application", Journal of Alloys and Compounds., 575: 174–182, (2013)
  • [29] Wu M.W., "Two-step sintering of aluminum-doped zinc oxide sputtering target by using a submicrometer zinc oxide powder", Ceramics International., 38: 6229–6234, (2012)
  • [30] Mei F., Yuan T., Li R., Qin K., Zhou L., and Wang W., "Micro-structure of ITO ceramics sintered at different temperatures and its effect on the properties of deposited ITO films", Journal of the European Ceramic Society., 38: 521–533, (2018)
  • [31] Omata T., Kita M., Okada H., Otsuka-Yao-Matsuo S., Ono N., and Ikawa H., "Characterization of indium-tin oxide sputtering targets showing various densities of nodule formation", Thin Solid Films., 503: 22–28, (2006)
  • [32] Mei F., Yuan T., Li R., Qin K., and Huang J., "Improving the densification of indium tin oxide targets via secondary cold isostatic pressing and oxygen exchange treatments", Scripta Materialia., 155: 109–113, (2018)
  • [33] Lo C.C., and Hsieh T.E., "Preparation of IGZO sputtering target and its applications to thin-film transistor devices", Ceramics International., 38: 3977–3983, (2012)
  • [34] Liu Y., Shu Y., Zeng X., Sun B., Liang P., Zhang Y., Qiu C., Yi J., and He J., "Study on the sintering behavior and characterization of the IGZO ceramics by slip casting", International Journal of Applied Ceramic Technology., 16: 585–594, (2019)
  • [35] Liu Y., Zhang Y., Qiu C., Qi C., Sun B., Zeng X., Zhu J., Shu Y., and He J., "Hydrothermal synthesis and characterization of In2O3-ZnGa2O4 nanocomposites and their application in IGZO ceramics", Ceramics International., 45: 4381–4391, (2019)
  • [36] Seo S.J., Cho J.H., Jang Y.H., and Kim C.H., "Size control of nanocrystals in InGaZnO4 thin films fabricated by using the sol-gel method", Journal of the Korean Physical Society., 60: 267–271, (2012)
  • [37] Jeon H., Song J., Na S., Moon M., Lim J., Joo J., Jung D., Kim H., Noh J., and Lee H.J., "A study on the microstructural and chemical evolution of In-Ga-Zn-O sol-gel films and the effects on the electrical properties", Thin Solid Films., 540: 31–35, (2013)
  • [38] Cheong H.J., Fukuda N., Sakai H., Ogura S., Takeuchi K., Nagahata R., and Uemura S., Characterization of an oxide semiconductor prepared by microwave sintering, in: Japanese Journal of Applied Physics, Japan Society of Applied Physics, 2014: p. 05HA12
  • [39] Pu H., Zhou Q., Yue L., and Zhang Q., "Solution-processed indium gallium zinc oxide thin-film transistors with infrared irradiation annealing", Semiconductor Science and Technology., 28: 105002, (2013)
  • [40] Jeon H., Song J., Na S., Moon M., Lim J., Joo J., Jung D., Kim H., Noh J., and Lee H.J., "A study on the microstructural and chemical evolution of In-Ga-Zn-O sol-gel films and the effects on the electrical properties", Thin Solid Films., 540: 31–35, (2013)
  • [41] Liu Y., Shu Y., Zeng X., Sun B., Liang P., Zhang Y., Qiu C., Yi J., and He J., "Study on the sintering behavior and characterization of the IGZO ceramics by slip casting", International Journal of Applied Ceramic Technology., 16: 585–594, (2019)
  • [42] Wu M.C., Hsiao K.C., and Lu H.C., "Synthesis of InGaZnO4 nanoparticles using low temperature multistep co-precipitation method", Materials Chemistry and Physics., 162: 386–391, (2015)
  • [43] Liu J.A., Li C.H., Shan J.J., Wu J.M., Gui R.F., and Shi Y.S., "Preparation of high-density InGaZnO4 target by the assistance of cold sintering", Materials Science in Semiconductor Processing., 84: 17–23, (2018)
  • [44] Chen J., Wang L., Su X., Kong L., Liu G., and Zhang X., "InGaZnO semiconductor thin film fabricated using pulsed laser deposition", Optics Express., 18: 1398, (2010)
  • [45] Wu G.M., Liu C.Y., and Sahoo A.K., "RF sputtering deposited a-IGZO films for LCD alignment layer application", Applied Surface Science., 354: 48–54, (2015)
  • [46] Wang X.M., Bai X., Duan H.Y., Shi Z.X., Sun J., Lu S.G., and Huang S.T., "Preparation of Al-doped ZnO sputter target by hot pressing", Transactions of Nonferrous Metals Society of China (English Edition)., 21: 1550–1556, (2011)
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Serdar Yıldırım 0000-0002-3730-3473

Publication Date September 1, 2021
Submission Date April 21, 2020
Published in Issue Year 2021

Cite

APA Yıldırım, S. (2021). Sol-Jel Yöntemiyle IGZO Partiküllerin Üretimi, Peletlenmesi ve Karakterizasyonu. Politeknik Dergisi, 24(3), 1317-1325. https://doi.org/10.2339/politeknik.724867
AMA Yıldırım S. Sol-Jel Yöntemiyle IGZO Partiküllerin Üretimi, Peletlenmesi ve Karakterizasyonu. Politeknik Dergisi. September 2021;24(3):1317-1325. doi:10.2339/politeknik.724867
Chicago Yıldırım, Serdar. “Sol-Jel Yöntemiyle IGZO Partiküllerin Üretimi, Peletlenmesi Ve Karakterizasyonu”. Politeknik Dergisi 24, no. 3 (September 2021): 1317-25. https://doi.org/10.2339/politeknik.724867.
EndNote Yıldırım S (September 1, 2021) Sol-Jel Yöntemiyle IGZO Partiküllerin Üretimi, Peletlenmesi ve Karakterizasyonu. Politeknik Dergisi 24 3 1317–1325.
IEEE S. Yıldırım, “Sol-Jel Yöntemiyle IGZO Partiküllerin Üretimi, Peletlenmesi ve Karakterizasyonu”, Politeknik Dergisi, vol. 24, no. 3, pp. 1317–1325, 2021, doi: 10.2339/politeknik.724867.
ISNAD Yıldırım, Serdar. “Sol-Jel Yöntemiyle IGZO Partiküllerin Üretimi, Peletlenmesi Ve Karakterizasyonu”. Politeknik Dergisi 24/3 (September 2021), 1317-1325. https://doi.org/10.2339/politeknik.724867.
JAMA Yıldırım S. Sol-Jel Yöntemiyle IGZO Partiküllerin Üretimi, Peletlenmesi ve Karakterizasyonu. Politeknik Dergisi. 2021;24:1317–1325.
MLA Yıldırım, Serdar. “Sol-Jel Yöntemiyle IGZO Partiküllerin Üretimi, Peletlenmesi Ve Karakterizasyonu”. Politeknik Dergisi, vol. 24, no. 3, 2021, pp. 1317-25, doi:10.2339/politeknik.724867.
Vancouver Yıldırım S. Sol-Jel Yöntemiyle IGZO Partiküllerin Üretimi, Peletlenmesi ve Karakterizasyonu. Politeknik Dergisi. 2021;24(3):1317-25.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.