Research Article
BibTex RIS Cite

The Techno-Economic and Environmental Analysis of a DER System in a Practical Radial Distribution Feeder under Load Uncertainty Conditions

Year 2023, Volume: 26 Issue: 2, 731 - 741, 05.07.2023
https://doi.org/10.2339/politeknik.1030685

Abstract

This paper discusses the best possible incorporation of various Distributed Renewable Energy Resources (DERs), such as Wind Turbine Generation Systems (WTGS), Electric Vehicles (EVs), and Photo-Voltaic Generation Systems (PVGGS) in distribution networks at the same time in order to reduce overall expense, pollution produced by thermal generators, and total grid power loss. A multiple goal function is structured to achieve these planned goals and benefits. Different computational models of DERs were used in this study to analyze the impact on the distribution energy system under varying load demands over a 24 hour period. Furthermore, the discharging/charging model of electric cars during off peak/peak hours of the distributed grid was taken into consideration. Because of its robustness, the multi objective crow search algorithm was used to optimize the non-bulgy and non-continuous optimization of the distributed energy grid.

References

  • [1] P. A. Boot and B. Van Bree, A zero-carbon European power system in 2050: proposals for a policy package. ECN, Energy research Centre of the Netherlands, (2010).
  • [2] K. Parks, P. Denholm, and T. Markel, “Costs and emissions associated with plug-in hybrid electric vehicle charging in the Xcel Energy Colorado service territory,” National Renewable Energy Lab.(NREL), Golden, CO (United States), (2007).
  • [3] B. M. Marshall, J. C. Kelly, T.-K. Lee, G. A. Keoleian, and Z. Filipi, “Environmental assessment of plug-in hybrid electric vehicles using naturalistic drive cycles and vehicle travel patterns: A Michigan case study,” Energy Policy, 58; 358–370, (2013).
  • [4] J. Senthil kumar, S. Charles Raja, D. Srinivasan, and P. Venkatesh, “Hybrid renewable energy‐based distribution system for seasonal load variations,” Int. J. Energy Res., 42(3); 1066–1087, (2018).
  • [5] D. K. Khatod, V. Pant, and J. Sharma, “Evolutionary programming based optimal placement of renewable distributed generators,” IEEE Trans. Power Syst., 28(2); 683–695, (2012).
  • [6] Y. M. Atwa and E. F. El-Saadany, “Probabilistic approach for optimal allocation of wind-based distributed generation in distribution systems,” IET Renew. Power Gener., 5(1);79–88, (2011).
  • [7] A. Şahinoğlu and M. Rafighi, “Machinability of hardened AISI S1 cold work tool steel using cubic boron nitride,” Sci. Iran., 28; 2655–2670, (2021).
  • [8] A. H. Abed, J. Rahebi, and A. Farzamnia, “Improvement for power quality by using dynamic voltage restorer in electrical distribution networks,” in 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems (I2CACIS), 122–127, (2017).
  • [9] A. Şahinoğlu and M. Rafighi, “Investigation of tool wear, surface roughness, sound intensity and power consumption during hard turning of AISI 4140 using multilayer-coated carbide inserts,” J. Eng. Res., 9(4B); (2021).
  • [10] A. H. Abed, J. Rahebi, H. Sajir, and A. Farzamnia, “Protection of sensitive loads from voltages fluctuations in Iraqi grids by DVR,” in 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems (I2CACIS),144–149, (2017).
  • [11] A. Şahinoğlu, M. Rafighi, and R. Kumar, “An investigation on cutting sound effect on power consumption and surface roughness in CBN tool-assisted hard turning,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., 09544089211058021, (2021).
  • [12] M. RAFİGHİ, “Comparison of ceramic and coated carbide inserts performance in finish turning of hardened aisi 420 stainless steel,” Politek. Derg.
  • [13] M. T. Guneser, “Algorithms to Model and Optimize a Stand-Alone Photovoltaic-Diesel-Battery System: An Application in Rural Libya,” Teh. Vjesn., 28(2); 523–529, (2021).
  • [14] A. Tabak, M. Özkaymak, M. T. Güneşer, and H. O. Erkol, “Optimization and evaluation of hybrid PV/WT/BM system in different initial costs and LPSP conditions,” Optimization, 8(11); (2017).
  • [15] A. Elbaz and M. Güneser, “Multi-objective Optimization of Combined Economic Emission Dispatch Problem in Solar PV Energy Using Hybrid Bat-Crow Search Algorithm,” Int. J. Renew. Energy Res., 11(1), 383–391, (2021).
  • [16] A. A. M. Nureddin, J. Rahebi, and A. Ab-BelKhair, “Power Management Controller for Microgrid Integration of Hybrid PV/Fuel Cell System Based on Artificial Deep Neural Network,” Int. J. Photoenergy, (2020).
  • [17] A. Ab-BelKhair, J. Rahebi, and A. Abdulhamed Mohamed Nureddin, “A Study of Deep Neural Network Controller-Based Power Quality Improvement of Hybrid PV/Wind Systems by Using Smart Inverter,” Int. J. Photoenergy, (2020).
  • [18] M. Dixit, P. Kundu, and H. R. Jariwala, “Incorporation of distributed generation and shunt capacitor in radial distribution system for techno-economic benefits,” Eng. Sci. Technol. an Int. J., 20(2); 482–493, (2017).
  • [19] V. Black, “Cost and performance data for power generation technologies,” Prep. Natl. Renew. Energy Lab., (2012).
  • [20] A. Maleki, M. G. Khajeh, and M. Ameri, “Optimal sizing of a grid independent hybrid renewable energy system incorporating resource uncertainty, and load uncertainty,” Int. J. Electr. Power Energy Syst., 83; 514–524, (2016).
  • [21] W. Hu, C. Su, Z. Chen, and B. Bak-Jensen, “Optimal operation of plug-in electric vehicles in power systems with high wind power penetrations,” IEEE Trans. Sustain. Energy, 4(3); 577–585, (2013).
  • [22] A. Y. Saber and G. K. Venayagamoorthy, “Resource scheduling under uncertainty in a smart grid with renewables and plug-in vehicles,” IEEE Syst. J., 6(1), 103–109, (2011).
  • [23] D. Q. Hung, N. Mithulananthan, and K. Y. Lee, “Determining PV penetration for distribution systems with time-varying load models,” IEEE Trans. Power Syst., 29(6); 3048–3057, (2014).
  • [24] J.-H. Teng, S.-W. Luan, D.-J. Lee, and Y.-Q. Huang, “Optimal charging/discharging scheduling of battery storage systems for distribution systems interconnected with sizeable PV generation systems,” IEEE Trans. Power Syst., 28(2), 1425–1433, (2012).
  • [25] P. Kayal and C. K. Chanda, “A multi-objective approach to integrate solar and wind energy sources with electrical distribution network,” Sol. Energy, 112; 397–410, (2015).
  • [26] G. Boyle, “Renewable energy,” Renew. Energy, by Ed. by Godfrey Boyle, pp. 456. Oxford Univ. Press. May 2004. ISBN-10 0199261784. ISBN-13 9780199261789, p. 456, (2004).
  • [27] I. Ahmed et al., “Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy,” Sustainability, 13(8); 4200, (2021).
  • [28] O. Ramelli, S. Saleh, and J. Stenflo, “Prospects of renewable energy in Libya,” in International Symposium on Solar Physics and Solar Eclipses (SPSE), Tripoli, (2006).
  • [29] S. Liang and J. Zhu, “Dynamic Economic Dispatch of Microgrid with Biomass Power Generation,” in 2017 6th International Conference on Energy and Environmental Protection (ICEEP 2017), (2017).
  • [30] W. W. Price, C. W. Taylor, and G. J. Rogers, “Standard load models for power flow and dynamic performance simulation,” IEEE Trans. power Syst., 10(CONF-940702-), (1995).
  • [31] E. Lopez, H. Opazo, L. Garcia, and P. Bastard, “Online reconfiguration considering variability demand: Applications to real networks,” IEEE Trans. Power Syst., 19(1); 549–553, (2004).
  • [32] A. Ellis et al., “Reactive power interconnection requirements for PV and wind plants–recommendations to NERC,” Sandia Natl. Lab. Albuquerque, New Mex., 87185, (2012).

Belirsiz Yük Koşullarında Bir Dek Sisteminin Pratik Radyal Dağıtımlı Besleyicide Tekno-ekonomik ve Çevresel Analizi

Year 2023, Volume: 26 Issue: 2, 731 - 741, 05.07.2023
https://doi.org/10.2339/politeknik.1030685

Abstract

Bu makale, Rüzgar Enerji Santralleri (RES), Elektrikli Araçlar (EV'ler) ve Fotovoltaik Güneş Enerji Santralleri (FVGES) gibi çeşitli Dağıtılmış Yenilenebilir Enerji Kaynaklarının (DEK'ler) şebekeye mümkün olan en uyumlu şekilde yüklenmesini ve aynı zamanda işletme giderlerini, ısıl jeneratörler tarafından üretilen kirliliği ve toplam şebeke güç kaybını azaltmayı tartışmaktadır. Bu planlanmış hedeflere ve faydalara ulaşmak için çok amaçlı bir işlev yapılandırılmıştır. Bu çalışmada, 24 saatlik bir süre boyunca değişen yük talepleri altında dağıtım enerji sistemi üzerindeki etkiyi analiz etmek için Dağıtılmış Enerji Kaynaklarının farklı hesaplama modelleri kullanılmıştır. Ayrıca, dağıtılmış şebekenin yoğun olmayan/yoğun olduğu saatlerde elektrikli otomobillerin boşaltma/şarj modeli de dikkate alınmıştır. DEK şebekelerinin kabarık olmayan ve süreksiz yapısı nedeniyle, sistemin optimizasyonu için çok amaçlı Karga Arama Algoritması kullanılmıştır.

References

  • [1] P. A. Boot and B. Van Bree, A zero-carbon European power system in 2050: proposals for a policy package. ECN, Energy research Centre of the Netherlands, (2010).
  • [2] K. Parks, P. Denholm, and T. Markel, “Costs and emissions associated with plug-in hybrid electric vehicle charging in the Xcel Energy Colorado service territory,” National Renewable Energy Lab.(NREL), Golden, CO (United States), (2007).
  • [3] B. M. Marshall, J. C. Kelly, T.-K. Lee, G. A. Keoleian, and Z. Filipi, “Environmental assessment of plug-in hybrid electric vehicles using naturalistic drive cycles and vehicle travel patterns: A Michigan case study,” Energy Policy, 58; 358–370, (2013).
  • [4] J. Senthil kumar, S. Charles Raja, D. Srinivasan, and P. Venkatesh, “Hybrid renewable energy‐based distribution system for seasonal load variations,” Int. J. Energy Res., 42(3); 1066–1087, (2018).
  • [5] D. K. Khatod, V. Pant, and J. Sharma, “Evolutionary programming based optimal placement of renewable distributed generators,” IEEE Trans. Power Syst., 28(2); 683–695, (2012).
  • [6] Y. M. Atwa and E. F. El-Saadany, “Probabilistic approach for optimal allocation of wind-based distributed generation in distribution systems,” IET Renew. Power Gener., 5(1);79–88, (2011).
  • [7] A. Şahinoğlu and M. Rafighi, “Machinability of hardened AISI S1 cold work tool steel using cubic boron nitride,” Sci. Iran., 28; 2655–2670, (2021).
  • [8] A. H. Abed, J. Rahebi, and A. Farzamnia, “Improvement for power quality by using dynamic voltage restorer in electrical distribution networks,” in 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems (I2CACIS), 122–127, (2017).
  • [9] A. Şahinoğlu and M. Rafighi, “Investigation of tool wear, surface roughness, sound intensity and power consumption during hard turning of AISI 4140 using multilayer-coated carbide inserts,” J. Eng. Res., 9(4B); (2021).
  • [10] A. H. Abed, J. Rahebi, H. Sajir, and A. Farzamnia, “Protection of sensitive loads from voltages fluctuations in Iraqi grids by DVR,” in 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems (I2CACIS),144–149, (2017).
  • [11] A. Şahinoğlu, M. Rafighi, and R. Kumar, “An investigation on cutting sound effect on power consumption and surface roughness in CBN tool-assisted hard turning,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., 09544089211058021, (2021).
  • [12] M. RAFİGHİ, “Comparison of ceramic and coated carbide inserts performance in finish turning of hardened aisi 420 stainless steel,” Politek. Derg.
  • [13] M. T. Guneser, “Algorithms to Model and Optimize a Stand-Alone Photovoltaic-Diesel-Battery System: An Application in Rural Libya,” Teh. Vjesn., 28(2); 523–529, (2021).
  • [14] A. Tabak, M. Özkaymak, M. T. Güneşer, and H. O. Erkol, “Optimization and evaluation of hybrid PV/WT/BM system in different initial costs and LPSP conditions,” Optimization, 8(11); (2017).
  • [15] A. Elbaz and M. Güneser, “Multi-objective Optimization of Combined Economic Emission Dispatch Problem in Solar PV Energy Using Hybrid Bat-Crow Search Algorithm,” Int. J. Renew. Energy Res., 11(1), 383–391, (2021).
  • [16] A. A. M. Nureddin, J. Rahebi, and A. Ab-BelKhair, “Power Management Controller for Microgrid Integration of Hybrid PV/Fuel Cell System Based on Artificial Deep Neural Network,” Int. J. Photoenergy, (2020).
  • [17] A. Ab-BelKhair, J. Rahebi, and A. Abdulhamed Mohamed Nureddin, “A Study of Deep Neural Network Controller-Based Power Quality Improvement of Hybrid PV/Wind Systems by Using Smart Inverter,” Int. J. Photoenergy, (2020).
  • [18] M. Dixit, P. Kundu, and H. R. Jariwala, “Incorporation of distributed generation and shunt capacitor in radial distribution system for techno-economic benefits,” Eng. Sci. Technol. an Int. J., 20(2); 482–493, (2017).
  • [19] V. Black, “Cost and performance data for power generation technologies,” Prep. Natl. Renew. Energy Lab., (2012).
  • [20] A. Maleki, M. G. Khajeh, and M. Ameri, “Optimal sizing of a grid independent hybrid renewable energy system incorporating resource uncertainty, and load uncertainty,” Int. J. Electr. Power Energy Syst., 83; 514–524, (2016).
  • [21] W. Hu, C. Su, Z. Chen, and B. Bak-Jensen, “Optimal operation of plug-in electric vehicles in power systems with high wind power penetrations,” IEEE Trans. Sustain. Energy, 4(3); 577–585, (2013).
  • [22] A. Y. Saber and G. K. Venayagamoorthy, “Resource scheduling under uncertainty in a smart grid with renewables and plug-in vehicles,” IEEE Syst. J., 6(1), 103–109, (2011).
  • [23] D. Q. Hung, N. Mithulananthan, and K. Y. Lee, “Determining PV penetration for distribution systems with time-varying load models,” IEEE Trans. Power Syst., 29(6); 3048–3057, (2014).
  • [24] J.-H. Teng, S.-W. Luan, D.-J. Lee, and Y.-Q. Huang, “Optimal charging/discharging scheduling of battery storage systems for distribution systems interconnected with sizeable PV generation systems,” IEEE Trans. Power Syst., 28(2), 1425–1433, (2012).
  • [25] P. Kayal and C. K. Chanda, “A multi-objective approach to integrate solar and wind energy sources with electrical distribution network,” Sol. Energy, 112; 397–410, (2015).
  • [26] G. Boyle, “Renewable energy,” Renew. Energy, by Ed. by Godfrey Boyle, pp. 456. Oxford Univ. Press. May 2004. ISBN-10 0199261784. ISBN-13 9780199261789, p. 456, (2004).
  • [27] I. Ahmed et al., “Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy,” Sustainability, 13(8); 4200, (2021).
  • [28] O. Ramelli, S. Saleh, and J. Stenflo, “Prospects of renewable energy in Libya,” in International Symposium on Solar Physics and Solar Eclipses (SPSE), Tripoli, (2006).
  • [29] S. Liang and J. Zhu, “Dynamic Economic Dispatch of Microgrid with Biomass Power Generation,” in 2017 6th International Conference on Energy and Environmental Protection (ICEEP 2017), (2017).
  • [30] W. W. Price, C. W. Taylor, and G. J. Rogers, “Standard load models for power flow and dynamic performance simulation,” IEEE Trans. power Syst., 10(CONF-940702-), (1995).
  • [31] E. Lopez, H. Opazo, L. Garcia, and P. Bastard, “Online reconfiguration considering variability demand: Applications to real networks,” IEEE Trans. Power Syst., 19(1); 549–553, (2004).
  • [32] A. Ellis et al., “Reactive power interconnection requirements for PV and wind plants–recommendations to NERC,” Sandia Natl. Lab. Albuquerque, New Mex., 87185, (2012).
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Abdulbarı Alı Mohamed Frrı 0000-0002-7134-2951

Muhammet Tahir Guneser 0000-0003-3502-2034

Publication Date July 5, 2023
Submission Date November 30, 2021
Published in Issue Year 2023 Volume: 26 Issue: 2

Cite

APA Frrı, A. A. M., & Guneser, M. T. (2023). Belirsiz Yük Koşullarında Bir Dek Sisteminin Pratik Radyal Dağıtımlı Besleyicide Tekno-ekonomik ve Çevresel Analizi. Politeknik Dergisi, 26(2), 731-741. https://doi.org/10.2339/politeknik.1030685
AMA Frrı AAM, Guneser MT. Belirsiz Yük Koşullarında Bir Dek Sisteminin Pratik Radyal Dağıtımlı Besleyicide Tekno-ekonomik ve Çevresel Analizi. Politeknik Dergisi. July 2023;26(2):731-741. doi:10.2339/politeknik.1030685
Chicago Frrı, Abdulbarı Alı Mohamed, and Muhammet Tahir Guneser. “Belirsiz Yük Koşullarında Bir Dek Sisteminin Pratik Radyal Dağıtımlı Besleyicide Tekno-Ekonomik Ve Çevresel Analizi”. Politeknik Dergisi 26, no. 2 (July 2023): 731-41. https://doi.org/10.2339/politeknik.1030685.
EndNote Frrı AAM, Guneser MT (July 1, 2023) Belirsiz Yük Koşullarında Bir Dek Sisteminin Pratik Radyal Dağıtımlı Besleyicide Tekno-ekonomik ve Çevresel Analizi. Politeknik Dergisi 26 2 731–741.
IEEE A. A. M. Frrı and M. T. Guneser, “Belirsiz Yük Koşullarında Bir Dek Sisteminin Pratik Radyal Dağıtımlı Besleyicide Tekno-ekonomik ve Çevresel Analizi”, Politeknik Dergisi, vol. 26, no. 2, pp. 731–741, 2023, doi: 10.2339/politeknik.1030685.
ISNAD Frrı, Abdulbarı Alı Mohamed - Guneser, Muhammet Tahir. “Belirsiz Yük Koşullarında Bir Dek Sisteminin Pratik Radyal Dağıtımlı Besleyicide Tekno-Ekonomik Ve Çevresel Analizi”. Politeknik Dergisi 26/2 (July 2023), 731-741. https://doi.org/10.2339/politeknik.1030685.
JAMA Frrı AAM, Guneser MT. Belirsiz Yük Koşullarında Bir Dek Sisteminin Pratik Radyal Dağıtımlı Besleyicide Tekno-ekonomik ve Çevresel Analizi. Politeknik Dergisi. 2023;26:731–741.
MLA Frrı, Abdulbarı Alı Mohamed and Muhammet Tahir Guneser. “Belirsiz Yük Koşullarında Bir Dek Sisteminin Pratik Radyal Dağıtımlı Besleyicide Tekno-Ekonomik Ve Çevresel Analizi”. Politeknik Dergisi, vol. 26, no. 2, 2023, pp. 731-4, doi:10.2339/politeknik.1030685.
Vancouver Frrı AAM, Guneser MT. Belirsiz Yük Koşullarında Bir Dek Sisteminin Pratik Radyal Dağıtımlı Besleyicide Tekno-ekonomik ve Çevresel Analizi. Politeknik Dergisi. 2023;26(2):731-4.