Research Article
BibTex RIS Cite

Nitrojen Katkılı Grafen Film Sentezi ve Karakterizasyonu

Year 2022, Volume: 25 Issue: 2, 667 - 673, 01.06.2022
https://doi.org/10.2339/politeknik.830591

Abstract

Karbon atomlarının hekzagonal örgüde bir araya gelerek oluşturduğu tek atom kalınlığındaki grafen son yılların en yoğun araştırılan konularından bir tanesi olmasının yanı sıra yüksek elektrik ve ısı iletkenliği, yüksek ışık geçirgenliği, yüksek dayanım ve geniş yüzey alanı gibi birçok üstün özellikleri ile geniş bir yelpazede kullanım alanına sahiptir. Bu üstün özelliklere karşın grafenin sahip olduğu yüksek tabak direnci ve yasak enerji aralığının olmaması grafenin optoelektronik uygulamalarda kullanımını sınırlamaktadır. Grafenin bu dezavantajları grafen yapısına yapılan katkılamalarla aşılabilmektedir. Ancak, katkılı grafen sentez sürecince katkıcı seçimi ve sentez yöntemi çok önemli olmakla birlikte özellikle katkılamanın kalıcılığı ve homojenliği daha değerlidir. Bu çalışmada CVD sistemi kullanılarak bakır folyo üzerinde katkısız ve nitrojen katkılı grafen sentezi ve karakterizasyonu gerçekleştirilmiştir. Katkılı grafen sentezi için piridin kullanılmış olup, piridin hem karbon hem de nitrojen kaynağı olarak kullanılmıştır. CVD tekniğinin kullanımı hem homojen hem de kalıcı katkılama gerçekleştirilebilmesine imkan vermiştir. Çalışma kapsamında ayrıca piridine ek olarak sentez sırasında CVD sistemine düşük miktarda metan gaz akışı sağlanarak film kalınlığı optimize edilmiştir. Katkılı filmlerin karakterizasyonu kapsamında Raman spektroskopisi, Enerji Dağılımlı X-ışını spektroskopisi ve X-ışını foto elektron spektroskopisi teknikleri kullanılmış olup, film kalitesi, kalınlığı, homojenliği, katkılama oranı ve türü belirlenmiştir.

Supporting Institution

TÜBİTAK

Project Number

117M401

Thanks

Bu çalışma TÜBİTAK tarafından 117M401 nolu proje ile desteklenmiştir.

References

  • [1] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Journals, World Scientific, pp. 11-19. (2010).
  • [2] I. Vlassiouk et al., "Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene, "AcsNano, vol. 5, no. 7, pp. 6069-6076, (2011).
  • [3] L. Yin et al., "Application of CVD graphene as transparent front electrode in Cu (In, Ga) Se 2 solar cell," IEEE 40th Photovoltaic Specialist Conference (PVSC), 2014, pp. 1740-1744: IEEE (2014).
  • [4] L. K. Putri, W.-J. Ong, W. S. Chang, and S.-P. J. A. s. s. Chai, "Heteroatom doped graphene in photocatalysis: a review," ScienceDirect vol. 358, pp. 2-14, (2015).
  • [5] M. J. Allen, V. C. Tung, and R. B. J. C. r. Kaner, "Honeycomb carbon: a review of graphene," Chemical Reviews ,vol. 110, no. 1, pp. 132-145, (2010).
  • [6] H. Liu, Y. Liu, and D. J. J. o. m. c. Zhu, "Chemical doping of graphene," Journal of Materials Chemistry, vol. 21, no. 10, pp. 3335-3345, (2011).
  • [7] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. J. R. Geim, "The electronic properties of graphene," Reviews of Modern Physics, vol. 81, no. 1, pp. 109-162, (2009).
  • [8] C.-K. Chang et al., "Band gap engineering of chemical vapor deposited graphene by in situ BN doping," AcsNano, vol. 7, no. 2, pp. 1333-1341, (2013).
  • [9] B. Guo, L. Fang, B. Zhang, and J. R. J. I. J. Gong, "Graphene doping: a review," Insciences Journal, vol. 1, no. 2, pp. 80-89, (2011).
  • [10] J. Gebhardt et al., "Growth and electronic structure of boron-doped graphene," Physical Review, vol. 87, no. 15, p. 155437, (2013).
  • [11] R. Yadav, C. J. J. o. S. A. M. Dixit, and Devices, "Synthesis, characterization and prospective applications of nitrogen-doped graphene: a short review," Journal of Science, vol. 2, no. 2, pp. 141-149, (2017).
  • [12] B. Cordero et al., "Covalent radii revisited," The Royal Society of Chemistry, no. 21, pp. 2832-2838, (2008).
  • [13] J. C. J. T. J. o. C. P. Slater, "Atomic radii in crystals," The Journal of Chemical Physics, vol. 41, no. 10, pp. 3199-3204, (1964).
  • [14] M. Yi and Z. J. J. o. M. C. A. Shen, "A review on mechanical exfoliation for the scalable production of graphene," Journal of Materials Chemistry,vol. 3, no. 22, pp. 11700-11715, (2015).
  • [15] A. Mattausch and O. J. P. r. l. Pankratov, "Ab initio study of graphene on SiC," Physical Review Letter, vol. 99, no. 7, p. 076802, (2007).
  • [16] R. Muñoz and C. J. C. V. D. Gómez‐Aleixandre, "Review of CVD synthesis of graphene," Chemical Vapor Deposition, vol. 19, no. 10-11-12, pp. 297-322, (2013).
  • [17] Z. Zafar et al., "Evolution of Raman spectra in nitrogen doped graphene," Carbon, vol. 61, pp. 57-62, (2013).
  • [18] L. Malard, M. A. Pimenta, G. Dresselhaus, and M. J. P. r. Dresselhaus, "Raman spectroscopy in graphene," Physics Report, vol. 473, no. 5-6, pp. 51-87, (2009).
  • [19] A. Capasso et al., "Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties," Beilstein Journal of Nanotechnology, vol. 6, no. 1, pp. 2028-2038, (2015).
  • [20] H. Wang, T. Maiyalagan, and X. J. A. C. Wang, "Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications," Acs Catalysis, vol. 2, no. 5, pp. 781-794, (2012).
  • [21] L. Lai et al., "Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction," The Royal Society of Chemistry ,vol. 5, no. 7, pp. 7936-7942, (2012).
  • [22] B. J. Matsoso, K. Ranganathan, B. K. Mutuma, T. Lerotholi, G. Jones, and N. J. Coville, "Time-dependent evolution of the nitrogen configurations in N-doped graphene films," RSC Advances, vol. 6, no. 108, pp. 106914-106920, (2016).
  • [23] A. Capasso et al., "Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties," Beilstein Journal of Nanotechnology, vol. 6, no. 1, pp. 2028-2038, (2015).
  • [24] Z. Recep, U. Gülcan, A.Ali, "Kimyasal Buhar Biriktirme Yöntemi İle Grafen Sentezine Tavlama Ve Büyütme Sürelerinin Etkisi," Selçuk Üniversitesi Mühendislik ve Bilim ve Teknoloji Dergisi, vol. 7, no. 2, pp. 263-271, (2019).
  • [25] A. Ali, Z. Recep, “Permanent Boron Doped Graphene with high Homogeneity using Phenylboronic Acid” Journal of Molecular Structure, 129629, (2020).

Nitrogen Doped Graphene Film Synthesis and Characterization

Year 2022, Volume: 25 Issue: 2, 667 - 673, 01.06.2022
https://doi.org/10.2339/politeknik.830591

Abstract

Having a single atom thickness formed by the combination of carbon atoms in a hexagonal mesh, graphene has been one of the most intensely researched areas in recent years. This is especially due to its wide range of uses thanks to its numerous superior properties such as high electrical and thermal conductivity, high light transmittance, high strength and large surface area. Despite these superior properties, graphene's high sheet resistance and lack of energy band gap limit its use in optoelectronic applications. Yet, these disadvantages can be overcome by implementing doping to the graphene structure. However, although the doping selection and synthesis method are very important in the doped graphene synthesis process, the permanence and homogeneity of the doping is even more critical. In this study, the synthesis and characterization of pure and nitrogen-doped graphene were carried out on copper foil using CVD system. Pyridine was used for the synthesis of the doped graphene, as a carbon and nitrogen source. We found out that the use of the CVD technique allows both homogeneous and permanent doping. In addition to pyridine, in the present study, the film thickness was also optimized by providing a low amount of methane gas flow to the CVD system during the synthesis. To enable the characterization of doped films, Raman spectroscopy, Energy Dispersive X-ray spectroscopy and X-ray photo electron spectroscopy techniques were used, and the film quality, thickness, homogeneity, doping rate and type were determined.

Project Number

117M401

References

  • [1] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Journals, World Scientific, pp. 11-19. (2010).
  • [2] I. Vlassiouk et al., "Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene, "AcsNano, vol. 5, no. 7, pp. 6069-6076, (2011).
  • [3] L. Yin et al., "Application of CVD graphene as transparent front electrode in Cu (In, Ga) Se 2 solar cell," IEEE 40th Photovoltaic Specialist Conference (PVSC), 2014, pp. 1740-1744: IEEE (2014).
  • [4] L. K. Putri, W.-J. Ong, W. S. Chang, and S.-P. J. A. s. s. Chai, "Heteroatom doped graphene in photocatalysis: a review," ScienceDirect vol. 358, pp. 2-14, (2015).
  • [5] M. J. Allen, V. C. Tung, and R. B. J. C. r. Kaner, "Honeycomb carbon: a review of graphene," Chemical Reviews ,vol. 110, no. 1, pp. 132-145, (2010).
  • [6] H. Liu, Y. Liu, and D. J. J. o. m. c. Zhu, "Chemical doping of graphene," Journal of Materials Chemistry, vol. 21, no. 10, pp. 3335-3345, (2011).
  • [7] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. J. R. Geim, "The electronic properties of graphene," Reviews of Modern Physics, vol. 81, no. 1, pp. 109-162, (2009).
  • [8] C.-K. Chang et al., "Band gap engineering of chemical vapor deposited graphene by in situ BN doping," AcsNano, vol. 7, no. 2, pp. 1333-1341, (2013).
  • [9] B. Guo, L. Fang, B. Zhang, and J. R. J. I. J. Gong, "Graphene doping: a review," Insciences Journal, vol. 1, no. 2, pp. 80-89, (2011).
  • [10] J. Gebhardt et al., "Growth and electronic structure of boron-doped graphene," Physical Review, vol. 87, no. 15, p. 155437, (2013).
  • [11] R. Yadav, C. J. J. o. S. A. M. Dixit, and Devices, "Synthesis, characterization and prospective applications of nitrogen-doped graphene: a short review," Journal of Science, vol. 2, no. 2, pp. 141-149, (2017).
  • [12] B. Cordero et al., "Covalent radii revisited," The Royal Society of Chemistry, no. 21, pp. 2832-2838, (2008).
  • [13] J. C. J. T. J. o. C. P. Slater, "Atomic radii in crystals," The Journal of Chemical Physics, vol. 41, no. 10, pp. 3199-3204, (1964).
  • [14] M. Yi and Z. J. J. o. M. C. A. Shen, "A review on mechanical exfoliation for the scalable production of graphene," Journal of Materials Chemistry,vol. 3, no. 22, pp. 11700-11715, (2015).
  • [15] A. Mattausch and O. J. P. r. l. Pankratov, "Ab initio study of graphene on SiC," Physical Review Letter, vol. 99, no. 7, p. 076802, (2007).
  • [16] R. Muñoz and C. J. C. V. D. Gómez‐Aleixandre, "Review of CVD synthesis of graphene," Chemical Vapor Deposition, vol. 19, no. 10-11-12, pp. 297-322, (2013).
  • [17] Z. Zafar et al., "Evolution of Raman spectra in nitrogen doped graphene," Carbon, vol. 61, pp. 57-62, (2013).
  • [18] L. Malard, M. A. Pimenta, G. Dresselhaus, and M. J. P. r. Dresselhaus, "Raman spectroscopy in graphene," Physics Report, vol. 473, no. 5-6, pp. 51-87, (2009).
  • [19] A. Capasso et al., "Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties," Beilstein Journal of Nanotechnology, vol. 6, no. 1, pp. 2028-2038, (2015).
  • [20] H. Wang, T. Maiyalagan, and X. J. A. C. Wang, "Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications," Acs Catalysis, vol. 2, no. 5, pp. 781-794, (2012).
  • [21] L. Lai et al., "Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction," The Royal Society of Chemistry ,vol. 5, no. 7, pp. 7936-7942, (2012).
  • [22] B. J. Matsoso, K. Ranganathan, B. K. Mutuma, T. Lerotholi, G. Jones, and N. J. Coville, "Time-dependent evolution of the nitrogen configurations in N-doped graphene films," RSC Advances, vol. 6, no. 108, pp. 106914-106920, (2016).
  • [23] A. Capasso et al., "Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties," Beilstein Journal of Nanotechnology, vol. 6, no. 1, pp. 2028-2038, (2015).
  • [24] Z. Recep, U. Gülcan, A.Ali, "Kimyasal Buhar Biriktirme Yöntemi İle Grafen Sentezine Tavlama Ve Büyütme Sürelerinin Etkisi," Selçuk Üniversitesi Mühendislik ve Bilim ve Teknoloji Dergisi, vol. 7, no. 2, pp. 263-271, (2019).
  • [25] A. Ali, Z. Recep, “Permanent Boron Doped Graphene with high Homogeneity using Phenylboronic Acid” Journal of Molecular Structure, 129629, (2020).
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Recep Zan 0000-0001-6739-4348

Ali Altuntepe 0000-0002-6366-4125

Serkan Erkan 0000-0001-7249-6701

Ayşe Seyhan 0000-0001-8090-1404

Project Number 117M401
Publication Date June 1, 2022
Submission Date November 24, 2020
Published in Issue Year 2022 Volume: 25 Issue: 2

Cite

APA Zan, R., Altuntepe, A., Erkan, S., Seyhan, A. (2022). Nitrojen Katkılı Grafen Film Sentezi ve Karakterizasyonu. Politeknik Dergisi, 25(2), 667-673. https://doi.org/10.2339/politeknik.830591
AMA Zan R, Altuntepe A, Erkan S, Seyhan A. Nitrojen Katkılı Grafen Film Sentezi ve Karakterizasyonu. Politeknik Dergisi. June 2022;25(2):667-673. doi:10.2339/politeknik.830591
Chicago Zan, Recep, Ali Altuntepe, Serkan Erkan, and Ayşe Seyhan. “Nitrojen Katkılı Grafen Film Sentezi Ve Karakterizasyonu”. Politeknik Dergisi 25, no. 2 (June 2022): 667-73. https://doi.org/10.2339/politeknik.830591.
EndNote Zan R, Altuntepe A, Erkan S, Seyhan A (June 1, 2022) Nitrojen Katkılı Grafen Film Sentezi ve Karakterizasyonu. Politeknik Dergisi 25 2 667–673.
IEEE R. Zan, A. Altuntepe, S. Erkan, and A. Seyhan, “Nitrojen Katkılı Grafen Film Sentezi ve Karakterizasyonu”, Politeknik Dergisi, vol. 25, no. 2, pp. 667–673, 2022, doi: 10.2339/politeknik.830591.
ISNAD Zan, Recep et al. “Nitrojen Katkılı Grafen Film Sentezi Ve Karakterizasyonu”. Politeknik Dergisi 25/2 (June 2022), 667-673. https://doi.org/10.2339/politeknik.830591.
JAMA Zan R, Altuntepe A, Erkan S, Seyhan A. Nitrojen Katkılı Grafen Film Sentezi ve Karakterizasyonu. Politeknik Dergisi. 2022;25:667–673.
MLA Zan, Recep et al. “Nitrojen Katkılı Grafen Film Sentezi Ve Karakterizasyonu”. Politeknik Dergisi, vol. 25, no. 2, 2022, pp. 667-73, doi:10.2339/politeknik.830591.
Vancouver Zan R, Altuntepe A, Erkan S, Seyhan A. Nitrojen Katkılı Grafen Film Sentezi ve Karakterizasyonu. Politeknik Dergisi. 2022;25(2):667-73.