Research Article
BibTex RIS Cite

Günışığı Tüpleri ve Hareketli Gölgeleme Elemanlarını Kullanarak Derin Planlı Bir Sınıfın Günışığı Performansını İyileştirmeye Yönelik Bir Tasarım Önerisi

Year 2024, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1266467

Abstract

Eğitim yapılarında günışığının kullanımı öğrencilerin sağlığı, dikkati ve akademik başarısı üzerinde önemli bir etkiye sahiptir. Ancak, günışığı sabit olmadığı ve mekân içindeki gücü cepheden uzaklaştıkça azaldığı için, özellikle derin planlı sınıflarda, kamaşmaya yol açmadan hacmin genelinde yeterli gün ışığı sağlamak zordur. Bu çalışmada, derin plan düzenine sahip olan ve sadece güneybatı cephesinden gün ışığı alan Yaşar Üniversitesi Mimarlık Fakültesi Geçici Atölye’sinde günışığından yararlanmayı arttırmak için günışığı tüpleri ve hareketli gölgeleme elemanları önerilmiştir. Öneri oluşturulurken, LEED’in günışığı kriterleri olan; sDA için %55 ve ASE içinse en fazla %10’u yakalamak ana hedef olarak belirlenmiştir. Önerilen günışığı tüplerini ve hareketli gölgeleme elemanlarını en etkin açı ve pozisyonda kullanılmak için, Rhinoceros, Grasshopper ve Climate Studio programlarından faydalanılmış, ayrıca simülasyon sonuçları alanda yapılan ölçüm sonuçları ile valide edilmiştir. Simülasyon sonuçlarına göre yapılan öneriyle; sınıfın arka tarafındaki (zone 2-3) günışığı miktarı belirgin şekilde artarken, cepheye yakın alanda yaşanan (zone 1) kamaşma kabul edilebilecek aralığa düşürülmüştür. Önerilen tasarım stratejisi ile hacmin günışığı performansı iyileşmiş ve bu iki sistemin birlikte verimli olarak çalıştığı görülmüştür.

References

  • [1] Costanzo V., Evola G., and Marletta L., “A review of daylighting strategies in schools: State of the art and expected future trends”, Buildings, 7 (2), (2017).
  • [2] Michael A. and Heracleous C., “Assessment of natural lighting performance and visual comfort of educational architecture in Southern Europe: The case of typical educational school premises in Cyprus”, Energy and Buildings, 140, 443–457, (2017).
  • [3] Kayıhan K. S. and Tönük S., “Sürdürülebilirlik Bilincinin İnşa Edileceği Binalar Olma Yönü ile Temel Eğitim Okulları”, Journal of Polytechnic, 14 (2), 163-171, (2011).
  • [4] Giuli V., Pos O., and Carli M., “Indoor environmental quality and pupil perception in Italian primary schools”, Building and Environment, 56, 335–345, (2012).
  • [5] Gündoğdu E. and Cilasun Kunduraci A., “Effect of Window Glazings’ Visible Transmittance to Daylight Factor and Energy Efficiency in An Architecture Studio”, in 7th International Conference on Embracing Capacity Building Opportunities in the Modern Day Dispensation, 26, no. 3, 1–4, (2019). Accessed: Dec. 21, 2022. [Online].
  • [6] Nocera F., Faro A., Costanzo V., and Raciti C., “Daylight performance of classrooms in a mediterranean school heritage building”, Sustainability, no. 10, (2018).
  • [7] Nair M. G., Ramamurthy K., and Ganesan A. R., “Classification of indoor daylight enhancement systems”, Lighting Research and Technology, 46 (3), 245–267, (2014).
  • [8] Dikmen Ç. B., “Enerji Etkin Yapı Tasarım Ölçütlerinin Örneklenmesi”, Journal of Polytechnic, 14(2), 121-134, (2011).
  • [9] Reinhart C. F., “A Simulation-based review of the ubiquitous window-head-height to daylit zone depth rule-of-thumb”, in Proceedings of the Buildings Simulation, 1–8, (2005).
  • [10] G-Hansen V. R., “Innovative daylighting systems for deep-plan commercial buildings”, PhD, Queensland University of Technology, (2006).
  • [11] Kontadakis A., Tsangrassoulis A., Doulos L., and Topalis F., “An active sunlight redirection system for daylight enhancement beyond the perimeter zone”, Building and Environment, 113, 267–279, (2017).
  • [12] Mayhoub M. S., “Innovative daylighting systems’ challenges: A critical study”, Energy and Buildings, 80, 394–405, (2014).
  • [13] Mangkuto R. A., Feradi F., Putra R. E., Atmodipoero R. T., and Favero F., “Optimisation of daylight admission based on modifications of light shelf design parameters”, Journal of Building Engineering, 18, no. March, 195–209, (2018).
  • [14] Malet-Damour B., Guichard S., Bigot D., and Boyer H., “Study of tubular daylight guide systems in buildings: Experimentation, modelling and validation”, Energy and Buildings, 129, 308–321, (2016).
  • [15] Oakley G., Riffat S. B., and Shao L., “Daylight Performance of Lightpipes”, Solar Energy, 69 (2),89–98, (2000).
  • [16] Baglivo C., Bonomolo M., and Congedo P. M., “Modeling of light pipes for the optimal disposition in buildings”, Energies, 12 (22), Nov., (2019).
  • [17] Kazemi M. and Mohsen Bina D., “Analysing efficiency of vertical transfer light pipe in medium depth building”, Journal of Solar Energy Research, 4 (3), 209–220, (2019).
  • [18] Thakkar V., “Experimental study of Tubular Skylight and comparison with Artificial Lighting of standard ratings”, International Journal of Enhanced Research in Science Technology & Engineering, 2(6), 1–6, (2013).
  • [19] Li H., Wu D., Yuan Y., and Zuo L., “Evaluation methods of the daylight performance and potential energy saving of tubular daylight guide systems: A review”, Indoor and Built Environment, 31 (2), 299–315, (2022).
  • [20] Malet-Damour B., Bigot D., and Boyer H., “Technological Review of Tubular Daylight Guide System from 1982 to 2020”, European Journal of Engineering Research and Science, 5(3), 375–386, (2020).
  • [21] Jenkins D., Muneer T., and Kubie J., “A Design Tool for Predicting the Performances of Light Pipes”, Energy and Buildings, 37 (5), 485–492, May, (2005).
  • [22] Darula S., Mohelníková J., and Král J., “Daylight in buildings based on tubular light guides”, Journal of Building Engineering, 44 April, (2021).
  • [23] Carter D. J., “Tubular guidance systems for daylight: UK case studies”, Building Research and Information, 36 (5), 520–535, Oct, (2008).
  • [24] Çelebi G. Ü. And Tosun S., “Bütünleşik Mimarlık Sistemleri: Rüzgar Türbinlerinin Yüksek Binalar ile Bütünleşik Tasarımı”, Journal of Polytechnic, 14, no. 3, 179-186, (2011).
  • [25] Obradovic B., Matusiak B. S., Klockner C. A., and Arbab S., “The effect of a horizontal light pipe and a custom-made reflector on the user’s perceptual impression of the office room located at a high latitude”, Energy and Buildings, 253, Dec, (2021).
  • [26] Heng C. Y. S., “Integration of Shading Device and Semi-Circle Horizontal Light Pipe Transporter for High-Rise Office Building in Tropical Climate”, Environmental Research, Engineering and Management, 77(4), 122–131, Dec, (2021).
  • [27] Elsiana F., Ekasiwi S. N. N., and Gusti Ngurah Antaryama I., “Integration of horizontal light pipe and shading systems in office building in the tropics”, Journal of Applied Science and Engineering, 25 (1), 231–243, (2022).
  • [28] Grynning S., Time B., and Matusiak B., “Solar shading control strategies in cold climates - Heating, cooling demand and daylight availability in office spaces’, Solar Energy, 107, 182–194, (2014).
  • [29] Pesenti M., Masera G., Fiorito F., and Sauchelli M., “Kinetic Solar Skin: A Responsive Folding Technique”, in Energy Procedia, 70, 661–672, (2015).
  • [30] Bohnenberger S., Khoo C. K., Davis D., Thomsen R., Karmon A., and Burry M., “Sensing Material Systems-Novel Design Strategies”, International Journal of Architectural Computing, 10 (3), 361-375, (2012).
  • [31] Shen H. and Tzempelikos A., “Daylighting and energy analysis of private offices with automated interior roller shades”, Solar Energy, 86( 2), 681–704, Feb, (2012).
  • [32] Freewan A. A. Y., Gharaibeh A. A., and Jamhawi M. M., “Improving daylight performance of light wells in residential buildings: Nourishing compact sustainable urban form”, Sustainable Cities and Society, 13,32–40, (2014).
  • [33] Sherif A. H., Sabry H. M., and Gadelhak M. I., “The impact of changing solar screen rotation angle and its opening aspect ratios on Daylight Availability in residential desert buildings”, Solar Energy, 86(11), 3353–3363, Nov, (2012).
  • [34] Fontoynont M., Daylight performance of buildings. James & James (Science Publishers), (1999).
  • [35] Hosseini S. M., Mohammadi M., Schröder T., and Guerra-Santin O., “Integrating interactive kinetic façade design with colored glass to improve daylight performance based on occupants’ position”, Journal of Building Engineering, 31, Sep, (2020).
  • [36] Grobman Y. J., Capeluto I. G., and Austern G., “External shading in buildings: comparative analysis of daylighting performance in static and kinetic operation scenarios”, Architectural Science and Review, 60(2), 126–136, Mar, (2017).
  • [37] Parsaee M., Demers C. M. H., Lalonde J.-F., Potvin A., Inanici M., and Hébert M., “Human-centric lighting performance of shading panels in architecture: A benchmarking study with lab scale physical models under real skies”, Solar Energy, 204, 354–368, Jul, (2020).
  • [38] Kızılörenli E. and Tokuç A., “Gün Işığı Performansı için Tepkisel Bir Cephe Sisteminin Parametrik Optimizasyonu”, Mimarlık Bilimleri ve Uygulamaları Dergisi (MBUD), 7(1), 72–81, Jun, (2022).
  • [39] Loonen R. C. G. M., Trčka M., Cóstola D., and Hensen J. L. M., “Climate adaptive building shells: State-of-the-art and future challenges”, Renewable and Sustainable Energy Reviews, 25, 483–493, (2013). [40] Wang J., Beltrán L. O., and Kim J., “From Static to Kinetic: A Review of Acclimated Kinetic Building Envelopes”, Solar 2012 Conference, (2012).
  • [41] Knaack U., Klein T., Bilow M., and Auer T., “Façades: Principles of Construction”, Birkhäuser Verlag, Basel, Switzerland, (2014).
  • [42] Dewidar K., Mahmoud A. H., Magdy N., and Ahmed S., “The role of intelligent façades in energy conservation”, International Conference on Sustainability and the Future: Future Intermediate Sustainable Cities, (1), (2010).
  • [43] Grobman Y. J., Capeluto I. G., and Austern G., “External shading in buildings: comparative analysis of daylighting performance in static and kinetic operation scenarios”, Architectural Science and Review, 60(2), 126–136, Mar, (2017).
  • [44] Karanouh A. and Kerber E., “Innovations in dynamic architecture”, Journal of Facade Design and Engineering, 3(2), 185–221, Nov, (2015).
  • [45] Kim G., Lim H. S., Lim T. S., Schaefer L., and Kim J. T., “Comparative advantage of an exterior shading device in thermal performance for residential buildings”, in Energy and Buildings, Mar, 46, 105–111, (2012). [46] Frontini F., Kuhn T. E., Herkel S., Strachan P., and Kokogiannakis G., “Implementation and Application of a New Bi-Directional Solar Modelling Method for Complex Facades Within the Esp-r Building Simulation Program”, Engineering, 936-943, (2009).
  • [47] Maňková L., Hraška J., and Janák M., “Simplified Determination of Indoor Daylight Illumination by Light Pipes”, Slovak Journal of Civil Engineering, 4, 22–30, (2009).
  • [48] Shuxiao W., Jianping Z., and Lixiong W., “Research on energy saving analysis of tubular daylight devices”, in Energy Procedia, Nov., 78, 1781–1786, (2015).
  • [49] Vasilakopoulou K., Synnefa A., Kolokotsa D., Karlessi T., and Santamouris M., “Performance prediction and design optimisation of an integrated light pipe and artificial lighting system”, International Journal of Sustainable Energy, 35(7), 675–685, Aug, (2016).
  • [50] Ciugudeanu C. and Beu D., “Passive Tubular Daylight Guidance System Survey”, Procedia Technology, 22, 690–696, (2016).
  • [51] Thayanithy D. and Perera N., “Daylight and window view quality for visual comfort: the case of an office building in Jaffna”, Built-Environment Sri Lanka, 13(2), Feb, (2023).
  • [52] Heidari Matin N. and Eydgahi A., “A data-driven optimized daylight pattern for responsive facades design”, Intelligent Buildings International, 14(3), 363–374, (2022).
  • [53] Dabaj B., Rahbar M., and Fakhr B. V., “Impact of Different Shading Devices on Daylight Performance and Visual Comfort of A Four Opening Sides’ Reading Room In Rasht”, Journal of Daylighting, 9(1), 97–116, Jun, (2022).
  • [54] Eltaweel A. and Su Y., “Controlling venetian blinds based on parametric design; via implementing Grasshopper’s plugins: A case study of an office building in Cairo”, Energy and Buildings, 139, 31–43, Mar, (2017).
  • [55] Manzan M. and Clarich A., “FAST energy and daylight optimization of an office with fixed and movable shading devices”, Building and Environment, 113, 175–184, Feb, (2017).
  • [56] Paule B., Boutillier J, and Pantet S., “Shading Device Control: Effective Impact On Daylight Contribution”, CISBAT 2015, Sept 9-11, Lausanne,Switzerland, (2015).
  • [57] Alzoubi H. H. and Al-Zoubi A. H., “Assessment of building façade performance in terms of daylighting and the associated energy consumption in architectural spaces: Vertical and horizontal shading devices for southern exposure facades”, Energy Conversion and Management, 51(8), 1592–1599, Aug, (2010).
  • [58] H. Y. Shin et al., “Daylighting Performance on Venetian Blind for Healthy Apartment Housing”, 1st International Conference on Sustainability and the Future, Egypt, (2010).
  • [59] Kim J. T. and Kim G., “Advanced external shading device to maximize visual and view performance”, in Indoor and Built Environment, Feb, 19(1), 65–72, (2010).
  • [60] Dubois M. C., “Shading devices and daylight quality: An evaluation based on simple performance indicators”, Lighting Research & Technology, 35(1), 61–74, (2003).
  • [61] Sadegh S. O., Gasparri E., Brambilla A., and Globa A., “Kinetic facades: An evolutionary-based performance evaluation framework”, Journal of Building Engineering, 53, Aug, (2022).
  • [62] Chutarat A., “Experience of Light: The Use of an Inverse Method and a Genetic Algorithm in Daylighting Design”, Doctor of Philosophy, Massachusetts Institute of Technology, (2001).
  • [63] Bahdad A. A. S., Fadzil S. F. S., and Taib N., “Optimization of daylight performance based on controllable light-shelf parameters using genetic algorithms in the tropical climate of Malaysia”, Journal of Daylighting, 7(1),122–136, (2020).
  • [64] Torres S. L. and Sakamoto Y., “Facade Design Optimization for Daylight with a Simple Genetic Algorithm”, Proceedings: Building Simulation 2007, China, (2007).
  • [65] Caldas L. G. and Norford L. K., “Genetic algorithms for optimization of building envelopes and the design and control of HVAC systems”, Journal of Solar Energy Engineering, Transactions of the ASME, 125(3), 343–351, Aug, (2003).
  • [66] Lu S., Yu Z., and Fan M., “Multi-layered and multi-dimensional suitability evaluation of tubular daylight guidance systems”, Journal of Building Engineering, 32, Nov, (2020). [67] Reinhart C. F., Mardaljevic J., and Rogers Z., “Dynamic daylight performance metrics for sustainable building design”,LEUKOS-Journal of Illuminating Engineering Society of North America, 3(1), 7–31, Jul, (2006).
  • [68] IES Daylight Metrics Committee, “Approved method : IES spatial daylight autonomy (sDA) and annual sunlight exposure (ASE), Approved Method IES LM-83-12”, (2012).
  • [69] US Green Building Council, “LEED v4 for Building Design and Construction”, (2019).
  • [70] Piraei F., Matusiak B., and Verso V. R. M., “Evaluation and Optimization of Daylighting in Heritage Buildings: A Case-Study at High Latitudes”, Buildings, 12(12), Dec, (2022).
  • [71] Attri M., “How can a Façade design enhance daylight in office environments in temperate climates? An energy-efficient approach toward sustainability”, 11th Masters Conference: People and Buildings, London, (2022).
  • [72] Sankaewthong S., Horanont T., Miyata K., Karnjana J., Busayarat C., and Xie H., “Using a Biomimicry Approach in the Design of a Kinetic Façade to Regulate the Amount of Daylight Entering a Working Space”, Buildings, 12(12), (2022).
  • [73] Santos L., Caetano I., Leitão A., and Pereira I., “Uncertainty in daylight simulations of algorithmically generated complex shading screens”, in Proceedings of Building Simulation 2021: 17th Conference of IBPSA, Jul , 17, (2022).

A Design Proposal for Improving Daylight Availability of a Deep-Plan Classroom by Using Tubular Daylight Guidance Systems and Movable Shading Devices

Year 2024, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1266467

Abstract

The use of daylight in educational settings has a significant impact on the well-being, attention, and academic achievement of students. However, providing adequate daylighting without glare can be difficult, especially in deep-plan layout classrooms, because daylight is not constant and its strength varies with distance from the façade, necessitating the use of additional solutions frequently. In this study, tubular daylight guidance systems (TDGS) and movable shading devices are proposed to increase daylight availability in the Yaşar University Faculty of Architecture Temporary Studio, which has a deep plan layout and receives daylight only from the southeast facade. The objective was to meet the LEED daylight evaluation requirements for each zone, which require sDA to be at least 55% and ASE to be at most 10% in the selected analysis area. To propose TDGS and movable shadings with the most efficient angles and positions; Rhinoceros, Grasshopper, and Climate Studio were used, and simulation results were validated by real-time measurements. The design proposal simulation results achieved a significant increase in daylight availability in the rear part of the room (zone 2-3), while glare was diminished near the façade (zone1). The proposed design strategy improved daylight availability through the room, demonstrating that the systems perform well together.

References

  • [1] Costanzo V., Evola G., and Marletta L., “A review of daylighting strategies in schools: State of the art and expected future trends”, Buildings, 7 (2), (2017).
  • [2] Michael A. and Heracleous C., “Assessment of natural lighting performance and visual comfort of educational architecture in Southern Europe: The case of typical educational school premises in Cyprus”, Energy and Buildings, 140, 443–457, (2017).
  • [3] Kayıhan K. S. and Tönük S., “Sürdürülebilirlik Bilincinin İnşa Edileceği Binalar Olma Yönü ile Temel Eğitim Okulları”, Journal of Polytechnic, 14 (2), 163-171, (2011).
  • [4] Giuli V., Pos O., and Carli M., “Indoor environmental quality and pupil perception in Italian primary schools”, Building and Environment, 56, 335–345, (2012).
  • [5] Gündoğdu E. and Cilasun Kunduraci A., “Effect of Window Glazings’ Visible Transmittance to Daylight Factor and Energy Efficiency in An Architecture Studio”, in 7th International Conference on Embracing Capacity Building Opportunities in the Modern Day Dispensation, 26, no. 3, 1–4, (2019). Accessed: Dec. 21, 2022. [Online].
  • [6] Nocera F., Faro A., Costanzo V., and Raciti C., “Daylight performance of classrooms in a mediterranean school heritage building”, Sustainability, no. 10, (2018).
  • [7] Nair M. G., Ramamurthy K., and Ganesan A. R., “Classification of indoor daylight enhancement systems”, Lighting Research and Technology, 46 (3), 245–267, (2014).
  • [8] Dikmen Ç. B., “Enerji Etkin Yapı Tasarım Ölçütlerinin Örneklenmesi”, Journal of Polytechnic, 14(2), 121-134, (2011).
  • [9] Reinhart C. F., “A Simulation-based review of the ubiquitous window-head-height to daylit zone depth rule-of-thumb”, in Proceedings of the Buildings Simulation, 1–8, (2005).
  • [10] G-Hansen V. R., “Innovative daylighting systems for deep-plan commercial buildings”, PhD, Queensland University of Technology, (2006).
  • [11] Kontadakis A., Tsangrassoulis A., Doulos L., and Topalis F., “An active sunlight redirection system for daylight enhancement beyond the perimeter zone”, Building and Environment, 113, 267–279, (2017).
  • [12] Mayhoub M. S., “Innovative daylighting systems’ challenges: A critical study”, Energy and Buildings, 80, 394–405, (2014).
  • [13] Mangkuto R. A., Feradi F., Putra R. E., Atmodipoero R. T., and Favero F., “Optimisation of daylight admission based on modifications of light shelf design parameters”, Journal of Building Engineering, 18, no. March, 195–209, (2018).
  • [14] Malet-Damour B., Guichard S., Bigot D., and Boyer H., “Study of tubular daylight guide systems in buildings: Experimentation, modelling and validation”, Energy and Buildings, 129, 308–321, (2016).
  • [15] Oakley G., Riffat S. B., and Shao L., “Daylight Performance of Lightpipes”, Solar Energy, 69 (2),89–98, (2000).
  • [16] Baglivo C., Bonomolo M., and Congedo P. M., “Modeling of light pipes for the optimal disposition in buildings”, Energies, 12 (22), Nov., (2019).
  • [17] Kazemi M. and Mohsen Bina D., “Analysing efficiency of vertical transfer light pipe in medium depth building”, Journal of Solar Energy Research, 4 (3), 209–220, (2019).
  • [18] Thakkar V., “Experimental study of Tubular Skylight and comparison with Artificial Lighting of standard ratings”, International Journal of Enhanced Research in Science Technology & Engineering, 2(6), 1–6, (2013).
  • [19] Li H., Wu D., Yuan Y., and Zuo L., “Evaluation methods of the daylight performance and potential energy saving of tubular daylight guide systems: A review”, Indoor and Built Environment, 31 (2), 299–315, (2022).
  • [20] Malet-Damour B., Bigot D., and Boyer H., “Technological Review of Tubular Daylight Guide System from 1982 to 2020”, European Journal of Engineering Research and Science, 5(3), 375–386, (2020).
  • [21] Jenkins D., Muneer T., and Kubie J., “A Design Tool for Predicting the Performances of Light Pipes”, Energy and Buildings, 37 (5), 485–492, May, (2005).
  • [22] Darula S., Mohelníková J., and Král J., “Daylight in buildings based on tubular light guides”, Journal of Building Engineering, 44 April, (2021).
  • [23] Carter D. J., “Tubular guidance systems for daylight: UK case studies”, Building Research and Information, 36 (5), 520–535, Oct, (2008).
  • [24] Çelebi G. Ü. And Tosun S., “Bütünleşik Mimarlık Sistemleri: Rüzgar Türbinlerinin Yüksek Binalar ile Bütünleşik Tasarımı”, Journal of Polytechnic, 14, no. 3, 179-186, (2011).
  • [25] Obradovic B., Matusiak B. S., Klockner C. A., and Arbab S., “The effect of a horizontal light pipe and a custom-made reflector on the user’s perceptual impression of the office room located at a high latitude”, Energy and Buildings, 253, Dec, (2021).
  • [26] Heng C. Y. S., “Integration of Shading Device and Semi-Circle Horizontal Light Pipe Transporter for High-Rise Office Building in Tropical Climate”, Environmental Research, Engineering and Management, 77(4), 122–131, Dec, (2021).
  • [27] Elsiana F., Ekasiwi S. N. N., and Gusti Ngurah Antaryama I., “Integration of horizontal light pipe and shading systems in office building in the tropics”, Journal of Applied Science and Engineering, 25 (1), 231–243, (2022).
  • [28] Grynning S., Time B., and Matusiak B., “Solar shading control strategies in cold climates - Heating, cooling demand and daylight availability in office spaces’, Solar Energy, 107, 182–194, (2014).
  • [29] Pesenti M., Masera G., Fiorito F., and Sauchelli M., “Kinetic Solar Skin: A Responsive Folding Technique”, in Energy Procedia, 70, 661–672, (2015).
  • [30] Bohnenberger S., Khoo C. K., Davis D., Thomsen R., Karmon A., and Burry M., “Sensing Material Systems-Novel Design Strategies”, International Journal of Architectural Computing, 10 (3), 361-375, (2012).
  • [31] Shen H. and Tzempelikos A., “Daylighting and energy analysis of private offices with automated interior roller shades”, Solar Energy, 86( 2), 681–704, Feb, (2012).
  • [32] Freewan A. A. Y., Gharaibeh A. A., and Jamhawi M. M., “Improving daylight performance of light wells in residential buildings: Nourishing compact sustainable urban form”, Sustainable Cities and Society, 13,32–40, (2014).
  • [33] Sherif A. H., Sabry H. M., and Gadelhak M. I., “The impact of changing solar screen rotation angle and its opening aspect ratios on Daylight Availability in residential desert buildings”, Solar Energy, 86(11), 3353–3363, Nov, (2012).
  • [34] Fontoynont M., Daylight performance of buildings. James & James (Science Publishers), (1999).
  • [35] Hosseini S. M., Mohammadi M., Schröder T., and Guerra-Santin O., “Integrating interactive kinetic façade design with colored glass to improve daylight performance based on occupants’ position”, Journal of Building Engineering, 31, Sep, (2020).
  • [36] Grobman Y. J., Capeluto I. G., and Austern G., “External shading in buildings: comparative analysis of daylighting performance in static and kinetic operation scenarios”, Architectural Science and Review, 60(2), 126–136, Mar, (2017).
  • [37] Parsaee M., Demers C. M. H., Lalonde J.-F., Potvin A., Inanici M., and Hébert M., “Human-centric lighting performance of shading panels in architecture: A benchmarking study with lab scale physical models under real skies”, Solar Energy, 204, 354–368, Jul, (2020).
  • [38] Kızılörenli E. and Tokuç A., “Gün Işığı Performansı için Tepkisel Bir Cephe Sisteminin Parametrik Optimizasyonu”, Mimarlık Bilimleri ve Uygulamaları Dergisi (MBUD), 7(1), 72–81, Jun, (2022).
  • [39] Loonen R. C. G. M., Trčka M., Cóstola D., and Hensen J. L. M., “Climate adaptive building shells: State-of-the-art and future challenges”, Renewable and Sustainable Energy Reviews, 25, 483–493, (2013). [40] Wang J., Beltrán L. O., and Kim J., “From Static to Kinetic: A Review of Acclimated Kinetic Building Envelopes”, Solar 2012 Conference, (2012).
  • [41] Knaack U., Klein T., Bilow M., and Auer T., “Façades: Principles of Construction”, Birkhäuser Verlag, Basel, Switzerland, (2014).
  • [42] Dewidar K., Mahmoud A. H., Magdy N., and Ahmed S., “The role of intelligent façades in energy conservation”, International Conference on Sustainability and the Future: Future Intermediate Sustainable Cities, (1), (2010).
  • [43] Grobman Y. J., Capeluto I. G., and Austern G., “External shading in buildings: comparative analysis of daylighting performance in static and kinetic operation scenarios”, Architectural Science and Review, 60(2), 126–136, Mar, (2017).
  • [44] Karanouh A. and Kerber E., “Innovations in dynamic architecture”, Journal of Facade Design and Engineering, 3(2), 185–221, Nov, (2015).
  • [45] Kim G., Lim H. S., Lim T. S., Schaefer L., and Kim J. T., “Comparative advantage of an exterior shading device in thermal performance for residential buildings”, in Energy and Buildings, Mar, 46, 105–111, (2012). [46] Frontini F., Kuhn T. E., Herkel S., Strachan P., and Kokogiannakis G., “Implementation and Application of a New Bi-Directional Solar Modelling Method for Complex Facades Within the Esp-r Building Simulation Program”, Engineering, 936-943, (2009).
  • [47] Maňková L., Hraška J., and Janák M., “Simplified Determination of Indoor Daylight Illumination by Light Pipes”, Slovak Journal of Civil Engineering, 4, 22–30, (2009).
  • [48] Shuxiao W., Jianping Z., and Lixiong W., “Research on energy saving analysis of tubular daylight devices”, in Energy Procedia, Nov., 78, 1781–1786, (2015).
  • [49] Vasilakopoulou K., Synnefa A., Kolokotsa D., Karlessi T., and Santamouris M., “Performance prediction and design optimisation of an integrated light pipe and artificial lighting system”, International Journal of Sustainable Energy, 35(7), 675–685, Aug, (2016).
  • [50] Ciugudeanu C. and Beu D., “Passive Tubular Daylight Guidance System Survey”, Procedia Technology, 22, 690–696, (2016).
  • [51] Thayanithy D. and Perera N., “Daylight and window view quality for visual comfort: the case of an office building in Jaffna”, Built-Environment Sri Lanka, 13(2), Feb, (2023).
  • [52] Heidari Matin N. and Eydgahi A., “A data-driven optimized daylight pattern for responsive facades design”, Intelligent Buildings International, 14(3), 363–374, (2022).
  • [53] Dabaj B., Rahbar M., and Fakhr B. V., “Impact of Different Shading Devices on Daylight Performance and Visual Comfort of A Four Opening Sides’ Reading Room In Rasht”, Journal of Daylighting, 9(1), 97–116, Jun, (2022).
  • [54] Eltaweel A. and Su Y., “Controlling venetian blinds based on parametric design; via implementing Grasshopper’s plugins: A case study of an office building in Cairo”, Energy and Buildings, 139, 31–43, Mar, (2017).
  • [55] Manzan M. and Clarich A., “FAST energy and daylight optimization of an office with fixed and movable shading devices”, Building and Environment, 113, 175–184, Feb, (2017).
  • [56] Paule B., Boutillier J, and Pantet S., “Shading Device Control: Effective Impact On Daylight Contribution”, CISBAT 2015, Sept 9-11, Lausanne,Switzerland, (2015).
  • [57] Alzoubi H. H. and Al-Zoubi A. H., “Assessment of building façade performance in terms of daylighting and the associated energy consumption in architectural spaces: Vertical and horizontal shading devices for southern exposure facades”, Energy Conversion and Management, 51(8), 1592–1599, Aug, (2010).
  • [58] H. Y. Shin et al., “Daylighting Performance on Venetian Blind for Healthy Apartment Housing”, 1st International Conference on Sustainability and the Future, Egypt, (2010).
  • [59] Kim J. T. and Kim G., “Advanced external shading device to maximize visual and view performance”, in Indoor and Built Environment, Feb, 19(1), 65–72, (2010).
  • [60] Dubois M. C., “Shading devices and daylight quality: An evaluation based on simple performance indicators”, Lighting Research & Technology, 35(1), 61–74, (2003).
  • [61] Sadegh S. O., Gasparri E., Brambilla A., and Globa A., “Kinetic facades: An evolutionary-based performance evaluation framework”, Journal of Building Engineering, 53, Aug, (2022).
  • [62] Chutarat A., “Experience of Light: The Use of an Inverse Method and a Genetic Algorithm in Daylighting Design”, Doctor of Philosophy, Massachusetts Institute of Technology, (2001).
  • [63] Bahdad A. A. S., Fadzil S. F. S., and Taib N., “Optimization of daylight performance based on controllable light-shelf parameters using genetic algorithms in the tropical climate of Malaysia”, Journal of Daylighting, 7(1),122–136, (2020).
  • [64] Torres S. L. and Sakamoto Y., “Facade Design Optimization for Daylight with a Simple Genetic Algorithm”, Proceedings: Building Simulation 2007, China, (2007).
  • [65] Caldas L. G. and Norford L. K., “Genetic algorithms for optimization of building envelopes and the design and control of HVAC systems”, Journal of Solar Energy Engineering, Transactions of the ASME, 125(3), 343–351, Aug, (2003).
  • [66] Lu S., Yu Z., and Fan M., “Multi-layered and multi-dimensional suitability evaluation of tubular daylight guidance systems”, Journal of Building Engineering, 32, Nov, (2020). [67] Reinhart C. F., Mardaljevic J., and Rogers Z., “Dynamic daylight performance metrics for sustainable building design”,LEUKOS-Journal of Illuminating Engineering Society of North America, 3(1), 7–31, Jul, (2006).
  • [68] IES Daylight Metrics Committee, “Approved method : IES spatial daylight autonomy (sDA) and annual sunlight exposure (ASE), Approved Method IES LM-83-12”, (2012).
  • [69] US Green Building Council, “LEED v4 for Building Design and Construction”, (2019).
  • [70] Piraei F., Matusiak B., and Verso V. R. M., “Evaluation and Optimization of Daylighting in Heritage Buildings: A Case-Study at High Latitudes”, Buildings, 12(12), Dec, (2022).
  • [71] Attri M., “How can a Façade design enhance daylight in office environments in temperate climates? An energy-efficient approach toward sustainability”, 11th Masters Conference: People and Buildings, London, (2022).
  • [72] Sankaewthong S., Horanont T., Miyata K., Karnjana J., Busayarat C., and Xie H., “Using a Biomimicry Approach in the Design of a Kinetic Façade to Regulate the Amount of Daylight Entering a Working Space”, Buildings, 12(12), (2022).
  • [73] Santos L., Caetano I., Leitão A., and Pereira I., “Uncertainty in daylight simulations of algorithmically generated complex shading screens”, in Proceedings of Building Simulation 2021: 17th Conference of IBPSA, Jul , 17, (2022).

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Arzu CILASUN KUNDURACI 0000-0002-6505-9738

Ecenur KIZILÖRENLİ 0000-0002-3992-1363

Early Pub Date June 14, 2023
Publication Date
Submission Date March 16, 2023
Published in Issue Year 2024 ERKEN GÖRÜNÜM

Cite

APA CILASUN KUNDURACI, A., & KIZILÖRENLİ, E. (2023). A Design Proposal for Improving Daylight Availability of a Deep-Plan Classroom by Using Tubular Daylight Guidance Systems and Movable Shading Devices. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1266467
AMA CILASUN KUNDURACI A, KIZILÖRENLİ E. A Design Proposal for Improving Daylight Availability of a Deep-Plan Classroom by Using Tubular Daylight Guidance Systems and Movable Shading Devices. Politeknik Dergisi. Published online June 1, 2023:1-1. doi:10.2339/politeknik.1266467
Chicago CILASUN KUNDURACI, Arzu, and Ecenur KIZILÖRENLİ. “A Design Proposal for Improving Daylight Availability of a Deep-Plan Classroom by Using Tubular Daylight Guidance Systems and Movable Shading Devices”. Politeknik Dergisi, June (June 2023), 1-1. https://doi.org/10.2339/politeknik.1266467.
EndNote CILASUN KUNDURACI A, KIZILÖRENLİ E (June 1, 2023) A Design Proposal for Improving Daylight Availability of a Deep-Plan Classroom by Using Tubular Daylight Guidance Systems and Movable Shading Devices. Politeknik Dergisi 1–1.
IEEE A. CILASUN KUNDURACI and E. KIZILÖRENLİ, “A Design Proposal for Improving Daylight Availability of a Deep-Plan Classroom by Using Tubular Daylight Guidance Systems and Movable Shading Devices”, Politeknik Dergisi, pp. 1–1, June 2023, doi: 10.2339/politeknik.1266467.
ISNAD CILASUN KUNDURACI, Arzu - KIZILÖRENLİ, Ecenur. “A Design Proposal for Improving Daylight Availability of a Deep-Plan Classroom by Using Tubular Daylight Guidance Systems and Movable Shading Devices”. Politeknik Dergisi. June 2023. 1-1. https://doi.org/10.2339/politeknik.1266467.
JAMA CILASUN KUNDURACI A, KIZILÖRENLİ E. A Design Proposal for Improving Daylight Availability of a Deep-Plan Classroom by Using Tubular Daylight Guidance Systems and Movable Shading Devices. Politeknik Dergisi. 2023;:1–1.
MLA CILASUN KUNDURACI, Arzu and Ecenur KIZILÖRENLİ. “A Design Proposal for Improving Daylight Availability of a Deep-Plan Classroom by Using Tubular Daylight Guidance Systems and Movable Shading Devices”. Politeknik Dergisi, 2023, pp. 1-1, doi:10.2339/politeknik.1266467.
Vancouver CILASUN KUNDURACI A, KIZILÖRENLİ E. A Design Proposal for Improving Daylight Availability of a Deep-Plan Classroom by Using Tubular Daylight Guidance Systems and Movable Shading Devices. Politeknik Dergisi. 2023:1-.