Year 2020, Volume 23 , Issue 1, Pages 249 - 255 2020-03-01

Titanyum Dioksit/İndirgenmiş Grafen Oksit Kompozitlerin Üretimi ve Fotokatalitik Özelliklerinin İncelenmesi
Production of Titanium Dioxide/Reduced Graphene Oxide Composites and Investigation of Their Photocatalytic Properties

Metin YURDDAŞKAL [1] , Uğur KARTAL [2] , Eyyüp Can DOLUEL [3]


Bu çalışmada, titanyum dioksit/indirgenmiş grafen oksit (TiO2/rGO) kompozitleri sol-jel yöntemi kullanılarak sentezlenmiştir. Hummers metodu ile üretilen grafen oksitten (GO) kimyasal indirgeme yardımıyla rGO elde edilmiştir. TiO2/rGO kompozitleri ağırlıkça % 0,5, 1, 2, 4, 6 oranlarında rGO içerecek şekilde üretilmiş olup rGO katkısının yapısal, morfolojik ve fotokatalitik özellikler üzerine etkisi araştırılmıştır. Buna ek olarak TiO2/rGO kompozitleri ile karşılaştırma yapabilmek için saf TiO2’de üretilmiştir. TiO2/rGO kompozitlerinin kristal faz yapısı, yüzey morfolojisi ve kimyasal bağ yapısı XRD, SEM ve FTIR kullanılarak karakterize edilmiştir. Fotokatalitik performansın belirlenmesi için Uv-Vis spektroskopisi kullanılarak absorbans değerleri elde edilmiştir. Fotokatalitik özelliklerinin incelenmesi sonucunda ağırlıkça % 4 rGO içeren kompozitin % 87,1’lik bir fotokatalitik parçalama verimine sahip olduğu görülmüştür. Bu çalışma, TiO2’ye ağırlıkça % 4’lük rGO eklenmesiyle elde edilen TiO2/rGO kompozitinin fotokatalitik performansı saf TiO2’ye kıyasla % 20 arttırdığını göstermiştir.

In this study, titanium dioxide/reduced graphene oxide (TiO2/rGO) composites were synthesized by sol-gel method. Reduced graphene oxide was obtained with the aid of chemical reduction of graphene oxide (GO) produced by the Hummers method. TiO2/rGO composites were produced with different rGO content, 0.5, 1, 2, 4 and 6 wt. %, to investigate the effect of rGO addition on structural, morphological and photocatalytical properties. In addition, the pure TiO2 was also produced for comparison with all TiO2/rGO composites. The crystal phase structure, surface morphology, and chemical bond structure of TiO2/rGO composites were characterized using an XRD, SEM, and FTIR. Absorbance values were obtained by UV-Vis spectroscopy to determine the photocatalytic performance. As a result of the investigation of photocatalytic properties, it was observed that the composite containing 4 wt. % of rGO has a photocatalytic degradation efficiency of 87.1%. This study demonstrated that the TiO2/rGO composite obtained by the addition of 4 wt. % of rGO to TiO2 enhanced the photocatalytic performance by 20% compared to pure TiO2.

  • [1]. Dargahi, Z., Asgharzadeh, H.and Maleki-Ghaleh, H. “Synthesis of Mo-Doped TiO2/Reduced Graphene Oxide Nanocomposite for Photoelectrocatalytic Applications.” Ceramics International 44, no. 11 (2018): 13015–23.
  • [2]. Ge, M., Chunyan, C., Jianying, H., Shuhui L., Zhong C., Ke Q. Z., Al-Deyab S. S., and Yuekun L. “A Review of One-Dimensional TiO2 Nanostructured Materials for Environmental and Energy Applications.” Journal of Materials Chemistry A, 2016.
  • [3]. Truppi, A., Francesca, P., Tiziana, P., Marinella, S., Angela, A., Maria, C., and Roberto, C. “Visible-Light-Active TiO2-Based Hybrid Nanocatalysts for Environmental Applications.” Catalysts, 2017.
  • [4]. Kim, Ki D., Ta,e Jin L., and Hee, Taik K. “Optimal Conditions for Synthesis of TiO2 Nanoparticles in Semi-Batch Reactor.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003.
  • [5]. Khan, H., Zhuoran, J., and Dimitrios, B. “Molybdenum Doped Graphene/TiO2hybrid Photocatalyst for UV/Visible Photocatalytic Applications.” Solar Energy, 2018.
  • [6]. Maeda, Kazuhiko. “Photocatalytic Water Splitting Using Semiconductor Particles: History and Recent Developments.” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 12, no. 4 (December 1, 2011): 237–68.
  • [7]. Mamba, G., Mbianda, X. Y., and Mishra, A. K. “Gadolinium Nanoparticle-Decorated Multiwalled Carbon Nanotube/Titania Nanocomposites for Degradation of Methylene Blue in Water under Simulated Solar Light.” Environmental Science and Pollution Research 21, no. 8 (April 12, 2014): 5597–5609.
  • [8]. Sreeja, S., and Vidya Shetty, K. “Photocatalytic Water Disinfection under Solar Irradiation by Ag@TiO2 Core-Shell Structured Nanoparticles.” Solar Energy 157 (November 15, 2017): 236–43.
  • [9]. Behpour, M., Rozita Foulady, D., and Noshin M. “Considering Photocatalytic Activity of N/F/S-Doped TiO2 Thin Films in Degradation of Textile Waste under Visible and Sunlight Irradiation.” Solar Energy 158 (December 1, 2017): 636–43.
  • [10]. Demirci, S., Dikici, T., Yurddaskal, M.,Gultekin, S., Toparli, M., and Celik, E. “Synthesis and Characterization of Ag Doped TiO2heterojunction Films and Their Photocatalytic Performances.” Applied Surface Science, 2016.
  • [11]. Kaur, T., Sraw, A., Toor, A., P., and Wanchoo, R.K. “Utilization of Solar Energy for the Degradation of Carbendazim and Propiconazole by Fe Doped TiO2.” Solar Energy 125 (February 1, 2016): 65–76.
  • [12]. Yurtsever, H., A., and Çiftçioğlu, M. “Nadir Toprak Elementi Katkili Kimyasal Çöktürme Titanya Tozlari İle Yapay Fotosentezle Hidrojen Üretimi.” Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 17, no. 50 (May 1, 2015): 54–67.
  • [13]. Ahmmad, B., Kusumoto, Y., Somekawa, S., and Ikeda, M. “Carbon Nanotubes Synergistically Enhance Photocatalytic Activity of TiO2.” Catalysis Communications 9, no. 6 (March 31, 2008): 1410–13.
  • [14]. Shi, J., Chen, G., Zeng, G., Chen, A., He K., Huang, Z., Hu, L., Zeng, J., Wu J., and Liu, W. “Hydrothermal Synthesis of Graphene Wrapped Fe-Doped TiO2 Nanospheres with High Photocatalysis Performance.” Ceramics International 44, no. 7 (May 1, 2018): 7473–80.
  • [15]. Vasilaki, E., Georgaki, I., Vernardou, D., Vamvakaki, M., and Katsarakis, N. “Ag-Loaded TiO2/Reduced Graphene Oxide Nanocomposites for Enhanced Visible-Light Photocatalytic Activity.” Applied Surface Science 353 (October 30, 2015): 865–72.
  • [16]. Isari, A.A., Payan, A., Fattahi, M., Jorfi, S., and Kakavandi, B. “Photocatalytic Degradation of Rhodamine B and Real Textile Wastewater Using Fe-Doped TiO2 Anchored on Reduced Graphene Oxide (Fe-TiO2/RGO): Characterization and Feasibility, Mechanism and Pathway Studies.” Applied Surface Science 462 (December 31, 2018): 549–64.
  • [17]. Li, X., Shen, R., Ma, S., Chen, X., and Xie, J., “Graphene-Based Heterojunction Photocatalysts.” Applied Surface Science 430 (February 1, 2018): 53–107.
  • [18]. Min, S., Hou, J., Lei, Y., Ma, X., and Lu, G. “Facile One-Step Hydrothermal Synthesis toward Strongly Coupled TiO2/Graphene Quantum Dots Photocatalysts for Efficient Hydrogen Evolution.” Applied Surface Science 396 (February 28, 2017): 1375–82.
  • [19]. Chen, C., Zhang Y., Zeng, J., Zhang, F., Zhou, K., Bowen, C.R., and Zhang, D. “Aligned Macroporous TiO2/Chitosan/Reduced Graphene Oxide (RGO) Composites for Photocatalytic Applications.” Applied Surface Science 424 (December 1, 2017): 170–76.
  • [20]. Cheng, L., Xiang, Q., Liao, Y., and Zhang, H. “CdS-Based Photocatalysts.” Energy & Environmental Science 11, no. 6 (2018): 1362–91.
  • [21]. Xiang, Q.,Yu, J., Jaroniec, M.,. “Graphene-Based Semiconductor Photocatalysts.” Chem. Soc. Rev. 41, no. 2 (January 4, 2012): 782–96.
  • [22]. Xu, Y., Mo, Y., Tian, J., Wang, P., Yu H., and Yu, J. “The Synergistic Effect of Graphitic N and Pyrrolic N for the Enhanced Photocatalytic Performance of Nitrogen-Doped Graphene/TiO2 Nanocomposites.” Applied Catalysis B: Environmental 181 (February 1, 2016): 810–17.
  • [23]. Hummers, W.S., and Richard E.O. “Preparation of Graphitic Oxide.” Journal of the American Chemical Society, 1958.
  • [24]. Moon, I.K., Lee, J., Ruoff, R.S., and Lee, H. “Reduced Graphene Oxide by Chemical Graphitization.” Nature Communications, 2010.
  • [25]. Fan, W., Yu, X., Lu, H.C., Bai, H., Zhang, C., and Shi W. “Fabrication of TiO2/RGO/Cu2O Heterostructure for Photoelectrochemical Hydrogen Production.” Applied Catalysis B: Environmental 181 (February 1, 2016): 7–15.
  • [26]. Xiang, Q., Yu, J., and Jaroniec, M. “Enhanced Photocatalytic H2-Production Activity of Graphene-Modified Titania Nanosheets.” Nanoscale 3, no. 9 (September 1, 2011): 3670.
  • [27]. Erol, M., and Bilgin, K. “Boron Doped Titaniumdioxide Nanotube Arrays: Production, Characterization and Photocatalytic Properties.” Journal of Porous Materials, 2017.
  • [28]. Yurddaskal, M., Dikici, T., Yildirim, S., Yurddaskal, M., Toparli, M.,and Celik, E. “Fabrication and Characterization of Nanostructured Anatase TiO2 Films Prepared by Electrochemical Anodization and Their Photocatalytic Properties.” Journal of Alloys and Compounds 651 (December 5, 2015): 59–71.
  • [29]. Liu, J., Bai, H., Wang, Y., Liu, Z., Zhang, X., and Sun, D.D. “Self-Assembling TiO2 Nanorods on Large Graphene Oxide Sheets at a Two-Phase Interface and Their Anti-Recombination in Photocatalytic Applications.” Advanced Functional Materials 20, no. 23 (December 8, 2010): 4175–81.
  • [30]. Tan, L., Ong, W.J., Chai, S.P., and Mohamed, A.R. “Reduced Graphene Oxide-TiO2nanocomposite as a Promising Visible-Light-Active Photocatalyst for the Conversion of Carbon Dioxide.” Nanoscale Research Letters, 2013.
  • [31]. Wang, P., Zhan, S., Xia, Y., Ma, S., Zhou, Q., and Li, Y. “The Fundamental Role and Mechanism of Reduced Graphene Oxide in RGO/Pt-TiO2 Nanocomposite for High-Performance Photocatalytic Water Splitting.” Applied Catalysis B: Environmental 207 (June 15, 2017): 335–46.
  • [32]. Karimi, L., Yazdanshenas, M.E., Khajavi, R., Rashidi, A., and Mirjalili, M. “Using Graphene/TiO2 Nanocomposite as a New Route for Preparation of Electroconductive, Self-Cleaning, Antibacterial and Antifungal Cotton Fabric without Toxicity.” Cellulose 21, no. 5 (October 9, 2014): 3813–27.
  • [33]. Li, G., Wang, T., Zhu, Y., Zhang, S., Mao, C., Wu, J., Jin, B., and Tian, Y. “Preparation and Photoelectrochemical Performance of Ag/Graphene/TiO2 Composite Film.” Applied Surface Science 257, no. 15 (May 15, 2011): 6568–72.
  • [34]. Williams, G., Seger, B., and Kamat, P.V. “TiO 2 -Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide.” ACS Nano 2, no. 7 (July 3, 2008): 1487–91.
  • [35]. Police, A.K.R., Chennaiahgari, M., Boddula, R., Vattikuti, S.V.P., Mandari, K.K., and Chan, B. “Single-Step Hydrothermal Synthesis of Wrinkled Graphene Wrapped TiO2 Nanotubes for Photocatalytic Hydrogen Production and Supercapacitor Applications.” Materials Research Bulletin 98, no. August 2017 (2018): 314–21.
  • [36]. Nainani, R.K., and Thakur, P. “Facile Synthesis of TiO2-RGO Composite with Enhanced Performance for the Photocatalytic Mineralization of Organic Pollutants.” Water Science and Technology 73, no. 8 (2016): 1927–36.
Primary Language tr
Subjects Engineering
Journal Section Research Article
Authors

Orcid: 0000-0001-7293-1216
Author: Metin YURDDAŞKAL (Primary Author)
Institution: DOKUZ EYLÜL ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0002-5557-2300
Author: Uğur KARTAL
Institution: DOKUZ EYLÜL ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0002-7018-0743
Author: Eyyüp Can DOLUEL
Institution: DOKUZ EYLÜL ÜNİVERSİTESİ
Country: Turkey


Dates

Publication Date : March 1, 2020

Bibtex @research article { politeknik537900, journal = {Politeknik Dergisi}, issn = {}, eissn = {2147-9429}, address = {Gazi Üniversitesi Teknoloji Fakültesi 06500 Teknikokullar - ANKARA}, publisher = {Gazi University}, year = {2020}, volume = {23}, pages = {249 - 255}, doi = {10.2339/politeknik.537900}, title = {Titanyum Dioksit/İndirgenmiş Grafen Oksit Kompozitlerin Üretimi ve Fotokatalitik Özelliklerinin İncelenmesi}, key = {cite}, author = {YURDDAŞKAL, Metin and KARTAL, Uğur and DOLUEL, Eyyüp Can} }
APA YURDDAŞKAL, M , KARTAL, U , DOLUEL, E . (2020). Titanyum Dioksit/İndirgenmiş Grafen Oksit Kompozitlerin Üretimi ve Fotokatalitik Özelliklerinin İncelenmesi. Politeknik Dergisi , 23 (1) , 249-255 . DOI: 10.2339/politeknik.537900
MLA YURDDAŞKAL, M , KARTAL, U , DOLUEL, E . "Titanyum Dioksit/İndirgenmiş Grafen Oksit Kompozitlerin Üretimi ve Fotokatalitik Özelliklerinin İncelenmesi". Politeknik Dergisi 23 (2020 ): 249-255 <https://dergipark.org.tr/en/pub/politeknik/issue/51707/537900>
Chicago YURDDAŞKAL, M , KARTAL, U , DOLUEL, E . "Titanyum Dioksit/İndirgenmiş Grafen Oksit Kompozitlerin Üretimi ve Fotokatalitik Özelliklerinin İncelenmesi". Politeknik Dergisi 23 (2020 ): 249-255
RIS TY - JOUR T1 - Titanyum Dioksit/İndirgenmiş Grafen Oksit Kompozitlerin Üretimi ve Fotokatalitik Özelliklerinin İncelenmesi AU - Metin YURDDAŞKAL , Uğur KARTAL , Eyyüp Can DOLUEL Y1 - 2020 PY - 2020 N1 - doi: 10.2339/politeknik.537900 DO - 10.2339/politeknik.537900 T2 - Politeknik Dergisi JF - Journal JO - JOR SP - 249 EP - 255 VL - 23 IS - 1 SN - -2147-9429 M3 - doi: 10.2339/politeknik.537900 UR - https://doi.org/10.2339/politeknik.537900 Y2 - 2019 ER -
EndNote %0 Politeknik Dergisi Titanyum Dioksit/İndirgenmiş Grafen Oksit Kompozitlerin Üretimi ve Fotokatalitik Özelliklerinin İncelenmesi %A Metin YURDDAŞKAL , Uğur KARTAL , Eyyüp Can DOLUEL %T Titanyum Dioksit/İndirgenmiş Grafen Oksit Kompozitlerin Üretimi ve Fotokatalitik Özelliklerinin İncelenmesi %D 2020 %J Politeknik Dergisi %P -2147-9429 %V 23 %N 1 %R doi: 10.2339/politeknik.537900 %U 10.2339/politeknik.537900
ISNAD YURDDAŞKAL, Metin , KARTAL, Uğur , DOLUEL, Eyyüp Can . "Titanyum Dioksit/İndirgenmiş Grafen Oksit Kompozitlerin Üretimi ve Fotokatalitik Özelliklerinin İncelenmesi". Politeknik Dergisi 23 / 1 (March 2020): 249-255 . https://doi.org/10.2339/politeknik.537900
AMA YURDDAŞKAL M , KARTAL U , DOLUEL E . Titanyum Dioksit/İndirgenmiş Grafen Oksit Kompozitlerin Üretimi ve Fotokatalitik Özelliklerinin İncelenmesi. Politeknik Dergisi. 2020; 23(1): 249-255.
Vancouver YURDDAŞKAL M , KARTAL U , DOLUEL E . Titanyum Dioksit/İndirgenmiş Grafen Oksit Kompozitlerin Üretimi ve Fotokatalitik Özelliklerinin İncelenmesi. Politeknik Dergisi. 2020; 23(1): 255-249.