Research Article
BibTex RIS Cite

Production and Characterization of Composite Filaments for 3D Printing

Year 2018, Volume: 21 Issue: 2, 397 - 402, 01.06.2018
https://doi.org/10.2339/politeknik.389591

Abstract

In this study, various nano and
micro particles with different properties, including density, surface area,
purity and particle morphology were used as reinforcement particles for the
production of polymer composite filaments to be used for 3D printing.
Acrylonitrile Butadiene Styrene (ABS) was matrix material and Multi wall carbon
nanotubes (MWCNTs), SiO2, ZrB2, and, Al particles were reinforcements.
Production of the composite filaments was carried out by using a twin screw
extruder. Produced composite filaments were characterized via Differential Scanning
Calorimeter (DSC), Scanning Electron Microscope (SEM), Energy-Dispersive X-ray
Spectroscopy (EDS), tensile test and surface roughness tests. Results showed
that addition of micro/nano particles into ABS matrix improved the Ultimate
Tensile Strength (UTS) of the composites by around 16% compared to
non-reinforced one. As a result of reinforcing with micro particles, ZrB2 and
Al, the tensile strain of neat-ABS filament increased by 17.8% and 40%,
respectively 

References

  • [1]. Ning, F., Cong, W., Qiu, J., Wei, J., & Wang, S.,“Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling”, Composites Part B: Engineering, 80: 369-378, (2015).
  • [2]. Hill, N., & Haghi, M., “Deposition Direction-Dependent Failure Criteria For Fused Deposition Modeling Polycarbonate”, Rapid Prototyping Journal, 20(3):221-227, (2014).
  • [3]. Chatterjee, A., & Deopura, B. L., “High modulus and high strength PP nanocomposite filament”, Composites Part A: Applied Science and Manufacturing, 37(5): 813-817, (2006).
  • [4]. Nawani, P., Burger, C., Rong, L., Hsiao, B. S., & Tsou, A. H., “Structure and Permeability Relationships in Polymer Nanocomposites Containing Carbon Black and Organoclay”, Polymer, 64: 19-28, (2015).
  • [5]. Weng, Z., Wang, J., Senthil, T., & Wu, L., “Mechanical and Thermal Properties of ABS/Montmorillonite Nanocomposites for Fused Deposition Modeling 3D Printing”, Materials & Design,102: 276-283, (2016).
  • [6]. Ciprari, D., Jacob, K., & Tannenbaum, R., “Characterization of Polymer Nanocomposite Interphase and Its Impact on Mechanical Properties”, Macromolecules, 39(19): 6565-6573, (2006).
  • [7]. Mueller, J., Shea, K., & Daraio, C., “Mechanical Properties of Parts Fabricated With Inkjet 3D Printing Through Efficient Experimental Design”, Materials & Design, 86: 902-912, (2015).
  • [8]. Dawoud, M., Taha, I., & Ebeid, S. J., “Mechanical Behaviour of ABS: An Experimental Study Using FDM and Injection Moulding Techniques”, Journal of Manufacturing Processes, 21:39-45, (2016).
  • [9]. Li, L., Sun, Q., Bellehumeur, C., & Gu, P., “Composite Modeling and Analysis for Fabrication of FDM Prototypes With Locally Controlled Properties”, Journal of Manufacturing Processes, 4(2): 129-141, (2002).
  • [10]. Sun, Q., Rizvi, G. M., Bellehumeur, C. T., & Gu, P., “Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments”, Rapid Prototyping Journal, 14(2): 72-80, (2008).
  • [11]. Faes, M., Ferraris, E., & Moens, D., “Influence of Inter-Layer Cooling Time on the Quasi-Static Properties of ABS Components Produced via Fused Deposition Modelling”, Procedia CIRP, 42:748-753, (2016).
  • [12]. Dul, S., Fambri, L., & Pegoretti, A., “Fused Deposition Modelling with ABS–Graphene Nanocomposites”, Composites Part A: Applied Science and Manufacturing, 85: 181-191, (2016).
  • [13]. Forest, C., Chaumont, P., Cassagnau, P., Swoboda, B., & Sonntag, P., “Generation Of Nanocellular Foams From ABS Terpolymers”, European Polymer Journal, 65: 209-220, (2015).

Production and Characterization of Composite Filaments for 3D Printing

Year 2018, Volume: 21 Issue: 2, 397 - 402, 01.06.2018
https://doi.org/10.2339/politeknik.389591

Abstract

In this study, various nano and
micro particles with different properties, including density, surface area,
purity and particle morphology were used as reinforcement particles for the
production of polymer composite filaments to be used for 3D printing.
Acrylonitrile Butadiene Styrene (ABS) was matrix material and Multi wall carbon
nanotubes (MWCNTs), SiO2, ZrB2, and, Al particles were reinforcements.
Production of the composite filaments was carried out by using a twin screw
extruder. Produced composite filaments were characterized via Differential Scanning
Calorimeter (DSC), Scanning Electron Microscope (SEM), Energy-Dispersive X-ray
Spectroscopy (EDS), tensile test and surface roughness tests. Results showed
that addition of micro/nano particles into ABS matrix improved the Ultimate
Tensile Strength (UTS) of the composites by around 16% compared to
non-reinforced one. As a result of reinforcing with micro particles, ZrB2 and
Al, the tensile strain of neat-ABS filament increased by 17.8% and 40%,
respectively 

References

  • [1]. Ning, F., Cong, W., Qiu, J., Wei, J., & Wang, S.,“Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling”, Composites Part B: Engineering, 80: 369-378, (2015).
  • [2]. Hill, N., & Haghi, M., “Deposition Direction-Dependent Failure Criteria For Fused Deposition Modeling Polycarbonate”, Rapid Prototyping Journal, 20(3):221-227, (2014).
  • [3]. Chatterjee, A., & Deopura, B. L., “High modulus and high strength PP nanocomposite filament”, Composites Part A: Applied Science and Manufacturing, 37(5): 813-817, (2006).
  • [4]. Nawani, P., Burger, C., Rong, L., Hsiao, B. S., & Tsou, A. H., “Structure and Permeability Relationships in Polymer Nanocomposites Containing Carbon Black and Organoclay”, Polymer, 64: 19-28, (2015).
  • [5]. Weng, Z., Wang, J., Senthil, T., & Wu, L., “Mechanical and Thermal Properties of ABS/Montmorillonite Nanocomposites for Fused Deposition Modeling 3D Printing”, Materials & Design,102: 276-283, (2016).
  • [6]. Ciprari, D., Jacob, K., & Tannenbaum, R., “Characterization of Polymer Nanocomposite Interphase and Its Impact on Mechanical Properties”, Macromolecules, 39(19): 6565-6573, (2006).
  • [7]. Mueller, J., Shea, K., & Daraio, C., “Mechanical Properties of Parts Fabricated With Inkjet 3D Printing Through Efficient Experimental Design”, Materials & Design, 86: 902-912, (2015).
  • [8]. Dawoud, M., Taha, I., & Ebeid, S. J., “Mechanical Behaviour of ABS: An Experimental Study Using FDM and Injection Moulding Techniques”, Journal of Manufacturing Processes, 21:39-45, (2016).
  • [9]. Li, L., Sun, Q., Bellehumeur, C., & Gu, P., “Composite Modeling and Analysis for Fabrication of FDM Prototypes With Locally Controlled Properties”, Journal of Manufacturing Processes, 4(2): 129-141, (2002).
  • [10]. Sun, Q., Rizvi, G. M., Bellehumeur, C. T., & Gu, P., “Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments”, Rapid Prototyping Journal, 14(2): 72-80, (2008).
  • [11]. Faes, M., Ferraris, E., & Moens, D., “Influence of Inter-Layer Cooling Time on the Quasi-Static Properties of ABS Components Produced via Fused Deposition Modelling”, Procedia CIRP, 42:748-753, (2016).
  • [12]. Dul, S., Fambri, L., & Pegoretti, A., “Fused Deposition Modelling with ABS–Graphene Nanocomposites”, Composites Part A: Applied Science and Manufacturing, 85: 181-191, (2016).
  • [13]. Forest, C., Chaumont, P., Cassagnau, P., Swoboda, B., & Sonntag, P., “Generation Of Nanocellular Foams From ABS Terpolymers”, European Polymer Journal, 65: 209-220, (2015).
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ebubekir Çanti This is me

Mustafa Aydın

Ferhat Yıldırım This is me

Publication Date June 1, 2018
Submission Date April 18, 2017
Published in Issue Year 2018 Volume: 21 Issue: 2

Cite

APA Çanti, E., Aydın, M., & Yıldırım, F. (2018). Production and Characterization of Composite Filaments for 3D Printing. Politeknik Dergisi, 21(2), 397-402. https://doi.org/10.2339/politeknik.389591
AMA Çanti E, Aydın M, Yıldırım F. Production and Characterization of Composite Filaments for 3D Printing. Politeknik Dergisi. June 2018;21(2):397-402. doi:10.2339/politeknik.389591
Chicago Çanti, Ebubekir, Mustafa Aydın, and Ferhat Yıldırım. “Production and Characterization of Composite Filaments for 3D Printing”. Politeknik Dergisi 21, no. 2 (June 2018): 397-402. https://doi.org/10.2339/politeknik.389591.
EndNote Çanti E, Aydın M, Yıldırım F (June 1, 2018) Production and Characterization of Composite Filaments for 3D Printing. Politeknik Dergisi 21 2 397–402.
IEEE E. Çanti, M. Aydın, and F. Yıldırım, “Production and Characterization of Composite Filaments for 3D Printing”, Politeknik Dergisi, vol. 21, no. 2, pp. 397–402, 2018, doi: 10.2339/politeknik.389591.
ISNAD Çanti, Ebubekir et al. “Production and Characterization of Composite Filaments for 3D Printing”. Politeknik Dergisi 21/2 (June 2018), 397-402. https://doi.org/10.2339/politeknik.389591.
JAMA Çanti E, Aydın M, Yıldırım F. Production and Characterization of Composite Filaments for 3D Printing. Politeknik Dergisi. 2018;21:397–402.
MLA Çanti, Ebubekir et al. “Production and Characterization of Composite Filaments for 3D Printing”. Politeknik Dergisi, vol. 21, no. 2, 2018, pp. 397-02, doi:10.2339/politeknik.389591.
Vancouver Çanti E, Aydın M, Yıldırım F. Production and Characterization of Composite Filaments for 3D Printing. Politeknik Dergisi. 2018;21(2):397-402.