Research Article
BibTex RIS Cite

Derin Planlı Sınıfın Aydınlatma Verimliliğini Artırma: Yapay Aydınlatma ve Gün Işığı

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1495937

Abstract

Sınıf genelinde yetersiz ışık dağılımı öğrenciler üzerinde olumsuz bir etkiye sahiptir. Bu nedenle, eğitim binalarında etkili gün ışığı ve yapay aydınlatma stratejilerinin uygulanması son derece kritiktir. Bu sorunu ele almak için, seçilen üniversitedeki bir sınıf için yatay bir gün ışığı tüpü ve bir çıkma kombinasyonu önerilmiştir. Amaç, gün ışığının kullanılabilirliğini artırmak ve parlamayı azaltmak olarak belirlenmiştir. Hedef, LEEDv4 standartlarında belirtilen gün ışığı değerlendirme kriterlerinde öngörüldüğü gibi, belirlenen analiz alanında en az %55'lik bir Mekansal Gün Işığı Otonomisi ve %10'dan fazla olmayan bir Yıllık Güneş Işığı Maruziyeti elde etmektir. Sınıfın gün ışığı performansındaki iyileştirmelere ek olarak, mevcut sistemin yerine homojen ve yeterli aydınlatma sağlayan bir yapay aydınlatma sistemi önerilmiştir. Önerilen sistemin enerji tüketiminin azaltılması da istenen hedefler arasındadır. Önerilen sistemler değerlendirilirken gün ışığı simülasyonları için Rhinoceros ve ClimateStudio, yapay aydınlatma simülasyonları için ise DIALux kullanılmıştır. Sonuçlar, önerilen çözümlerin amaçlandığı gibi başarılı olduğunu göstermektedir. Ayrıca önerilen yapay aydınlatma sistemi ile standartların gerektirdiği aydınlatma değerlerine ulaşılmış ve enerji tüketimi azaltılmıştır.

References

  • [1] Kon K.ve İlhan U., “Merkezi ısıtma sistemlerinde yerüstü ve yeraltı ön yalıtımlı boruların optimum yalıtım kalınlığı, enerji tasarrufu ve yakıt emisyon hesabı”, Journal of Polytechnic, 25(1): 189-203, (2022).
  • [2] Ünvar S., “Ağrı ilinde farklı yakıtlar ve duvar bileşenleri için optimum yalıtım kalınlıkları kullanılarak enerji maliyetlerinin analizi”, Journal of Polytechnic, 26(2): 1011-1023, (2023).
  • [3] Değer K., Özkaya M. G. ve Boran F. E., “Modelling and analysis of future energy scenarios on the sustainability axis”, Journal of Polytehnic, 26(2): 665-678, (2023).
  • [4] Vers, V. L., Giuliani, F., Caffaro, F., Basile, F., Peron, F., Dalla Mora, T., Bellia, L., Fragliasso, F., Beccali, M., Bonomolo, M., Nocera F., and Costanzo, V., “Questionnaires and simulations to assess daylighting in Italian university classrooms for IEQ and energy issues”, Energy and Buildings, 252: 111433, (2021).
  • [5] Chan, D. W., Lam, E. W., and Adabre, M. A., “Assessing the effect of pedagogical transition on classroom design for tertiary education: Perspectives of teachers and students”, Sustainability, 15(12), 9177, (2023).
  • [6] Llorens-Gamez, M., Higuera-Trujillo, J. L., Omarrementeria, C. S., and Llinares, C., “The impact of the design of learning spaces on attention and memory from a neuroarchitectural approach: A systematic review”, Frontiers of Architectural Research, 11(3), 542–60, (2022).
  • [7] Králiková, R., Džuňová, L., Lumnitzer, E., and Piňosová, M., “Simulation of Artificial Lighting Using Leading Software to Evaluate Lighting Conditions in the Absence of Daylight in a University Classroom”, Sustainability, 14(18): 11493, (2022).
  • [8] Luo, J., Yan, G., Zhao, L., Zhong, X., and Su, X., “Evaluation of Design Parameters for Daylighting Performance in Secondary School Classrooms Based on Field Measurements and Physical Simulations: A Case Study of Secondary School Classrooms in Guangzhou”, Buildings, 14(3), 637, (2024).
  • [9] Sangkakool, T., and Jumani, Z. A., “Improving Natural and Artificial Lighting in Coastal Architecture Classrooms: Insights and Applications”, Journal of Daylighting, 11:23-38, (2024).
  • [10] De Luca, F., Sepúlveda, A., and Varjas, T., “Multi-performance optimization of static shading devices for glare, daylight, view and energy consideration”, Building and Environment, 217: 109110, (2022).
  • [11] Friedman, A., and Matheson, M. “Selecting and Installing Energy-Efficient Windows to Improve Dwelling Sustainability”, VITRUVIO-International Journal of Architectural Technology and Sustainability, 2(2): 1-13, (2017).
  • [12] Nurrohman, M. L., Feros, P., Madina, R. F., and Pratiwi, N., “Efficient Lighting Design for Multiuse Architecture Studio Classroom using Dialux Evo 9” in: IOP Conference Series: Earth and Environmental Science, 738(1):012034, (2021).
  • [13] Çolak, İ., Sefa, İ., Bayındır, R., and Demirtaş, M., “Güneş enerjisi kaynaklı led armatür tasarımı”, Journal of Polytechnic, 10(4), 347-352, (2007).
  • [14] Gago, E. J., Muneer, T., Knez, M., and Köster, H., “Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load”, Renewable and Sustainable Energy Reviews, 41: 1-13, (2015).
  • [15] Dikmen, Ç. B., “Enerji etkin yapı tasarım ölçütlerinin örneklenmesi”, Journal of Polytechnic, 14(2), 121-134, (2011).
  • [16] Yang, D., and Mak, C. M., “Relationships between indoor environmental quality and environmental factors in university classrooms”, Building and Environment, 186, 107331, (2020).
  • [17] Altın, M., and Orhon, A., “Akıllı yapı cepheleri ve sürdürülebilirlik”, in: Ulusal Çatı ve Cephe Sempozyumu, 1-9, (2014).
  • [18] Knoop, M., Stefani, O., Bueno, B., Matusiak, B., Hobday, R., Wirz-Justice, A., et al., “Daylight: What makes the difference?”, Lighting Research and Technology, 52(3):423–42, (2020).
  • [19] Fasi, M. A., and Budaiwi, I. M., “Energy performance of windows in office buildings considering daylight integration and visual comfort in hot climates”, Energy and Buildings, 108, 307-316, (2015).
  • [20] Costanzo, V., Evola, G., and Marletta, L., “A review of daylighting strategies in schools: State of the art and expected future trends”, Buildings, 7(2), 4 (2017).
  • [21] Ma’bdeh, S., and Al-Khatatbeh, B., “Daylighting retrofit methods as a tool for enhancing daylight provision in existing educational spaces—A case study”, Buildings, 9(7), 159, (2019).
  • [22] Wong, L., “A review of daylighting design and implementation in buildings”, Renewable and Sustainable Energy Reviews, 74, 959-968, (2017).
  • [23] İnan, T., “An investigation on daylighting performance in educational institutions”, Structural Survey, 31(2), 121-138, (2013).
  • [24] Adnan, N. A., Sujali, N. S., and Amin, N. M., “Case Study on the Impact of Artificial Light on Lighting Performance Quality for Architecture Studios”, International Journal of Integrated Engineering, 13(3), 184-191, (2021).
  • [25] Bayram, G., and Kazanasmaz, T. “Simulation-based retrofitting of an educational building in terms of optimum shading device and energy efficient artificial lighting criteria”, Light & Engineering, 24(2): 45-55, (2016).
  • [26] Freewan, A. A. Y., and Al Dalala, J. A., “Assessment of daylight performance of advanced daylighting strategies in large university classrooms; case study classrooms at JUST”, Alexandria Engineering Journal, 59(2); 791-802, (2020).
  • [27] Ishac, M., and Nadim, W., “Standardization of optimization methodology of daylighting and shading strategy: a case study of an architectural design studio–the German University in Cairo, Egypt”, Journal of Building Performance Simulation, 14(1): 52-77, (2021).
  • [28] Wen, S., Hu, X., Hua, G., Xue, P., and Lai, D., “Comparing the performance of four shading strategies based on a multi-objective genetic algorithm: A case study in a university library”, Journal of Building Engineering, 63: 105532, (2023).
  • [29] Erlalelitepe, I., Aral, D., and Kazanasmaz, T., “Investigation of Educational Buildings in Terms of Daylighting Performance”, Megaron, 6(1); 39-51, (2011).
  • [30] Cılasun Kunduracı A. and Kızılörenli E., “A design proposal for improving daylight performance of a deep-plan classroom by using tubular daylight guidance systems and movable shading devices”, Journal of Polytechnic, (2024).
  • [31] Obradovic, B., Matusiak, B. S., Klockner, C. A., and Arbab, S., “The effect of a horizontal light pipe and a custom-made reflector on the user’s perceptual impression of the office room located at a high latitude”, Energy and Buildings, 253: 111526, (2021).
  • [32] Sern, C. H. Y., Liou, L. T. K., and Fadzil, S. F. S., “Daylighting Performance of Integrated Light Shelf with Horizontal Light Pipe System for Deep Plan High-Rise Office in Tropical Climate”, Journal of Daylighting, 9(1): 83-96, (2022).
  • [33] Heng, C. Y. S., Lim, Y. W., and Ossen, D. R., “Horizontal light pipe transporter for deep plan high-rise office daylighting in tropical climate”, Building and Environment, 171: 106645, (2020).
  • [34] The Daylight Metrics Committee. Approved Method: IES Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE). Report, Illuminating Engineering Society, (2012).
  • [35] European Committee for Standardization, “EN 12464-1:2021 Light and Lighting: Lighting for Workplaces: Indoor Workplaces”, CEN, Brussels, (2021).

Enhancing Lighting Efficiency in Deep Plan Classroom: Artificial and Daylighting

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1495937

Abstract

Insufficient light distribution throughout the classroom has a negative impact on students. Therefore, it is crucial to implement effective daylighting and artificial lighting strategies in educational buildings. To address this issue, a combination of a horizontal daylight tubes and an overhang was proposed for a classroom at the selected university. The aim was to enhance the availability of daylight and reduce glare. The goal is to achieve a Spatial Daylight Autonomy (sDA) of at least 55% and an Annual Sunlight Exposure (ASE) of no more than 10% in the designated analysis area, as stipulated by the daylight assessment criteria outlined in LEEDv4 standards. In addition to the improvements in the daylight performance of the classroom, an artificial lighting system was proposed to replace the existing system, which creates homogeneous and sufficient lighting. Reducing the energy consumption of the proposed system is also among the desired targets while evaluating the proposed systems, Rhinoceros and ClimateStudio were used for daylight simulations and DIALux was used for artificial lighting simulations. The results show that proposed solutions were successful as intended. Moreover, with the proposed artificial lighting system, the lighting values required by the standards have been achieved and energy consumption has been reduced.

References

  • [1] Kon K.ve İlhan U., “Merkezi ısıtma sistemlerinde yerüstü ve yeraltı ön yalıtımlı boruların optimum yalıtım kalınlığı, enerji tasarrufu ve yakıt emisyon hesabı”, Journal of Polytechnic, 25(1): 189-203, (2022).
  • [2] Ünvar S., “Ağrı ilinde farklı yakıtlar ve duvar bileşenleri için optimum yalıtım kalınlıkları kullanılarak enerji maliyetlerinin analizi”, Journal of Polytechnic, 26(2): 1011-1023, (2023).
  • [3] Değer K., Özkaya M. G. ve Boran F. E., “Modelling and analysis of future energy scenarios on the sustainability axis”, Journal of Polytehnic, 26(2): 665-678, (2023).
  • [4] Vers, V. L., Giuliani, F., Caffaro, F., Basile, F., Peron, F., Dalla Mora, T., Bellia, L., Fragliasso, F., Beccali, M., Bonomolo, M., Nocera F., and Costanzo, V., “Questionnaires and simulations to assess daylighting in Italian university classrooms for IEQ and energy issues”, Energy and Buildings, 252: 111433, (2021).
  • [5] Chan, D. W., Lam, E. W., and Adabre, M. A., “Assessing the effect of pedagogical transition on classroom design for tertiary education: Perspectives of teachers and students”, Sustainability, 15(12), 9177, (2023).
  • [6] Llorens-Gamez, M., Higuera-Trujillo, J. L., Omarrementeria, C. S., and Llinares, C., “The impact of the design of learning spaces on attention and memory from a neuroarchitectural approach: A systematic review”, Frontiers of Architectural Research, 11(3), 542–60, (2022).
  • [7] Králiková, R., Džuňová, L., Lumnitzer, E., and Piňosová, M., “Simulation of Artificial Lighting Using Leading Software to Evaluate Lighting Conditions in the Absence of Daylight in a University Classroom”, Sustainability, 14(18): 11493, (2022).
  • [8] Luo, J., Yan, G., Zhao, L., Zhong, X., and Su, X., “Evaluation of Design Parameters for Daylighting Performance in Secondary School Classrooms Based on Field Measurements and Physical Simulations: A Case Study of Secondary School Classrooms in Guangzhou”, Buildings, 14(3), 637, (2024).
  • [9] Sangkakool, T., and Jumani, Z. A., “Improving Natural and Artificial Lighting in Coastal Architecture Classrooms: Insights and Applications”, Journal of Daylighting, 11:23-38, (2024).
  • [10] De Luca, F., Sepúlveda, A., and Varjas, T., “Multi-performance optimization of static shading devices for glare, daylight, view and energy consideration”, Building and Environment, 217: 109110, (2022).
  • [11] Friedman, A., and Matheson, M. “Selecting and Installing Energy-Efficient Windows to Improve Dwelling Sustainability”, VITRUVIO-International Journal of Architectural Technology and Sustainability, 2(2): 1-13, (2017).
  • [12] Nurrohman, M. L., Feros, P., Madina, R. F., and Pratiwi, N., “Efficient Lighting Design for Multiuse Architecture Studio Classroom using Dialux Evo 9” in: IOP Conference Series: Earth and Environmental Science, 738(1):012034, (2021).
  • [13] Çolak, İ., Sefa, İ., Bayındır, R., and Demirtaş, M., “Güneş enerjisi kaynaklı led armatür tasarımı”, Journal of Polytechnic, 10(4), 347-352, (2007).
  • [14] Gago, E. J., Muneer, T., Knez, M., and Köster, H., “Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load”, Renewable and Sustainable Energy Reviews, 41: 1-13, (2015).
  • [15] Dikmen, Ç. B., “Enerji etkin yapı tasarım ölçütlerinin örneklenmesi”, Journal of Polytechnic, 14(2), 121-134, (2011).
  • [16] Yang, D., and Mak, C. M., “Relationships between indoor environmental quality and environmental factors in university classrooms”, Building and Environment, 186, 107331, (2020).
  • [17] Altın, M., and Orhon, A., “Akıllı yapı cepheleri ve sürdürülebilirlik”, in: Ulusal Çatı ve Cephe Sempozyumu, 1-9, (2014).
  • [18] Knoop, M., Stefani, O., Bueno, B., Matusiak, B., Hobday, R., Wirz-Justice, A., et al., “Daylight: What makes the difference?”, Lighting Research and Technology, 52(3):423–42, (2020).
  • [19] Fasi, M. A., and Budaiwi, I. M., “Energy performance of windows in office buildings considering daylight integration and visual comfort in hot climates”, Energy and Buildings, 108, 307-316, (2015).
  • [20] Costanzo, V., Evola, G., and Marletta, L., “A review of daylighting strategies in schools: State of the art and expected future trends”, Buildings, 7(2), 4 (2017).
  • [21] Ma’bdeh, S., and Al-Khatatbeh, B., “Daylighting retrofit methods as a tool for enhancing daylight provision in existing educational spaces—A case study”, Buildings, 9(7), 159, (2019).
  • [22] Wong, L., “A review of daylighting design and implementation in buildings”, Renewable and Sustainable Energy Reviews, 74, 959-968, (2017).
  • [23] İnan, T., “An investigation on daylighting performance in educational institutions”, Structural Survey, 31(2), 121-138, (2013).
  • [24] Adnan, N. A., Sujali, N. S., and Amin, N. M., “Case Study on the Impact of Artificial Light on Lighting Performance Quality for Architecture Studios”, International Journal of Integrated Engineering, 13(3), 184-191, (2021).
  • [25] Bayram, G., and Kazanasmaz, T. “Simulation-based retrofitting of an educational building in terms of optimum shading device and energy efficient artificial lighting criteria”, Light & Engineering, 24(2): 45-55, (2016).
  • [26] Freewan, A. A. Y., and Al Dalala, J. A., “Assessment of daylight performance of advanced daylighting strategies in large university classrooms; case study classrooms at JUST”, Alexandria Engineering Journal, 59(2); 791-802, (2020).
  • [27] Ishac, M., and Nadim, W., “Standardization of optimization methodology of daylighting and shading strategy: a case study of an architectural design studio–the German University in Cairo, Egypt”, Journal of Building Performance Simulation, 14(1): 52-77, (2021).
  • [28] Wen, S., Hu, X., Hua, G., Xue, P., and Lai, D., “Comparing the performance of four shading strategies based on a multi-objective genetic algorithm: A case study in a university library”, Journal of Building Engineering, 63: 105532, (2023).
  • [29] Erlalelitepe, I., Aral, D., and Kazanasmaz, T., “Investigation of Educational Buildings in Terms of Daylighting Performance”, Megaron, 6(1); 39-51, (2011).
  • [30] Cılasun Kunduracı A. and Kızılörenli E., “A design proposal for improving daylight performance of a deep-plan classroom by using tubular daylight guidance systems and movable shading devices”, Journal of Polytechnic, (2024).
  • [31] Obradovic, B., Matusiak, B. S., Klockner, C. A., and Arbab, S., “The effect of a horizontal light pipe and a custom-made reflector on the user’s perceptual impression of the office room located at a high latitude”, Energy and Buildings, 253: 111526, (2021).
  • [32] Sern, C. H. Y., Liou, L. T. K., and Fadzil, S. F. S., “Daylighting Performance of Integrated Light Shelf with Horizontal Light Pipe System for Deep Plan High-Rise Office in Tropical Climate”, Journal of Daylighting, 9(1): 83-96, (2022).
  • [33] Heng, C. Y. S., Lim, Y. W., and Ossen, D. R., “Horizontal light pipe transporter for deep plan high-rise office daylighting in tropical climate”, Building and Environment, 171: 106645, (2020).
  • [34] The Daylight Metrics Committee. Approved Method: IES Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE). Report, Illuminating Engineering Society, (2012).
  • [35] European Committee for Standardization, “EN 12464-1:2021 Light and Lighting: Lighting for Workplaces: Indoor Workplaces”, CEN, Brussels, (2021).
There are 35 citations in total.

Details

Primary Language English
Subjects Climate Change Science (Other)
Journal Section Research Article
Authors

Ecenur Kızılörenli 0000-0002-3992-1363

Yonca Yaman 0000-0003-4393-5490

İlknur Uygun 0000-0002-1387-7296

Early Pub Date August 8, 2024
Publication Date
Submission Date June 4, 2024
Acceptance Date July 12, 2024
Published in Issue Year 2024 EARLY VIEW

Cite

APA Kızılörenli, E., Yaman, Y., & Uygun, İ. (2024). Enhancing Lighting Efficiency in Deep Plan Classroom: Artificial and Daylighting. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1495937
AMA Kızılörenli E, Yaman Y, Uygun İ. Enhancing Lighting Efficiency in Deep Plan Classroom: Artificial and Daylighting. Politeknik Dergisi. Published online August 1, 2024:1-1. doi:10.2339/politeknik.1495937
Chicago Kızılörenli, Ecenur, Yonca Yaman, and İlknur Uygun. “Enhancing Lighting Efficiency in Deep Plan Classroom: Artificial and Daylighting”. Politeknik Dergisi, August (August 2024), 1-1. https://doi.org/10.2339/politeknik.1495937.
EndNote Kızılörenli E, Yaman Y, Uygun İ (August 1, 2024) Enhancing Lighting Efficiency in Deep Plan Classroom: Artificial and Daylighting. Politeknik Dergisi 1–1.
IEEE E. Kızılörenli, Y. Yaman, and İ. Uygun, “Enhancing Lighting Efficiency in Deep Plan Classroom: Artificial and Daylighting”, Politeknik Dergisi, pp. 1–1, August 2024, doi: 10.2339/politeknik.1495937.
ISNAD Kızılörenli, Ecenur et al. “Enhancing Lighting Efficiency in Deep Plan Classroom: Artificial and Daylighting”. Politeknik Dergisi. August 2024. 1-1. https://doi.org/10.2339/politeknik.1495937.
JAMA Kızılörenli E, Yaman Y, Uygun İ. Enhancing Lighting Efficiency in Deep Plan Classroom: Artificial and Daylighting. Politeknik Dergisi. 2024;:1–1.
MLA Kızılörenli, Ecenur et al. “Enhancing Lighting Efficiency in Deep Plan Classroom: Artificial and Daylighting”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1495937.
Vancouver Kızılörenli E, Yaman Y, Uygun İ. Enhancing Lighting Efficiency in Deep Plan Classroom: Artificial and Daylighting. Politeknik Dergisi. 2024:1-.