Research Article
BibTex RIS Cite

Analyzing the Use of Rework Stations for Parallel Tasks in Assembly Line Balancing via Mathematical Programming and Simulation

Year 2022, Volume: 25 Issue: 1, 205 - 222, 01.03.2022
https://doi.org/10.2339/politeknik.717831

Abstract

In assembly lines, rework stations are generally used for reprocessing defective items. On the other hand, using rework stations for this purpose only might cause inefficient usage of the resources in this station especially if the defective rate of the assembly line is low. In this study, first, a mixed-integer programming model for cycle time minimization is presented by considering the use of rework stations for parallel tasks. By linearizing the non-linear constraint about parallel tasks using a variate transformation, the model is transformed to a linear-mixed-integer form. Secondly, a novel simulation model is developed in the study for validating the results obtained using the integer programming model by incorporating stochastic problem components. Using the developed model, two sample problems are simulated and the applicability of the integer programming models results are analyzed.

References

  • [1] Bryton B., “Balancing of a continuous production line”, MSc Thesis, Northwestern University, (1954).
  • [2] Salveson M.E., “The assembly line balancing problem”, The Journal of Industrial Engineering, 18-25, (1955).
  • [3] Baybars I., “A survey of exact algorithms for the simple assembly line balancing problem”, Manage. Sci., 32(8): 909-932, (1986).
  • [4] Ghosh S., Gagnon R.J., “A comprehensive literature review and analysis of the design, balancing and scheduling of assembly systems”, The International Journal of Production Research, 27(4): 637-670, (1989).
  • [5] Scholl A., Becker C., “State-of-the-art exact and heuristic solution procedures for simple assembly line balancing”, Eur. J. Oper. Res., 168(3): 666-693, (2006).
  • [6] Becker C., Scholl A., “A survey on problems and methods in generalized assembly line balancing”, Eur. J. Oper. Res., 168(3): 694-715, (2006).
  • [7] Boysen N., Fliedner M., Scholl A., “A classification of assembly line balancing problems”, Eur. J. Oper. Res., 183(2): 674-693, (2007).
  • [8] Sivasankaran P., Shahabudeen P., “Literature review of assembly line balancing problems”, The International Journal of Advanced Manufacturing Technology, 73(9-12): 1665-1694, (2014).
  • [9] Gokcen H., Agpak K., Benzer R., “Balancing of parallel assembly lines”, Int. J. Prod. Econ., 103(2): 600-609, (2006).
  • [10] Suer G.A., “Designing parallel assembly lines”, Comput. Ind. Eng., 35(3-4): 467-470, (1998).
  • [11] Bard J.F., “Assembly line balancing with parallel workstations and dead time”, The International Journal of Production Research, 27(6): 1005-1018, (1989).
  • [12] Askin R.G., Zhou M., “A parallel station heuristic for the mixed-model production line balancing problem”, Int. J. Prod. Res., 35(11): 3095-3106, (1997).
  • [13] Falkenauer E., “Line balancing in the real world”, International Conference on Product Lifecycle Management, France, 5: 360-370, (2005).
  • [14] Bartholdi J.J., “Balancing two-sided assembly lines: a case study”, Int. J. Prod. Res., 31(10): 2447-2461, (1993).
  • [15] Kim Y.K., Kim Y., Kim Y.J., “Two-sided assembly line balancing: a genetic algorithm approach”, Production Planning & Control, 11(1): 44-53, (2000).
  • [16] Lee T.O., Kim Y., Kim Y.K., “Two-sided assembly line balancing to maximize work relatedness and slackness”, Comput. Ind. Eng., 40(3): 273-292, (2001).
  • [17] Boysen N., Fliedner M., “A versatile algorithm for assembly line balancing”, Eur. J. Oper. Res., 184(1): 39-56, (2008).
  • [18] Pinto P., Dannenbring D.G., Khumawala B.M., “A branch and bound algorithm for assembly line balancing with paralleling”, The International Journal of Production Research, 13(2): 183-196, (1975).
  • [19] Kaplan O., “Assembly line balancing with task parallelling”, MSc Thesis, METU, Ankara, (2004).
  • [20] Kazemi S.M., Ghodsi R., Rabbani M., Tavakkoli-Moghaddam R., “A novel two-stage genetic algorithm for a mixed-model U-line balancing problem with duplicated tasks”, The International Journal of Advanced Manufacturing Technology, 55(9-12): 1111-1122, (2011).
  • [21] Silverman F.N., Carter J.C., “A cost-based methodology for stochastic line balancing with intermittent line stoppages”, Manage. Sci., 32(4): 455-463, (1986).
  • [22] Gokcen H., Baykoc O.F., “A new line remedial policy for the paced lines with stochastic task times”, Int. J. Prod. Econ., 58(2): 191-197, (1999).
  • [23] Kottas J.F., Lau H.S., “A total operating cost model for paced lines with stochastic task times”, AIIE Transactions, 8(2): 234-240, (1976).
  • [24] Lau H.S., Shtub A., “An exploratory study on stopping a paced line when incompletions occur”, IIE Transactions, 19(4): 463-467, (1987).
  • [25] Shtub A., “The effect of incompletion cost on line balancing with multiple manning of work stations”, The International Journal of Production Research, 22(2): 235-245, (1984).
  • [26] Banks J., Carson J., Nelson B.L., Nicol D., “Discrete-event system simulation”, Prentice-Hall, Fourth edition, United States, (2005).
  • [27] Song L., Wang P., AbouRizk S., “A virtual shop modeling system for industrial fabrication shops”, Simul. Modell. Pract. Theory., 14(5): 649-662, (2006).
  • [28] Cortes P., Onieva L., Guadix J., “Optimising and simulating the assembly line balancing problem in a motorcycle manufacturing company: a case study”, Int. J. Prod. Res., 48(12): 3637–3656, (2010).
  • [29] Altekin F.T., Akkan C., “Task-failure-driven rebalancing of disassembly lines”, Int. J. Prod. Res., 50(18): 4955-4976, (2012).
  • [30] Mcnamara T., Shaaban S., Hudson S., “Simulation of unbalanced buffer allocation in unreliable unpaced production lines”, Int. J. Prod. Res., 51(6): 1922-1936, (2013).
  • [31] Sriram S., Kuhl M.E., Thorn B.K., Carrano A.L., “A novel work-sharing protocol for U-shaped assembly lines”, Winter Simulation Conference, Savannah-Georgia, United States, 2113-2223, (2014).
  • [32] Pröpster M., März L., Reinhart G., Intra C., “Validation of line balancing by simulation of workforce flexibility”, Procedia CIRP, 33: 93-98, (2015).
  • [33] Bae K.H.G., Zheng L., Imani F., “A simulation analysis of the vehicle axle and spring assembly lines”, Winter Simulation Conference, California, United States, 2249-2259, (2015).
  • [34] Akin N.G., “Balancing of a sofa assembly line and its assessment by simulation”, Cankiri Karatekin University Journal of the Faculty of Economics and Administrative Sciences, 5(1): 95–121, (2015).
  • [35] Pinarbaşi M., Yuzukirmizi M., Toklu B., “Variability modelling and balancing of stochastic assembly lines”, Int. J. Prod. Res., 54(19): 5761-5782, (2016).
  • [36] Jamil M., Razali N.M., “Simulation of assembly line balancing in automotive component manufacturing”, In IOP Conference Series: Materials Science and Engineering, 114: 1-8, (2016).
  • [37] Ekren B.Y., Ornek A.M., “A simulation based experimental design to analyze factors affecting production flow time”, Simul. Modell. Pract. Theory., 16(3): 278-293, (2008).
  • [38] Sadeghi P., Rebelo R.D., Ferreira J.S., “Balancing mixed-model assembly systems in the footwear industry with a variable neighbourhood descent method”, Comput. Ind. Eng., 121: 161-176, (2018).
  • [39] Mcmullen P.R., Frazier G.V., “Using simulation and data envelopment analysis to compare assembly line balancing solutions”, Journal of Productivity Analysis, 11(2): 149-168, (1998).
  • [40] Liu C.M., Chen C.H., “Multi-section electronic assembly line balancing problems: A case study”, Production Planning & Control, 13(5): 451-461, (2002).
  • [41] Zupan H., Herakovic N., “Production line balancing with discrete event simulation: A case study”, IFAC-PapersOnLine, 48(3): 2305-2311, (2015).
  • [42] Wang Y., Yang O., “Research on industrial assembly line balancing optimization based on genetic algorithm and witness simulation”, International Journal of Simulation Modelling, 16(2): 334-342, (2017).
  • [43] Burinskiene A., Lorenc A., Lerher T., “A Simulation study for the sustainability and reduction of waste in warehouse logistics”, International Journal of Simulation Modelling, 17(3): 485-497, (2018).
  • [44] Ma K., Thomassey S., Zeng X., Wang L., Chen Y., “A resource sharing solution optimized by simulation-based heuristic for garment manufacturing”, The International Journal of Advanced Manufacturing Technology, 99(9-12): 2803-2818, (2018).
  • [45] Cavdur F., Kaymaz E., “A mixed-integer programming model for cycle time minimization in assembly line balancing: Using rework stations for performing parallel tasks”, International Journal of Production Management and Engineering, 8(2):111-121, (2020).
  • [46] Scholl A., “Data of assembly line balancing problems”, Shriften zur Quantitativen Betriebwirtschaftslehre 16/93, TH Darmstadt, (1993).

Montaj Hattı Dengelemede Yeniden İşleme İstasyonlarının Paralel Görevler için Kullanımının Matematiksel Programlama ve Simülasyon ile Analizi

Year 2022, Volume: 25 Issue: 1, 205 - 222, 01.03.2022
https://doi.org/10.2339/politeknik.717831

Abstract

Montaj hatlarında yeniden işleme istasyonları genellikle uygun olmayan ürünlerin yeniden işlendiği bir istasyon olarak kullanılmaktadır. Bununla birlikte, yeniden işleme istasyonunun yalnızca bu amaç için kullanılması montaj hattı hata oranının düşük olması durumunda, bu istasyonda bulunan kaynakların verimsiz bir şekilde kullanılmasına neden olabilmektedir. Bu çalışmada, öncelikle, yeniden işleme istasyonunun paralel görevler için kullanılması dikkate alınarak çevrim süresini minimize etmeyi amaçlayan bir doğrusal olmayan karışık-tamsayılı programlama modeli sunulmuştur. Paralel görevlerle ilgili doğrusal-olmayan kısıt, değişken dönüşümü ile doğrusallaştırılarak, model doğrusal-karışık-tamsayılı şekle dönüştürülmüştür. Buna ek olarak, çalışma kapsamında, problemin stokastik unsurları dikkate alınarak, tamsayılı programdan elde edilen sonuçların doğrulanması için de bir simülasyon modeli geliştirilmiştir. Geliştirilen model ile örnek bir problem simüle edilerek, söz konusu problem için tamsayılı programlama modelinden elde edilen çözümün uygulanabilirliği incelenmiştir.

References

  • [1] Bryton B., “Balancing of a continuous production line”, MSc Thesis, Northwestern University, (1954).
  • [2] Salveson M.E., “The assembly line balancing problem”, The Journal of Industrial Engineering, 18-25, (1955).
  • [3] Baybars I., “A survey of exact algorithms for the simple assembly line balancing problem”, Manage. Sci., 32(8): 909-932, (1986).
  • [4] Ghosh S., Gagnon R.J., “A comprehensive literature review and analysis of the design, balancing and scheduling of assembly systems”, The International Journal of Production Research, 27(4): 637-670, (1989).
  • [5] Scholl A., Becker C., “State-of-the-art exact and heuristic solution procedures for simple assembly line balancing”, Eur. J. Oper. Res., 168(3): 666-693, (2006).
  • [6] Becker C., Scholl A., “A survey on problems and methods in generalized assembly line balancing”, Eur. J. Oper. Res., 168(3): 694-715, (2006).
  • [7] Boysen N., Fliedner M., Scholl A., “A classification of assembly line balancing problems”, Eur. J. Oper. Res., 183(2): 674-693, (2007).
  • [8] Sivasankaran P., Shahabudeen P., “Literature review of assembly line balancing problems”, The International Journal of Advanced Manufacturing Technology, 73(9-12): 1665-1694, (2014).
  • [9] Gokcen H., Agpak K., Benzer R., “Balancing of parallel assembly lines”, Int. J. Prod. Econ., 103(2): 600-609, (2006).
  • [10] Suer G.A., “Designing parallel assembly lines”, Comput. Ind. Eng., 35(3-4): 467-470, (1998).
  • [11] Bard J.F., “Assembly line balancing with parallel workstations and dead time”, The International Journal of Production Research, 27(6): 1005-1018, (1989).
  • [12] Askin R.G., Zhou M., “A parallel station heuristic for the mixed-model production line balancing problem”, Int. J. Prod. Res., 35(11): 3095-3106, (1997).
  • [13] Falkenauer E., “Line balancing in the real world”, International Conference on Product Lifecycle Management, France, 5: 360-370, (2005).
  • [14] Bartholdi J.J., “Balancing two-sided assembly lines: a case study”, Int. J. Prod. Res., 31(10): 2447-2461, (1993).
  • [15] Kim Y.K., Kim Y., Kim Y.J., “Two-sided assembly line balancing: a genetic algorithm approach”, Production Planning & Control, 11(1): 44-53, (2000).
  • [16] Lee T.O., Kim Y., Kim Y.K., “Two-sided assembly line balancing to maximize work relatedness and slackness”, Comput. Ind. Eng., 40(3): 273-292, (2001).
  • [17] Boysen N., Fliedner M., “A versatile algorithm for assembly line balancing”, Eur. J. Oper. Res., 184(1): 39-56, (2008).
  • [18] Pinto P., Dannenbring D.G., Khumawala B.M., “A branch and bound algorithm for assembly line balancing with paralleling”, The International Journal of Production Research, 13(2): 183-196, (1975).
  • [19] Kaplan O., “Assembly line balancing with task parallelling”, MSc Thesis, METU, Ankara, (2004).
  • [20] Kazemi S.M., Ghodsi R., Rabbani M., Tavakkoli-Moghaddam R., “A novel two-stage genetic algorithm for a mixed-model U-line balancing problem with duplicated tasks”, The International Journal of Advanced Manufacturing Technology, 55(9-12): 1111-1122, (2011).
  • [21] Silverman F.N., Carter J.C., “A cost-based methodology for stochastic line balancing with intermittent line stoppages”, Manage. Sci., 32(4): 455-463, (1986).
  • [22] Gokcen H., Baykoc O.F., “A new line remedial policy for the paced lines with stochastic task times”, Int. J. Prod. Econ., 58(2): 191-197, (1999).
  • [23] Kottas J.F., Lau H.S., “A total operating cost model for paced lines with stochastic task times”, AIIE Transactions, 8(2): 234-240, (1976).
  • [24] Lau H.S., Shtub A., “An exploratory study on stopping a paced line when incompletions occur”, IIE Transactions, 19(4): 463-467, (1987).
  • [25] Shtub A., “The effect of incompletion cost on line balancing with multiple manning of work stations”, The International Journal of Production Research, 22(2): 235-245, (1984).
  • [26] Banks J., Carson J., Nelson B.L., Nicol D., “Discrete-event system simulation”, Prentice-Hall, Fourth edition, United States, (2005).
  • [27] Song L., Wang P., AbouRizk S., “A virtual shop modeling system for industrial fabrication shops”, Simul. Modell. Pract. Theory., 14(5): 649-662, (2006).
  • [28] Cortes P., Onieva L., Guadix J., “Optimising and simulating the assembly line balancing problem in a motorcycle manufacturing company: a case study”, Int. J. Prod. Res., 48(12): 3637–3656, (2010).
  • [29] Altekin F.T., Akkan C., “Task-failure-driven rebalancing of disassembly lines”, Int. J. Prod. Res., 50(18): 4955-4976, (2012).
  • [30] Mcnamara T., Shaaban S., Hudson S., “Simulation of unbalanced buffer allocation in unreliable unpaced production lines”, Int. J. Prod. Res., 51(6): 1922-1936, (2013).
  • [31] Sriram S., Kuhl M.E., Thorn B.K., Carrano A.L., “A novel work-sharing protocol for U-shaped assembly lines”, Winter Simulation Conference, Savannah-Georgia, United States, 2113-2223, (2014).
  • [32] Pröpster M., März L., Reinhart G., Intra C., “Validation of line balancing by simulation of workforce flexibility”, Procedia CIRP, 33: 93-98, (2015).
  • [33] Bae K.H.G., Zheng L., Imani F., “A simulation analysis of the vehicle axle and spring assembly lines”, Winter Simulation Conference, California, United States, 2249-2259, (2015).
  • [34] Akin N.G., “Balancing of a sofa assembly line and its assessment by simulation”, Cankiri Karatekin University Journal of the Faculty of Economics and Administrative Sciences, 5(1): 95–121, (2015).
  • [35] Pinarbaşi M., Yuzukirmizi M., Toklu B., “Variability modelling and balancing of stochastic assembly lines”, Int. J. Prod. Res., 54(19): 5761-5782, (2016).
  • [36] Jamil M., Razali N.M., “Simulation of assembly line balancing in automotive component manufacturing”, In IOP Conference Series: Materials Science and Engineering, 114: 1-8, (2016).
  • [37] Ekren B.Y., Ornek A.M., “A simulation based experimental design to analyze factors affecting production flow time”, Simul. Modell. Pract. Theory., 16(3): 278-293, (2008).
  • [38] Sadeghi P., Rebelo R.D., Ferreira J.S., “Balancing mixed-model assembly systems in the footwear industry with a variable neighbourhood descent method”, Comput. Ind. Eng., 121: 161-176, (2018).
  • [39] Mcmullen P.R., Frazier G.V., “Using simulation and data envelopment analysis to compare assembly line balancing solutions”, Journal of Productivity Analysis, 11(2): 149-168, (1998).
  • [40] Liu C.M., Chen C.H., “Multi-section electronic assembly line balancing problems: A case study”, Production Planning & Control, 13(5): 451-461, (2002).
  • [41] Zupan H., Herakovic N., “Production line balancing with discrete event simulation: A case study”, IFAC-PapersOnLine, 48(3): 2305-2311, (2015).
  • [42] Wang Y., Yang O., “Research on industrial assembly line balancing optimization based on genetic algorithm and witness simulation”, International Journal of Simulation Modelling, 16(2): 334-342, (2017).
  • [43] Burinskiene A., Lorenc A., Lerher T., “A Simulation study for the sustainability and reduction of waste in warehouse logistics”, International Journal of Simulation Modelling, 17(3): 485-497, (2018).
  • [44] Ma K., Thomassey S., Zeng X., Wang L., Chen Y., “A resource sharing solution optimized by simulation-based heuristic for garment manufacturing”, The International Journal of Advanced Manufacturing Technology, 99(9-12): 2803-2818, (2018).
  • [45] Cavdur F., Kaymaz E., “A mixed-integer programming model for cycle time minimization in assembly line balancing: Using rework stations for performing parallel tasks”, International Journal of Production Management and Engineering, 8(2):111-121, (2020).
  • [46] Scholl A., “Data of assembly line balancing problems”, Shriften zur Quantitativen Betriebwirtschaftslehre 16/93, TH Darmstadt, (1993).
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Elif Kaymaz 0000-0001-9111-6209

Fatih Çavdur 0000-0001-8054-5606

Publication Date March 1, 2022
Submission Date April 12, 2020
Published in Issue Year 2022 Volume: 25 Issue: 1

Cite

APA Kaymaz, E., & Çavdur, F. (2022). Montaj Hattı Dengelemede Yeniden İşleme İstasyonlarının Paralel Görevler için Kullanımının Matematiksel Programlama ve Simülasyon ile Analizi. Politeknik Dergisi, 25(1), 205-222. https://doi.org/10.2339/politeknik.717831
AMA Kaymaz E, Çavdur F. Montaj Hattı Dengelemede Yeniden İşleme İstasyonlarının Paralel Görevler için Kullanımının Matematiksel Programlama ve Simülasyon ile Analizi. Politeknik Dergisi. March 2022;25(1):205-222. doi:10.2339/politeknik.717831
Chicago Kaymaz, Elif, and Fatih Çavdur. “Montaj Hattı Dengelemede Yeniden İşleme İstasyonlarının Paralel Görevler için Kullanımının Matematiksel Programlama Ve Simülasyon Ile Analizi”. Politeknik Dergisi 25, no. 1 (March 2022): 205-22. https://doi.org/10.2339/politeknik.717831.
EndNote Kaymaz E, Çavdur F (March 1, 2022) Montaj Hattı Dengelemede Yeniden İşleme İstasyonlarının Paralel Görevler için Kullanımının Matematiksel Programlama ve Simülasyon ile Analizi. Politeknik Dergisi 25 1 205–222.
IEEE E. Kaymaz and F. Çavdur, “Montaj Hattı Dengelemede Yeniden İşleme İstasyonlarının Paralel Görevler için Kullanımının Matematiksel Programlama ve Simülasyon ile Analizi”, Politeknik Dergisi, vol. 25, no. 1, pp. 205–222, 2022, doi: 10.2339/politeknik.717831.
ISNAD Kaymaz, Elif - Çavdur, Fatih. “Montaj Hattı Dengelemede Yeniden İşleme İstasyonlarının Paralel Görevler için Kullanımının Matematiksel Programlama Ve Simülasyon Ile Analizi”. Politeknik Dergisi 25/1 (March 2022), 205-222. https://doi.org/10.2339/politeknik.717831.
JAMA Kaymaz E, Çavdur F. Montaj Hattı Dengelemede Yeniden İşleme İstasyonlarının Paralel Görevler için Kullanımının Matematiksel Programlama ve Simülasyon ile Analizi. Politeknik Dergisi. 2022;25:205–222.
MLA Kaymaz, Elif and Fatih Çavdur. “Montaj Hattı Dengelemede Yeniden İşleme İstasyonlarının Paralel Görevler için Kullanımının Matematiksel Programlama Ve Simülasyon Ile Analizi”. Politeknik Dergisi, vol. 25, no. 1, 2022, pp. 205-22, doi:10.2339/politeknik.717831.
Vancouver Kaymaz E, Çavdur F. Montaj Hattı Dengelemede Yeniden İşleme İstasyonlarının Paralel Görevler için Kullanımının Matematiksel Programlama ve Simülasyon ile Analizi. Politeknik Dergisi. 2022;25(1):205-22.