Research Article
BibTex RIS Cite

WE43 Magnezyum Alaşımının Soğuk Sprey Kaplama Yöntemi ile Al/Zn/Al2O3 ve Zn/Al2O3 Kaplanması ve Aşınma Davranışlarının İncelenmesi

Year 2022, Volume: 25 Issue: 4, 1791 - 1798, 16.12.2022
https://doi.org/10.2339/politeknik.1128114

Abstract

Mg alaşımları otomotiv, uçak, uzay ve haberleşme sektörlerinde düşük özgül ağırlıkları ve yüksek mukavemetli olması nedenleriyle tercih edilmektedir. WE serisi, Mg, Y, Nd, nadir toprak elementlerini içeren Mg alaşımları serisidir. Bu alaşım serisi için sürünme dayanımı iyi olsa da aşınma dayanımı gelişmeye açıktır. Bu çalışmada amaç, özgül ağırlıkları nedeni ile kullanım potansiyeli yüksek olan WE43 Mg alaşımlarının aşınma dayanımını arttırabilecek kaplamaların, endüstride de kolaylıkla uygulanabilecek bir yöntem kullanarak geliştirilmesidir. Bu amaçla soğuk sprey kaplama yöntemi kullanılarak aynı zamanda yüzeyleri fazlasıyla aktif olan magnezyum alaşımlarının oksitlenmeden kaplanması sağlanmış ve aşınma dayanımı geliştirilmiştir. Yüzeyleri ince kumlama işlemiyle pürüzlendiren WE43 Mg alaşımları soğuk sprey yöntemi kullanılarak Al/Zn/Al2O3 ve Zn/Al2O3 içerikli ve ticari isimleri sırasıyla DYMET K-20-11 ve DYMET K-00-11 olan tozlar kullanılarak 500ºC sıcaklıkta N2 koruyucu gaz atmosferi altında süpersonik hızlardaki tozlar için 6 g/dak. toz besleme hızıyla altlıklar üzerine püskürtülmüştür. Farklı içerikli tozlarla kaplanmış ve kaplanmamış numunelerin morfolojik analizleri SEM ve XRD yöntemleri ile incelenmiş, kaplama kalınlıkları kesitten alınan SEM görüntülerinden ölçülmüş, EDS analizleri ile elementlerin yüzde oranları tespit edilmiştir. Ayrıca aşınma performansının incelenmesi için ball-on disk aşınma testlerinden hacim kayıpları değerlendirilmiştir. Sonuç olarak, soğuk sprey kaplamalarla, kaplamasız duruma göre WE43 alaşımlarının aşınma kaybı yaklaşık %40 oranında azalmıştır. 

References

  • [1] Malayoğlu, U. & Tekin, K. C. Wear behaviour of plasma electrolytic oxide coatings on E21 and WE43 Mg alloys. Surface Engineering, 31(7), 526-533, (2015)..
  • [2] Wei, Y. K., Li, Y. J., Zhang, Y., Luo, X. T., & Li, C. J. Corrosion resistant nickel coating with strong adhesion on AZ31B magnesium alloy prepared by an in-situ shot-peening-assisted cold spray. Corrosion Science, 138, 105-115, (2018).
  • [3] Moridi, A., Hassani-Gangaraj, S. M., Guagliano, M., & Dao, M. Cold spray coating: review of material systems and future perspectives. Surface Engineering, 30(6), 369-395, (2014).
  • [4] Yin, S., Jenkins, R., Yan, X. & Lupoi, R. Microstructure and mechanical anisotropy of additively manufactured cod spray copper deposits. Materials Science and Engineering A, 734, 67-76, (2018).
  • [5] Gärtner, F., Stoltenhoff, T., Schmidt, T., & Kreye, H. The cold spray process and its potential for industrial applications. Journal of Thermal Spray Technology, 15(2), 223-232, (2006).
  • [6] Assadi, H., Kreye, H., Gartner, F. & Klassen,T. Cold spraying e A materials perspective.Acta Materialia, 116, 382-407, (2016).
  • [7] Raoelison, R. N., Xie, Y., Sapanathan, T., Planche, M.P., Kromer, R.,Costil, S. & Langlade, C. Cold gas dynamic spray technology: A comprehensive review of processing conditions for various technological developments till to date. Additive Manufacturing, 19, 134–159, (2018).
  • [8] Rokni, M. R., Nutt, S. R., Widener, C. A., Champagne, V. K. & Hrabe, R. H. Review of Relationship Between Particle Deformation, Coating Microstructure, and Properties in High-Pressure Cold Spray. Journal of Thermal Spray Technology, 26, 1308-1355, (2017).
  • [9] Shariatzadeh, O. J., Abrishamkar, A., & Jafari, A. J. Computational Modeling of a Typical Supersonic Converging-Diverging Nozzle and Validation by Real Measured Data. Journal of Clean Energy Technologies, 3(3), 220-225, (2015).
  • [10] Selcuk, C. & Kennedy, A. R. (2006). Al-TiC composite made by the addition of master alloys pellets synthesized from reacted elemental powders. Materials Letters, 60, 3364-3366, (2006).
  • [11] Barış M., Şimşek T. ve Akkurt A., “Co2B nanokristalleri kaplanmış S235JRC karbon çelik malzemelerin farklı kesme yöntemleri ile işlenebilirlik özelliklerinin araştırılması”, Politeknik Dergisi, 22(1): 169- 177, (2019).
  • [12] Yazar, M. , Kul, M. , Alp, A. K. & Talaş, Ş. The use of NiAl Coating Deposited by ESD Against the Wear of Sliding Wire in GMAW Contact Tips. Politeknik Dergisi , 1-1, (2021).
  • [13] Karakoç, H. Toz Metal Al7075/B4C/Si3N4 Kompozit Malzemelerin Üretimi ve Aşınma Özelliklerinin İncelenmesi . Politeknik Dergisi , 23 (4) , 1141-1151, (2020).
  • [14] Prabhu, B., Suryanarayana, C., An, L. & Vaidyanathan, R. Synthesis and characterization of high volume fraction Al-Al2O3 nanocomposite powders by high-energy milling. Materials Science and Engineering A, 425, 192-200, (2006).
  • [15] Villafuerte, J. Considering Cold Spray for Additive Manufacturing. Advanced Materials and Processes, 50-52, (2014).
  • [16] Palodhi, L., Das, B., & Singh, H. Effect of Particle Size and Morphology on Critical Velocity and Deformation Behavior in Cold Spraying. Journal of Materials Engineering and Performance, 30(11), 8276-8288, (2021).
  • [17].Helfritch D. and Champagne V. (2008). A model study of powder particle size effects in cold spray deposition. 26th Army Science Conference Proceedings, https://apps.dtic.mil/sti/pdfs/ADA504175.pdf
  • [18] Shinoda, K., Gaertner, F., Lee, C., Dolatabadi, A., & Johnson, S. Kinetic Spraying of Brittle Materials: From Layer Formation to Applications in Aerosol Deposition and Cold Gas Spraying. Journal of Thermal Spray Technology, 30, 471-479, (2021).
  • [19] Yu, M., Li, W. Y., Wang, F. F., Suo, X. K., & Liao, H. L. Effect of particle and substrate preheating on particle deformation behavior in cold spraying. Surface and Coatings Technology, 220, 174-178, (2013).
  • [20] Liao, T. Y., Biesiekierski, A., Berndt, C. C., King, P. C., Ivanova, E. P., Thissen, H., & Kingshott, P. Multifunctional cold spray coatings for biological and biomedical applications: A review. Progress in Surface Science, 100654, (2022).
  • [21] Assadi, H., Gärtner, F., Stoltenhoff, T., & Kreye, H. Bonding mechanism in cold gas spraying. Acta materialia, 51(15), 4379-4394, (2003).
  • [22] Electrical Engineer's Reference Book, Sixteenth edition M. A. Laughton CEng., FIEE D. J. Warne CEng., FIEE, Newnes An imprint of Elsevier Science Linacre House, Jordan Hill, Oxford, 2003.
  • [23] Piconi, C. 1.5 Alumina. Comprehensive biomaterials II, 1, 92-121, (2017).
  • [24] İnternet: https://www.matweb.com/
  • [25] Liang, G., Schmauder, S., Lyu, M., Schneider, Y., Zhang, C., & Han, Y. An investigation of the influence of initial roughness on the friction and wear behavior of ground surfaces. Materials, 11(2), 237, (2018).
  • [26] Azad, K., Rasul, M. G., Khan, M. M. K., & Sharma, S. C. (2019). Ecofuel and its compatibility with different automotive metals to assess diesel engine durability. In Advances in Eco-Fuels for a Sustainable Environment (pp. 337-351). Woodhead Publishing.
  • [27] Wang, W., Zhou, H., Wang, Q., Jin, J., Sun, Y., & Wang, K. High-temperature tribological behavior of the Ti-22Al-25Nb (at.%) orthorhombic alloy with lamellar O microstructures. Metals, 9(1), 5, (2018).
  • [28] Soy, U., Demir, A., & Findik, F. Friction and wear behaviors of Al‐SiC‐B4C composites produced by pressure infiltration method. Industrial lubrication and tribology, 63(5), 387-393, (2011).
  • [29] Tseluikin, V. N., & Koreshkova, A. A. Deposition of zinc-carbon nanotube composite coatings in the pulse-reverse mode. Russian Journal of Applied Chemistry, 87(9), 1251-1253, (2014).
  • [30] Savaşkan, T., & Pürçek, G. Wear Behaviour Of Zinc-Aluminium Alloys And The Bearings Produced From These Alloys. Turkish Journal Of Engineering And Environmental Sciences, 24(1), 25-36, (2000).
  • [31].Hekimoğlu, A. P., Hacıosmanoğlu, M., & Baki, M. Effect of zinc contents on the structural, mechanical and tribological properties of EN AC-48100 (Al-17Si-4Cu-Mg) alloy. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(4), 1799-1814, (2020).
  • [32] Ren, B., Gao, L., Xie, B., Li, M., Zhang, S., Zu, G., Ran, X. Tribological properties and anti-wear mechanism of ZnO@graphene core-shell nanoparticles as lubricant additives, Tribology International, 144, 106114, (2020).

Al/Zn/Al2O3 and Zn/Al2O3 Coatings by Cold Spray Coating Method of WE43 Magnesium Alloy and Investigation of Its Wear Behaviors

Year 2022, Volume: 25 Issue: 4, 1791 - 1798, 16.12.2022
https://doi.org/10.2339/politeknik.1128114

Abstract

Mg alloys are preferred in automotive, aircraft, aerospace and communication industries due to their low specific gravity and high strength. WE series is a series of Mg alloys containing Mg, Y, Nd, rare earth elements, and although the creep strength is good for this alloy series, the wear resistance is open to improvement. The aim of this study is to develop coatings that can increase the wear resistance of WE43 Mg alloys, which have a high potential for use due to their specific gravity, by using a method that can be easily applied in the industry. For this purpose, using the cold spray coating method, magnesium alloys, whose surfaces are highly active, are provided to be coated without oxidation and wear resistance is improved. In the study carried out, WE43 Mg alloys, which roughen the surfaces by fine sandblasting process, were used with cold spray method, using powders containing Al/Zn/Al2O3 and Zn/Al2O3 and trade names DYMET K-20-11 and DYMET K-00-11, respectively, using N2 shielding gas at 500ºC. 6 g/min for powders delivered to supersonic speeds under the atmosphere. The powder was sprayed onto the substrates using the feed rate. Morphological analysis of the coated and uncoated samples with different contents were examined by SEM, XRD methods, the coating thicknesses were measured with SEM images taken from the section, and the percentages of the elements were determined by EDS analysis. In addition, ball-on disc wear tests were performed to examine the wear performance and volume losses were evaluated. As a result, the wear loss of WE43 alloys was reduced by approximately 40% compared to the uncoated condition, thanks to the cold spray coatings.

References

  • [1] Malayoğlu, U. & Tekin, K. C. Wear behaviour of plasma electrolytic oxide coatings on E21 and WE43 Mg alloys. Surface Engineering, 31(7), 526-533, (2015)..
  • [2] Wei, Y. K., Li, Y. J., Zhang, Y., Luo, X. T., & Li, C. J. Corrosion resistant nickel coating with strong adhesion on AZ31B magnesium alloy prepared by an in-situ shot-peening-assisted cold spray. Corrosion Science, 138, 105-115, (2018).
  • [3] Moridi, A., Hassani-Gangaraj, S. M., Guagliano, M., & Dao, M. Cold spray coating: review of material systems and future perspectives. Surface Engineering, 30(6), 369-395, (2014).
  • [4] Yin, S., Jenkins, R., Yan, X. & Lupoi, R. Microstructure and mechanical anisotropy of additively manufactured cod spray copper deposits. Materials Science and Engineering A, 734, 67-76, (2018).
  • [5] Gärtner, F., Stoltenhoff, T., Schmidt, T., & Kreye, H. The cold spray process and its potential for industrial applications. Journal of Thermal Spray Technology, 15(2), 223-232, (2006).
  • [6] Assadi, H., Kreye, H., Gartner, F. & Klassen,T. Cold spraying e A materials perspective.Acta Materialia, 116, 382-407, (2016).
  • [7] Raoelison, R. N., Xie, Y., Sapanathan, T., Planche, M.P., Kromer, R.,Costil, S. & Langlade, C. Cold gas dynamic spray technology: A comprehensive review of processing conditions for various technological developments till to date. Additive Manufacturing, 19, 134–159, (2018).
  • [8] Rokni, M. R., Nutt, S. R., Widener, C. A., Champagne, V. K. & Hrabe, R. H. Review of Relationship Between Particle Deformation, Coating Microstructure, and Properties in High-Pressure Cold Spray. Journal of Thermal Spray Technology, 26, 1308-1355, (2017).
  • [9] Shariatzadeh, O. J., Abrishamkar, A., & Jafari, A. J. Computational Modeling of a Typical Supersonic Converging-Diverging Nozzle and Validation by Real Measured Data. Journal of Clean Energy Technologies, 3(3), 220-225, (2015).
  • [10] Selcuk, C. & Kennedy, A. R. (2006). Al-TiC composite made by the addition of master alloys pellets synthesized from reacted elemental powders. Materials Letters, 60, 3364-3366, (2006).
  • [11] Barış M., Şimşek T. ve Akkurt A., “Co2B nanokristalleri kaplanmış S235JRC karbon çelik malzemelerin farklı kesme yöntemleri ile işlenebilirlik özelliklerinin araştırılması”, Politeknik Dergisi, 22(1): 169- 177, (2019).
  • [12] Yazar, M. , Kul, M. , Alp, A. K. & Talaş, Ş. The use of NiAl Coating Deposited by ESD Against the Wear of Sliding Wire in GMAW Contact Tips. Politeknik Dergisi , 1-1, (2021).
  • [13] Karakoç, H. Toz Metal Al7075/B4C/Si3N4 Kompozit Malzemelerin Üretimi ve Aşınma Özelliklerinin İncelenmesi . Politeknik Dergisi , 23 (4) , 1141-1151, (2020).
  • [14] Prabhu, B., Suryanarayana, C., An, L. & Vaidyanathan, R. Synthesis and characterization of high volume fraction Al-Al2O3 nanocomposite powders by high-energy milling. Materials Science and Engineering A, 425, 192-200, (2006).
  • [15] Villafuerte, J. Considering Cold Spray for Additive Manufacturing. Advanced Materials and Processes, 50-52, (2014).
  • [16] Palodhi, L., Das, B., & Singh, H. Effect of Particle Size and Morphology on Critical Velocity and Deformation Behavior in Cold Spraying. Journal of Materials Engineering and Performance, 30(11), 8276-8288, (2021).
  • [17].Helfritch D. and Champagne V. (2008). A model study of powder particle size effects in cold spray deposition. 26th Army Science Conference Proceedings, https://apps.dtic.mil/sti/pdfs/ADA504175.pdf
  • [18] Shinoda, K., Gaertner, F., Lee, C., Dolatabadi, A., & Johnson, S. Kinetic Spraying of Brittle Materials: From Layer Formation to Applications in Aerosol Deposition and Cold Gas Spraying. Journal of Thermal Spray Technology, 30, 471-479, (2021).
  • [19] Yu, M., Li, W. Y., Wang, F. F., Suo, X. K., & Liao, H. L. Effect of particle and substrate preheating on particle deformation behavior in cold spraying. Surface and Coatings Technology, 220, 174-178, (2013).
  • [20] Liao, T. Y., Biesiekierski, A., Berndt, C. C., King, P. C., Ivanova, E. P., Thissen, H., & Kingshott, P. Multifunctional cold spray coatings for biological and biomedical applications: A review. Progress in Surface Science, 100654, (2022).
  • [21] Assadi, H., Gärtner, F., Stoltenhoff, T., & Kreye, H. Bonding mechanism in cold gas spraying. Acta materialia, 51(15), 4379-4394, (2003).
  • [22] Electrical Engineer's Reference Book, Sixteenth edition M. A. Laughton CEng., FIEE D. J. Warne CEng., FIEE, Newnes An imprint of Elsevier Science Linacre House, Jordan Hill, Oxford, 2003.
  • [23] Piconi, C. 1.5 Alumina. Comprehensive biomaterials II, 1, 92-121, (2017).
  • [24] İnternet: https://www.matweb.com/
  • [25] Liang, G., Schmauder, S., Lyu, M., Schneider, Y., Zhang, C., & Han, Y. An investigation of the influence of initial roughness on the friction and wear behavior of ground surfaces. Materials, 11(2), 237, (2018).
  • [26] Azad, K., Rasul, M. G., Khan, M. M. K., & Sharma, S. C. (2019). Ecofuel and its compatibility with different automotive metals to assess diesel engine durability. In Advances in Eco-Fuels for a Sustainable Environment (pp. 337-351). Woodhead Publishing.
  • [27] Wang, W., Zhou, H., Wang, Q., Jin, J., Sun, Y., & Wang, K. High-temperature tribological behavior of the Ti-22Al-25Nb (at.%) orthorhombic alloy with lamellar O microstructures. Metals, 9(1), 5, (2018).
  • [28] Soy, U., Demir, A., & Findik, F. Friction and wear behaviors of Al‐SiC‐B4C composites produced by pressure infiltration method. Industrial lubrication and tribology, 63(5), 387-393, (2011).
  • [29] Tseluikin, V. N., & Koreshkova, A. A. Deposition of zinc-carbon nanotube composite coatings in the pulse-reverse mode. Russian Journal of Applied Chemistry, 87(9), 1251-1253, (2014).
  • [30] Savaşkan, T., & Pürçek, G. Wear Behaviour Of Zinc-Aluminium Alloys And The Bearings Produced From These Alloys. Turkish Journal Of Engineering And Environmental Sciences, 24(1), 25-36, (2000).
  • [31].Hekimoğlu, A. P., Hacıosmanoğlu, M., & Baki, M. Effect of zinc contents on the structural, mechanical and tribological properties of EN AC-48100 (Al-17Si-4Cu-Mg) alloy. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(4), 1799-1814, (2020).
  • [32] Ren, B., Gao, L., Xie, B., Li, M., Zhang, S., Zu, G., Ran, X. Tribological properties and anti-wear mechanism of ZnO@graphene core-shell nanoparticles as lubricant additives, Tribology International, 144, 106114, (2020).
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Canser Gül 0000-0002-1339-936X

Sevda Albayrak 0000-0002-1504-8061

Nilay Çömez 0000-0002-6432-6582

Hülya Durmuş 0000-0002-7270-562X

Publication Date December 16, 2022
Submission Date June 8, 2022
Published in Issue Year 2022 Volume: 25 Issue: 4

Cite

APA Gül, C., Albayrak, S., Çömez, N., Durmuş, H. (2022). WE43 Magnezyum Alaşımının Soğuk Sprey Kaplama Yöntemi ile Al/Zn/Al2O3 ve Zn/Al2O3 Kaplanması ve Aşınma Davranışlarının İncelenmesi. Politeknik Dergisi, 25(4), 1791-1798. https://doi.org/10.2339/politeknik.1128114
AMA Gül C, Albayrak S, Çömez N, Durmuş H. WE43 Magnezyum Alaşımının Soğuk Sprey Kaplama Yöntemi ile Al/Zn/Al2O3 ve Zn/Al2O3 Kaplanması ve Aşınma Davranışlarının İncelenmesi. Politeknik Dergisi. December 2022;25(4):1791-1798. doi:10.2339/politeknik.1128114
Chicago Gül, Canser, Sevda Albayrak, Nilay Çömez, and Hülya Durmuş. “WE43 Magnezyum Alaşımının Soğuk Sprey Kaplama Yöntemi Ile Al/Zn/Al2O3 Ve Zn/Al2O3 Kaplanması Ve Aşınma Davranışlarının İncelenmesi”. Politeknik Dergisi 25, no. 4 (December 2022): 1791-98. https://doi.org/10.2339/politeknik.1128114.
EndNote Gül C, Albayrak S, Çömez N, Durmuş H (December 1, 2022) WE43 Magnezyum Alaşımının Soğuk Sprey Kaplama Yöntemi ile Al/Zn/Al2O3 ve Zn/Al2O3 Kaplanması ve Aşınma Davranışlarının İncelenmesi. Politeknik Dergisi 25 4 1791–1798.
IEEE C. Gül, S. Albayrak, N. Çömez, and H. Durmuş, “WE43 Magnezyum Alaşımının Soğuk Sprey Kaplama Yöntemi ile Al/Zn/Al2O3 ve Zn/Al2O3 Kaplanması ve Aşınma Davranışlarının İncelenmesi”, Politeknik Dergisi, vol. 25, no. 4, pp. 1791–1798, 2022, doi: 10.2339/politeknik.1128114.
ISNAD Gül, Canser et al. “WE43 Magnezyum Alaşımının Soğuk Sprey Kaplama Yöntemi Ile Al/Zn/Al2O3 Ve Zn/Al2O3 Kaplanması Ve Aşınma Davranışlarının İncelenmesi”. Politeknik Dergisi 25/4 (December 2022), 1791-1798. https://doi.org/10.2339/politeknik.1128114.
JAMA Gül C, Albayrak S, Çömez N, Durmuş H. WE43 Magnezyum Alaşımının Soğuk Sprey Kaplama Yöntemi ile Al/Zn/Al2O3 ve Zn/Al2O3 Kaplanması ve Aşınma Davranışlarının İncelenmesi. Politeknik Dergisi. 2022;25:1791–1798.
MLA Gül, Canser et al. “WE43 Magnezyum Alaşımının Soğuk Sprey Kaplama Yöntemi Ile Al/Zn/Al2O3 Ve Zn/Al2O3 Kaplanması Ve Aşınma Davranışlarının İncelenmesi”. Politeknik Dergisi, vol. 25, no. 4, 2022, pp. 1791-8, doi:10.2339/politeknik.1128114.
Vancouver Gül C, Albayrak S, Çömez N, Durmuş H. WE43 Magnezyum Alaşımının Soğuk Sprey Kaplama Yöntemi ile Al/Zn/Al2O3 ve Zn/Al2O3 Kaplanması ve Aşınma Davranışlarının İncelenmesi. Politeknik Dergisi. 2022;25(4):1791-8.