Research Article
BibTex RIS Cite

Simulation of PM10 and NOx Pollutants at a Coal-Fıred Thermal Power Plant Site Using The Gaussıan Plume Model in Freemat

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1430492

Abstract

Air quality is important to both human health and the environment. But as modernization is progressing further, the problem of air quality has become more alarming. Using machines in factories, motor vehicles in transportation, and power plants in energy generation are major contributors to air pollution. Most power plants, including thermal power plants that burn coal to produce electricity, emit harmful pollutants into the atmosphere during energy generation. Turkish government encourages the exploitation of coal reserves for electricity generation to lessen the importation of energy sources. Hence, Türkiye relies mainly on coal in its energy production. As of this writing, there are 55 thermal power plants operating in Türkiye. These power plants had an installed capacity of 21 GW at the end of 2019. Among these are the Afşin-Elbistan Thermal Power Plants (AETPPs) located in Kahramanmaraş province. In this study, PM10 and NOx pollutants at Afşin-Elbistan A Power Plant site located in Kahramanmaraş province of Türkiye were simulated using the Gaussian Plume Model in FreeMat software based on real data. The model input data included stack height, mass rate of emission of the pollutant, wind speed and direction, and atmospheric stability class. Dispersion profiles of PM10 and NOx pollutants were generated and the locations of maximum values of concentrations were identified. Results show that during winter, the highest maximum concentration of PM10 and NOx is 4865.79 µg/m3 and 699.7 µg/m3, respectively, with both located at x = 0.60 km in the scenario where 1.3-m/s wind is blowing from East. During summer, the highest maximum concentration of PM10 and NOx is 5380.77 µg/m3 and 767.87 µg/m3, respectively, with both located at x = 0.60 km in the scenario where 1.5-m/s wind is blowing from East-South-East. Furthermore, regions where PM10 and NOx concentrations exceed the national standard limit of 150 µg/m3 and 100 µg/m3, respectively, are always present and have been located in all the scenarios considered.

References

  • [1] Manisalidis I., Stavropoulou E., Stavropoulos A., and Bezirtzoglou E., “Environmental and Health Impacts of Air Pollution: A Review”, Front. Public Health, 8: 14, (2020).
  • [2] Eze I. C. et al., “Long-term air pollution exposure and diabetes in a population-based Swiss cohort”, Environment International, 70: 95–105, (2014).
  • [3] Shah A. S. V. et al., “Short term exposure to air pollution and stroke: systematic review and meta-analysis”, BMJ, p. h1295, (2015).
  • [4] Mulder D., Ed., “Soil disinfestation”, Developments in agricultural and managed-forest ecology, no. 6. Amsterdam ; New York : New York: Elsevier Scientific Pub. Co. ; distributors for the U.S. and Canada, Elsevier North-Holland, (1979).
  • [5] Peirce J. J., Weiner R. F., Vesilind P. A., and Vesilind P. A., “Environmental pollution and control”, 4th ed. Boston: Butterworth-Heinemann, (1998).
  • [6] Zhang C., Yao Q., and Sun J., “Characteristics of particulate matter from emissions of four typical coal-fired power plants in China”, Fuel Processing Technology, 86(7): 757–768, (2005).
  • [7] Kouprianov V. I., “Influence of lignite quality on airborne emissions from power generation in the Russian Far East and in Northern Thailand”, Fuel Processing Technology, 76(3): 187–199, doi: 10.1016/S0378-3820(02)00023-1, (2002).
  • [8] Nazari S., Shahhoseini O., Sohrabi-Kashani A., Davari S., Paydar R., and Delavar-Moghadam Z., “Experimental determination and analysis of CO2, SO2 and NOx emission factors in Iran’s thermal power plants”, Energy, 35(7): 2992–2998, doi: 10.1016/j.energy.2010.03.035, (2010).
  • [9] Basu S. and Debnath A. K., “Power Plant Instrumentation and Control Handbook: A Guide to Thermal Power Plants”, Power Plant Instrumentation and Control Handbook, Elsevier, i–ii. doi: 10.1016/B978-0-12-819504-8.09011-9, (2019).
  • [10] Athar M., Ali M., and Khan M. A., “Gaseous and particulate emissions from thermal power plants operating on different technologies”, Environ Monit Assess, 166(1–4): 625–639, doi: 10.1007/s10661-009-1028-0, (2010).
  • [11] Seinfeld J. H. and Pandis S. N., “Atmospheric chemistry and physics: from air pollution to climate change”, 2nd ed. New York: J. Wiley & Sons, (2006).
  • [12] Cheng W.-L., Chen Y.-S., Zhang J., Lyons T. J., Pai J.-L., and Chang S.-H., “Comparison of the Revised Air Quality Index with the PSI and AQI indices”, Science of The Total Environment, 382(2–3): 191–198, doi: 10.1016/j.scitotenv.2007.04.036, (2007).
  • [13] Zhan D., Kwan M.-P., Zhang W., Yu X., Meng B., and Liu Q., “The driving factors of air quality index in China”, Journal of Cleaner Production, 197: 1342–1351, (2018).
  • [14] Mohan M. and Kandya A., “An Analysis of the Annual and Seasonal Trends of Air Quality Index of Delhi”, Environ Monit Assess, 131(1–3): 267–277, (2007).
  • [15] Sharma R. et al., “Inferring air pollution from air quality index by different geographical areas: case study in India”, Air Qual Atmos Health, 12(11): 1347–1357, (2019).
  • [16] Din S. A. M., Yahya N. N.-H. N., and Abdullah A., “Fine Particulates Matter (PM2.5) from Coal-fired Power Plant in Manjung and its Health Impacts”, Procedia - Social and Behavioral Sciences, 85: 92–99, (2013).
  • [17] Van Den Elshout S., Léger K., and Nussio F., “Comparing urban air quality in Europe in real time”, Environment International, 34(5): 720–726, 2008).
  • [18] Büke T. and Köne A., “Assessing Air Quality in Türkiye: A Proposed, Air Quality Index”, Sustainability, 8(1): 73, (2016).
  • [19] Ma Z. et al., “Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies”, Atmospheric Environment, 131: 164–170, (2016).
  • [20] Lazaridis M., “First Principles of Meteorology and Air Pollution”, Environmental Pollution, 19, Dordrecht: Springer Netherlands, (2011).
  • [21] Ainslie B. and Jackson P. L., “The use of an atmospheric dispersion model to determine influence regions in the Prince George, B.C. airshed from the burning of open wood waste piles”, Journal of Environmental Management, 90(8): 2393–2401, (2009).
  • [22] Nihalani S. A., Mishra Y., and Juremalani J., “Emission Control Technologies for Thermal Power Plants”, IOP Conf. Ser.: Mater. Sci. Eng., 330: 012122, (2018).
  • [23] Kaygusuz K., “Energy Use and Air Pollution Issues in Türkiye”, CLEAN Soil Air Water, 35(6): 539–547, (2007).
  • [24] Myllyvirta L., Farrow A., Anhäuser A., “Future Air Quality and Health Impacts of the planned Afşin A power plant expansion”, Centre for Research on Energy and Clean Air. https://energyandcleanair.org/wp/wp-content/uploads/2022/04/Afsin-expansion_-Report.pdf, (2022).
  • [25] Güvenç U., Bakir H., and Duman S., “Investigation the Success of Semidefinite Programming for the Estimating of Fuel Cost Curves in Thermal Power Plants”, Politeknik Dergisi, 24(1): 247–254, (2021).
  • [26] Ersoy Ö., Özbay M., Karafaki F. Ç., and Erol D., “The Environmental Importance of Flue Gas Purification Systems; Case of Yatağan Thermal Power Station”, Journal of Polytechnic, 20(3): 570-577, (2017).
  • [27] Tontu M., “Kömür Yakıtlı Termik Santralin Çalışma Esnekliğinin İncelenmesi”, Politeknik Dergisi, 24(3): 893–902, (2021).
  • [28] Şirin M., “How many thermal power plants are there in Türkiye? Names of all thermal power plants!”, Haberler, https://www.haberler.com/haberler/turkiye-de-kac-tane-termik-santral-var-tum-14307220-haberi/ (2023).
  • [29] Peavy H. S., Rowe D. R., and Tchobanoglous G., “Environmental Engineering”, McGraw-Hill series in water resources and environmental engineering. New York: McGraw-Hill, (1985).
  • [30] Ministry of Environment, “Air quality protection regulation (AQPR)”, Official Gazette 19269, Ankara MOE, (1986).
  • [31] European Environment Agency, “World Health Organization (WHO) air quality guidelines (AQGs) and estimated reference levels (RLs)”. https://www.eea.europa.eu/publications/status-of-air-quality-in-Europe-2022/europes-air-quality-status-2022/world-health-organization-who-air (2024).

Freemat'ta Gauss Tüy Modeli Kullanılarak Kömür Termik Santrali Sahasında PM10 Ve NOx Kirleticilerinin Simülasyonu

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1430492

Abstract

Hava kalitesi hem insan sağlığı hem de çevre açısından önemlidir. Son yıllardaki nüfus, kentleşme, endüstri, ekonomi ve teknolojideki hızlı büyüme hava kalitesi sorununu daha da endişe verici hâle geldi. Bu hızlı büyüme elektrik enerjisine olan talebi de büyük oranda artırdı. Bu enerji talebini karşılamak için kurulan fosil yakıtlı termik santraller, çevre ve hava kirliliğinin ana kaynaklarını oluşturmaktadır. Hâli hazırda, Türkiye'de 53 termik santral faaliyet göstermektedir. Bu çalışmada köür yakıtlı Afşin-Elbistan A Elektrik Santrali sahasındaki PM10 ve NOx (NO and NO2) kirleticileri, meteorolojik esas alarak FreeMat yazılımındaki Gaussian Plume Modeli kullanılarak simüle edildi. Model girdi verileri, etkin baca yüksekliği, kirleticinin kütlesel salım oranı, rüzgâr hızı ve yönü ve atmosferik kararlılık sınıfı gibi verileri içermektedir. PM10 ve NOx kirleticilerinin dağılım profilleri oluşturuldu ve azami derişim değerlerinin yerleri belirlendi. Kış ve yaz aylarında PM10 ve NOx’in azami derişim değerleri, sırasıyla 4865 µg/m3 ve 700 µg/m3 ve 5381 µg/m3 ve 768 µg/m3 olarak bulundu. Simülasyon sonuçları PM10 ve NOx derişimlerinin, ulusal standart sınır değerleri aştığın gösterdi.

Ethical Statement

The authors of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

References

  • [1] Manisalidis I., Stavropoulou E., Stavropoulos A., and Bezirtzoglou E., “Environmental and Health Impacts of Air Pollution: A Review”, Front. Public Health, 8: 14, (2020).
  • [2] Eze I. C. et al., “Long-term air pollution exposure and diabetes in a population-based Swiss cohort”, Environment International, 70: 95–105, (2014).
  • [3] Shah A. S. V. et al., “Short term exposure to air pollution and stroke: systematic review and meta-analysis”, BMJ, p. h1295, (2015).
  • [4] Mulder D., Ed., “Soil disinfestation”, Developments in agricultural and managed-forest ecology, no. 6. Amsterdam ; New York : New York: Elsevier Scientific Pub. Co. ; distributors for the U.S. and Canada, Elsevier North-Holland, (1979).
  • [5] Peirce J. J., Weiner R. F., Vesilind P. A., and Vesilind P. A., “Environmental pollution and control”, 4th ed. Boston: Butterworth-Heinemann, (1998).
  • [6] Zhang C., Yao Q., and Sun J., “Characteristics of particulate matter from emissions of four typical coal-fired power plants in China”, Fuel Processing Technology, 86(7): 757–768, (2005).
  • [7] Kouprianov V. I., “Influence of lignite quality on airborne emissions from power generation in the Russian Far East and in Northern Thailand”, Fuel Processing Technology, 76(3): 187–199, doi: 10.1016/S0378-3820(02)00023-1, (2002).
  • [8] Nazari S., Shahhoseini O., Sohrabi-Kashani A., Davari S., Paydar R., and Delavar-Moghadam Z., “Experimental determination and analysis of CO2, SO2 and NOx emission factors in Iran’s thermal power plants”, Energy, 35(7): 2992–2998, doi: 10.1016/j.energy.2010.03.035, (2010).
  • [9] Basu S. and Debnath A. K., “Power Plant Instrumentation and Control Handbook: A Guide to Thermal Power Plants”, Power Plant Instrumentation and Control Handbook, Elsevier, i–ii. doi: 10.1016/B978-0-12-819504-8.09011-9, (2019).
  • [10] Athar M., Ali M., and Khan M. A., “Gaseous and particulate emissions from thermal power plants operating on different technologies”, Environ Monit Assess, 166(1–4): 625–639, doi: 10.1007/s10661-009-1028-0, (2010).
  • [11] Seinfeld J. H. and Pandis S. N., “Atmospheric chemistry and physics: from air pollution to climate change”, 2nd ed. New York: J. Wiley & Sons, (2006).
  • [12] Cheng W.-L., Chen Y.-S., Zhang J., Lyons T. J., Pai J.-L., and Chang S.-H., “Comparison of the Revised Air Quality Index with the PSI and AQI indices”, Science of The Total Environment, 382(2–3): 191–198, doi: 10.1016/j.scitotenv.2007.04.036, (2007).
  • [13] Zhan D., Kwan M.-P., Zhang W., Yu X., Meng B., and Liu Q., “The driving factors of air quality index in China”, Journal of Cleaner Production, 197: 1342–1351, (2018).
  • [14] Mohan M. and Kandya A., “An Analysis of the Annual and Seasonal Trends of Air Quality Index of Delhi”, Environ Monit Assess, 131(1–3): 267–277, (2007).
  • [15] Sharma R. et al., “Inferring air pollution from air quality index by different geographical areas: case study in India”, Air Qual Atmos Health, 12(11): 1347–1357, (2019).
  • [16] Din S. A. M., Yahya N. N.-H. N., and Abdullah A., “Fine Particulates Matter (PM2.5) from Coal-fired Power Plant in Manjung and its Health Impacts”, Procedia - Social and Behavioral Sciences, 85: 92–99, (2013).
  • [17] Van Den Elshout S., Léger K., and Nussio F., “Comparing urban air quality in Europe in real time”, Environment International, 34(5): 720–726, 2008).
  • [18] Büke T. and Köne A., “Assessing Air Quality in Türkiye: A Proposed, Air Quality Index”, Sustainability, 8(1): 73, (2016).
  • [19] Ma Z. et al., “Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies”, Atmospheric Environment, 131: 164–170, (2016).
  • [20] Lazaridis M., “First Principles of Meteorology and Air Pollution”, Environmental Pollution, 19, Dordrecht: Springer Netherlands, (2011).
  • [21] Ainslie B. and Jackson P. L., “The use of an atmospheric dispersion model to determine influence regions in the Prince George, B.C. airshed from the burning of open wood waste piles”, Journal of Environmental Management, 90(8): 2393–2401, (2009).
  • [22] Nihalani S. A., Mishra Y., and Juremalani J., “Emission Control Technologies for Thermal Power Plants”, IOP Conf. Ser.: Mater. Sci. Eng., 330: 012122, (2018).
  • [23] Kaygusuz K., “Energy Use and Air Pollution Issues in Türkiye”, CLEAN Soil Air Water, 35(6): 539–547, (2007).
  • [24] Myllyvirta L., Farrow A., Anhäuser A., “Future Air Quality and Health Impacts of the planned Afşin A power plant expansion”, Centre for Research on Energy and Clean Air. https://energyandcleanair.org/wp/wp-content/uploads/2022/04/Afsin-expansion_-Report.pdf, (2022).
  • [25] Güvenç U., Bakir H., and Duman S., “Investigation the Success of Semidefinite Programming for the Estimating of Fuel Cost Curves in Thermal Power Plants”, Politeknik Dergisi, 24(1): 247–254, (2021).
  • [26] Ersoy Ö., Özbay M., Karafaki F. Ç., and Erol D., “The Environmental Importance of Flue Gas Purification Systems; Case of Yatağan Thermal Power Station”, Journal of Polytechnic, 20(3): 570-577, (2017).
  • [27] Tontu M., “Kömür Yakıtlı Termik Santralin Çalışma Esnekliğinin İncelenmesi”, Politeknik Dergisi, 24(3): 893–902, (2021).
  • [28] Şirin M., “How many thermal power plants are there in Türkiye? Names of all thermal power plants!”, Haberler, https://www.haberler.com/haberler/turkiye-de-kac-tane-termik-santral-var-tum-14307220-haberi/ (2023).
  • [29] Peavy H. S., Rowe D. R., and Tchobanoglous G., “Environmental Engineering”, McGraw-Hill series in water resources and environmental engineering. New York: McGraw-Hill, (1985).
  • [30] Ministry of Environment, “Air quality protection regulation (AQPR)”, Official Gazette 19269, Ankara MOE, (1986).
  • [31] European Environment Agency, “World Health Organization (WHO) air quality guidelines (AQGs) and estimated reference levels (RLs)”. https://www.eea.europa.eu/publications/status-of-air-quality-in-Europe-2022/europes-air-quality-status-2022/world-health-organization-who-air (2024).
There are 31 citations in total.

Details

Primary Language English
Subjects Air Pollution Modelling and Control
Journal Section Research Article
Authors

Yusof-den Jamasalı 0000-0001-5259-9789

Şeref Turhan 0000-0001-5303-3680

Aybaba Hançerlioğulları 0000-0001-7008-480X

Aslı Kurnaz 0000-0002-7910-3461

Early Pub Date December 23, 2024
Publication Date
Submission Date February 2, 2024
Acceptance Date March 25, 2024
Published in Issue Year 2024 EARLY VIEW

Cite

APA Jamasalı, Y.-d., Turhan, Ş., Hançerlioğulları, A., Kurnaz, A. (2024). Simulation of PM10 and NOx Pollutants at a Coal-Fıred Thermal Power Plant Site Using The Gaussıan Plume Model in Freemat. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1430492
AMA Jamasalı Yd, Turhan Ş, Hançerlioğulları A, Kurnaz A. Simulation of PM10 and NOx Pollutants at a Coal-Fıred Thermal Power Plant Site Using The Gaussıan Plume Model in Freemat. Politeknik Dergisi. Published online December 1, 2024:1-1. doi:10.2339/politeknik.1430492
Chicago Jamasalı, Yusof-den, Şeref Turhan, Aybaba Hançerlioğulları, and Aslı Kurnaz. “Simulation of PM10 and NOx Pollutants at a Coal-Fıred Thermal Power Plant Site Using The Gaussıan Plume Model in Freemat”. Politeknik Dergisi, December (December 2024), 1-1. https://doi.org/10.2339/politeknik.1430492.
EndNote Jamasalı Y-d, Turhan Ş, Hançerlioğulları A, Kurnaz A (December 1, 2024) Simulation of PM10 and NOx Pollutants at a Coal-Fıred Thermal Power Plant Site Using The Gaussıan Plume Model in Freemat. Politeknik Dergisi 1–1.
IEEE Y.-d. Jamasalı, Ş. Turhan, A. Hançerlioğulları, and A. Kurnaz, “Simulation of PM10 and NOx Pollutants at a Coal-Fıred Thermal Power Plant Site Using The Gaussıan Plume Model in Freemat”, Politeknik Dergisi, pp. 1–1, December 2024, doi: 10.2339/politeknik.1430492.
ISNAD Jamasalı, Yusof-den et al. “Simulation of PM10 and NOx Pollutants at a Coal-Fıred Thermal Power Plant Site Using The Gaussıan Plume Model in Freemat”. Politeknik Dergisi. December 2024. 1-1. https://doi.org/10.2339/politeknik.1430492.
JAMA Jamasalı Y-d, Turhan Ş, Hançerlioğulları A, Kurnaz A. Simulation of PM10 and NOx Pollutants at a Coal-Fıred Thermal Power Plant Site Using The Gaussıan Plume Model in Freemat. Politeknik Dergisi. 2024;:1–1.
MLA Jamasalı, Yusof-den et al. “Simulation of PM10 and NOx Pollutants at a Coal-Fıred Thermal Power Plant Site Using The Gaussıan Plume Model in Freemat”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1430492.
Vancouver Jamasalı Y-d, Turhan Ş, Hançerlioğulları A, Kurnaz A. Simulation of PM10 and NOx Pollutants at a Coal-Fıred Thermal Power Plant Site Using The Gaussıan Plume Model in Freemat. Politeknik Dergisi. 2024:1-.