Research Article
BibTex RIS Cite

Hava Kaynaklı Isı Pompasının Çalışma Parametrelerinin Dış Ortam Sıcaklığına Göre Değişimi

Year 2023, Volume: 26 Issue: 3, 1179 - 1184, 01.10.2023
https://doi.org/10.2339/politeknik.1240323

Abstract

Enerji etkin sistemler olarak bilinen hava kaynaklı ısı pompaları (HKIP) bina ısıtmalarında çevre dostu ve ekonomik çözümler olarak karşımıza çıkmaktadır. Ne yazık ki, HKIP'larının çalışma parametreleri ve buna bağlı olarak performansları, dış havanın günlük ve mevsimsel sıcaklık değişimlerinden doğrudan etkilenmektedirler. Bu çalışmada, -10°C ile 18°C dış sıcaklık aralığında, 2°C'lik aralıklarla, logaritmik ortalama sıcaklık farkına dayalı bir hesaplama yöntemi ile 3,4 kW nominal ısıtma gücüne sahip bir HKIP’nın, sabit kompresör gücünde, çalışma parametrelerindeki değişim incelenmiştir. Çalışma, üreticinin yayınlanmış COP verileriyle doğrulanmıştır. Sonuçlar, soğutucu akışkan buharlaşma ve yoğuşma sıcaklığının ve basıncının, COP’un ve yoğuşturucu ısıtma yükünün dış hava sıcaklığına göre değişimini veren grafiklerle paylaşılmıştır. Dış hava sıcaklığının -10°C'den 18°C'ye yükselmesi, COP değerini 3,38'ten 5,49'e yükseltmektedir. Ortam sıcaklığına paralel olarak gerçekleşen buharlaşma basıncındaki artışın tespiti, sistemin soğutucu akışkan dolum seviyesinin manometre ile kolayca kontrolüne imkan verebilir. Bu çalışma, bir HKIP'nın dış ortam sıcaklığına bağlı çalışma parametrelerini belirlemeyi amaçlayan araştırmacılar ve saha çalışmalarında bu bilgilere ihtiyaç duyan teknik personeller için faydalı bir rehber olabilir.

References

  • [1] Ala, G., A. Orioli, and A. Di Gangi, "Energy and economic analysis of air-to-air heat pumps as an alternative to domestic gas boiler heating systems in the South of Italy", Energy, 173: 59-74, (2019).
  • [2] IEA. "International Energy Outlook 2021". 14.01.2023]; Available from: https://www.eia.gov/outlooks/ieo/pdf/IEO2021_Narrative.pdf.
  • [3] Carroll, P., M. Chesser, and P. Lyons, "Air Source Heat Pumps field studies: A systematic literature review", Renewable and Sustainable Energy Reviews, 134: 110275, (2020).
  • [4] Song, M., et al., "Challenges in, and the development of, building energy saving techniques, illustrated with the example of an air source heat pump", Thermal Science and Engineering Progress, 10: 337-356, (2019).
  • [5] Sezen, K. and A. Gungor, "Comparison of solar assisted heat pump systems for heating residences: A review", Solar Energy, 249: 424-445, (2023).
  • [6] KOCAKULAK, S., S. YILMAZ, and A. ERGÜN, "Yüzey Suyu Kaynaklı Isı Pompası Sisteminin Enerji ve Ekserji Analizi", Politeknik Dergisi: 1-1, (2023).
  • [7] Aktaş, M., et al., "Dilimlenmiş Elma ve Havucun Isı Pompası Tekniği ile Kurutulması: Performans Analizi", Politeknik Dergisi, 22(3): 523-529, (2019).
  • [8] Sezen, K., et al., "Effects of ambient conditions on solar assisted heat pump systems: a review", Science of The Total Environment, 778: 146362, (2021).
  • [9] Chua, K.J., et al., "Achieving better energy-efficient air conditioning – A review of technologies and strategies", Applied Energy, 104: 87-104, (2013).
  • [10] KILINÇ, F., E. BUYRUK, and M. CANER, "Sivas İli Şartlarında Yatay Toprak Kaynaklı Isı Pompasının Isıtma ve Soğutma İçin Performans Analizi", Politeknik Dergisi, 22(4): 1039-1044, (2020).
  • [11] Lee, S.H., et al., "Simulation-based optimization of heating and cooling seasonal performances of an air-to-air heat pump considering operating and design parameters using genetic algorithm", Applied Thermal Engineering, 144: 362-370, (2018).
  • [12] Kinab, E., et al., "Reversible heat pump model for seasonal performance optimization", Energy and Buildings, 42(12): 2269-2280, (2010).
  • [13] Underwood, C.P., M. Royapoor, and B. Sturm, "Parametric modelling of domestic air-source heat pumps", Energy and Buildings, 139: 578-589, (2017).
  • [14] Xu, Z., et al., "A semi-theoretical model for energy efficiency assessment of air source heat pump systems", Energy Conversion and Management, 228: 113667, (2021).
  • [15] Wang, W., et al., "A new performance index for constant speed air-source heat pumps based on the nominal output heating capacity and a related modeling study", Energy and Buildings, 184: 205-215, (2019).
  • [16] Wray, C., et al., "Practical Diagnostics for Evaluating Residential Commissioning Metrics", Lawrence Berkeley National Laboratory, 45959, Berkeley, (2002).
  • [17] Kim, W. and J.E. Braun, "Performance evaluation of a virtual refrigerant charge sensor", International Journal of Refrigeration, 36(3): 1130-1141, (2013).
  • [18] Sezen, K. and A. Gungor, "Performance analysis of air source heat pump according to outside temperature and relative humidity with mathematical modeling", Energy Conversion and Management, 263: 115702, (2022).
  • [19] Daikin, "RXS-G2V1B Outdoor units datasheet", Daikin Industries, EEDEN09-100, http://www.daikintech.co.uk/Data/Split-Sky-Air-Outdoor/RXS/2009/RXS-G2V1B/RXS 2V1B_Databook.pdf, (2021).
  • [20] Daikin, "FTXS-G Indoor units datasheet", Daikin Industries, http://www.daikintech.co.uk/Data/Split-Sky-Air-Indoor/FTXS/2011/FTXS-GV1B/FTXS60-71GV1B_Databook.pdf, (2021).

Operation Parameters Variation of Air Source Heat Pump According to the Outdoor Temperature

Year 2023, Volume: 26 Issue: 3, 1179 - 1184, 01.10.2023
https://doi.org/10.2339/politeknik.1240323

Abstract

Air source heat pumps (ASHP), known as energy efficient systems, emerge as environmentally friendly and economical solutions for building heating. Unfortunately, the operating parameters of ASHPs and accordingly their performance are directly affected by the daily and seasonal temperature changes of the outside air. In this study, change in operation parameters of a selected ASHP with 3.4kW nominal heating capacity is investigated with a calculation method based on the logarithmic mean temperature difference, between -10°C to 18°C outdoor temperature range with 2°C steps, at constant compressor power. The study is verified with published COP data of the manufacturer. Results are shared with graphs that give the variation of refrigerant evaporation and condensation temperature and pressure, COP, and condenser heating load according to outdoor air temperature. A raise from -10°C to 18°C in outdoor temperature, increases the COP value from 3.38 to 5.49. Detection of the increase in evaporation pressure in parallel with the outdoor temperature may allow easy control of the refrigerant charge level with a manometer. This study can be a useful guide for researchers who aim to determine the outdoor temperature dependent operating parameters of an ASHP and for technical personnel who need this information in fields.

References

  • [1] Ala, G., A. Orioli, and A. Di Gangi, "Energy and economic analysis of air-to-air heat pumps as an alternative to domestic gas boiler heating systems in the South of Italy", Energy, 173: 59-74, (2019).
  • [2] IEA. "International Energy Outlook 2021". 14.01.2023]; Available from: https://www.eia.gov/outlooks/ieo/pdf/IEO2021_Narrative.pdf.
  • [3] Carroll, P., M. Chesser, and P. Lyons, "Air Source Heat Pumps field studies: A systematic literature review", Renewable and Sustainable Energy Reviews, 134: 110275, (2020).
  • [4] Song, M., et al., "Challenges in, and the development of, building energy saving techniques, illustrated with the example of an air source heat pump", Thermal Science and Engineering Progress, 10: 337-356, (2019).
  • [5] Sezen, K. and A. Gungor, "Comparison of solar assisted heat pump systems for heating residences: A review", Solar Energy, 249: 424-445, (2023).
  • [6] KOCAKULAK, S., S. YILMAZ, and A. ERGÜN, "Yüzey Suyu Kaynaklı Isı Pompası Sisteminin Enerji ve Ekserji Analizi", Politeknik Dergisi: 1-1, (2023).
  • [7] Aktaş, M., et al., "Dilimlenmiş Elma ve Havucun Isı Pompası Tekniği ile Kurutulması: Performans Analizi", Politeknik Dergisi, 22(3): 523-529, (2019).
  • [8] Sezen, K., et al., "Effects of ambient conditions on solar assisted heat pump systems: a review", Science of The Total Environment, 778: 146362, (2021).
  • [9] Chua, K.J., et al., "Achieving better energy-efficient air conditioning – A review of technologies and strategies", Applied Energy, 104: 87-104, (2013).
  • [10] KILINÇ, F., E. BUYRUK, and M. CANER, "Sivas İli Şartlarında Yatay Toprak Kaynaklı Isı Pompasının Isıtma ve Soğutma İçin Performans Analizi", Politeknik Dergisi, 22(4): 1039-1044, (2020).
  • [11] Lee, S.H., et al., "Simulation-based optimization of heating and cooling seasonal performances of an air-to-air heat pump considering operating and design parameters using genetic algorithm", Applied Thermal Engineering, 144: 362-370, (2018).
  • [12] Kinab, E., et al., "Reversible heat pump model for seasonal performance optimization", Energy and Buildings, 42(12): 2269-2280, (2010).
  • [13] Underwood, C.P., M. Royapoor, and B. Sturm, "Parametric modelling of domestic air-source heat pumps", Energy and Buildings, 139: 578-589, (2017).
  • [14] Xu, Z., et al., "A semi-theoretical model for energy efficiency assessment of air source heat pump systems", Energy Conversion and Management, 228: 113667, (2021).
  • [15] Wang, W., et al., "A new performance index for constant speed air-source heat pumps based on the nominal output heating capacity and a related modeling study", Energy and Buildings, 184: 205-215, (2019).
  • [16] Wray, C., et al., "Practical Diagnostics for Evaluating Residential Commissioning Metrics", Lawrence Berkeley National Laboratory, 45959, Berkeley, (2002).
  • [17] Kim, W. and J.E. Braun, "Performance evaluation of a virtual refrigerant charge sensor", International Journal of Refrigeration, 36(3): 1130-1141, (2013).
  • [18] Sezen, K. and A. Gungor, "Performance analysis of air source heat pump according to outside temperature and relative humidity with mathematical modeling", Energy Conversion and Management, 263: 115702, (2022).
  • [19] Daikin, "RXS-G2V1B Outdoor units datasheet", Daikin Industries, EEDEN09-100, http://www.daikintech.co.uk/Data/Split-Sky-Air-Outdoor/RXS/2009/RXS-G2V1B/RXS 2V1B_Databook.pdf, (2021).
  • [20] Daikin, "FTXS-G Indoor units datasheet", Daikin Industries, http://www.daikintech.co.uk/Data/Split-Sky-Air-Indoor/FTXS/2011/FTXS-GV1B/FTXS60-71GV1B_Databook.pdf, (2021).
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Kutbay Sezen 0000-0003-1018-5793

Publication Date October 1, 2023
Submission Date January 21, 2023
Published in Issue Year 2023 Volume: 26 Issue: 3

Cite

APA Sezen, K. (2023). Operation Parameters Variation of Air Source Heat Pump According to the Outdoor Temperature. Politeknik Dergisi, 26(3), 1179-1184. https://doi.org/10.2339/politeknik.1240323
AMA Sezen K. Operation Parameters Variation of Air Source Heat Pump According to the Outdoor Temperature. Politeknik Dergisi. October 2023;26(3):1179-1184. doi:10.2339/politeknik.1240323
Chicago Sezen, Kutbay. “Operation Parameters Variation of Air Source Heat Pump According to the Outdoor Temperature”. Politeknik Dergisi 26, no. 3 (October 2023): 1179-84. https://doi.org/10.2339/politeknik.1240323.
EndNote Sezen K (October 1, 2023) Operation Parameters Variation of Air Source Heat Pump According to the Outdoor Temperature. Politeknik Dergisi 26 3 1179–1184.
IEEE K. Sezen, “Operation Parameters Variation of Air Source Heat Pump According to the Outdoor Temperature”, Politeknik Dergisi, vol. 26, no. 3, pp. 1179–1184, 2023, doi: 10.2339/politeknik.1240323.
ISNAD Sezen, Kutbay. “Operation Parameters Variation of Air Source Heat Pump According to the Outdoor Temperature”. Politeknik Dergisi 26/3 (October 2023), 1179-1184. https://doi.org/10.2339/politeknik.1240323.
JAMA Sezen K. Operation Parameters Variation of Air Source Heat Pump According to the Outdoor Temperature. Politeknik Dergisi. 2023;26:1179–1184.
MLA Sezen, Kutbay. “Operation Parameters Variation of Air Source Heat Pump According to the Outdoor Temperature”. Politeknik Dergisi, vol. 26, no. 3, 2023, pp. 1179-84, doi:10.2339/politeknik.1240323.
Vancouver Sezen K. Operation Parameters Variation of Air Source Heat Pump According to the Outdoor Temperature. Politeknik Dergisi. 2023;26(3):1179-84.