Determination of Non-ionizing Radiation and Shielding Studies of a New DC Plasma Device
Yıl 2024,
Cilt: 27 Sayı: 1, 397 - 406, 29.02.2024
Nihan Merve Sarıkahya
,
Mehmet Sarıkahya
,
Erol Kurt
Öz
In the present work, the determination of the electromagnetic radiation and shielding studies of a new designed and constructed portative plasma device have been reported. For this aim, the electromagnetic interference (EMI) measurements are performed. The device works with high voltage up to 2 kV depending on its filling gas pressure and contains a couple of terminals in the low pressurized chamber to form plasma structures confined in terms of electrical and magnetic confinement. The chamber as a simple torus geometry has been operated with He gas for the plasma stability explorations. The EMI measurements have been practiced for different distances from the setup and used different shielding materials to prevent the non-ionizing radiation. According to detailed tests with different shielding materials (Swatter, Square, Honeycomb) it is observed that the shape of the shielding material is very important for the optimum shielding results.
Kaynakça
- [1] Kurt, E., Arslan, S., Güven, M.E., “Effects of Grid Structures and Dielectric Materials of the Holder in an Inertial Electrostatic Confinement (IEC) Fusion Device”. J. Fusion Energy, 30: 404–412, (2011).
- [2] Xu, Y., “A general comparison between tokamak and stellarator plasmas”, Matter and Radiation at Extremes,1:192-200, (2016).
- [3] Dursun, B., Kurt, E., “Electromagnetic Design and Simulation of a New Fusion Device”, Elektronika ir Elektrotechnika, 20(8):34-38, (2014).
- [4] Dursun, B., Kurt, E., Tekerek, M., “A power circuit design for the poloidal field coils in a torus shaped plasma system”, J. Energy Systems, 3:3, (2019).
- [5] Kurt, E.. “A stationary multi‐component cathode modeling and ion trajectories for an inertial electrostatic confinement fusion device”, Int. J. Energy Research, 35:89 – 95,(2011).
- [6] Robinson, M.P., Benson T.M, Christopoulos C., Dawson J.F.,Ganley M.D., Marvin A.C., Porter S.J.,Thomas D.W.P., “Analytical formulation for the shielding effectiveness of enclosures with apertures”, IEEE Transactions on Electromagnetic Compatibility, 40(3):240-248, (1998).
- [7] Celozzi, S., Araneo, R., Lovat, G., “Electromagnetic Shielding, in Wiley Encyclopedia of Electrical and Electronics Engineering”,Wiley,1:42 ,(2008).
- [8] Caramitu, A.R.,Ioana, I. & Bors, A. M.,Tsakiris, V., Pintea, J., Caramitu A.D. “Preparation and Spectroscopic Characterization of Some Hybrid Composites with Electromagnetic Shielding Properties Exposed to Different Degradation Factors”,Materiale Plastice, 59: 82-94, (2023).
- [9] Merizgui, T,Abdechafik, H, Mecheri, K., “Modelling and Measurement of Electromagnetic Shielding Effectiveness”, 2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Algeria:1-6, (2018).
- [10] Tunakova, V,Militky, J. “Multifunctional metal composite textile shields against electromagnetic radiation—effect of various parameters on electromagnetic shielding effectiveness”,Polymer Composites, 38 :309–323, (2017).
- [11] Wanasinghe, D., Aslani, F., Ma, G., “Electromagnetic shielding properties of carbon fibre reinforced cementitious composites”, Construction and Building Materials, 260:19-27, (2020).
- [12] Wang, Y., Wanga, W., Dinga, X., “Multilayer-structured Ni-Co-Fe-P/polyaniline/polyimide composite fabric for robust electromagnetic shielding with low reflection characteristic”, Chemical Engineering Journal , 380: 91-103, (2020).
- [13] Wypych, G.,”Handbook of Fillers”, 28, Pigment & Resin Technology, United Kingdom, (1999).
- [14] Afilipoaei, C., Teodorescu-Draghicescu, H., “A Review over Electromagnetic Shielding Effectiveness of Composite Materials”, Proceedings, 63: 23; (2020).
- [15] Safarova, V., Militky, J., “Multifunctional Metal Composite Textile Shields Against Electromagnetic Radiation—Effect of Various Parameters on Electromagnetic Shielding Effectiveness”, Society of Plastics Engineers., 38:309–323, (2017).
- [16] Mathur, P., RAMAN, S., “Electromagnetic Interference (EMI): Measuremen t and Reduction Techniques”, Journal of Electronic Materials, 49: 5-18, (2020).
- [17] Munalli, D., Dimitrakis, G., D. Chronopoulos, “Electromagnetic shielding effectiveness of carbon fibre reinforced composites”, Composites , (2019).
- [18] Kurt, E, Kurt, H., Bayhan, U., “Ionization Effects and Linear Stability in a Coaxial Plasma Device”. Cent. Eur. J. Phys. 7: 123–129, (2009).
- [19] Kurt, E., Arslan, S., “An Inertial Electrostatic Confinement (IEC) Device Modeling and the Effects of Different Cathode Structures to the Fields”, Energy Conversion and Management, 63: 55-62, (2012).
Yeni Bir DC Plazma Cihazında İyonize Olmayan Radyasyonun Belirlenmesi ve Ekranlama Çalışmaları
Yıl 2024,
Cilt: 27 Sayı: 1, 397 - 406, 29.02.2024
Nihan Merve Sarıkahya
,
Mehmet Sarıkahya
,
Erol Kurt
Öz
Bu çalışmada, yeni tasarlanan ve üretilen portatif plazma cihazının elektromanyetik alan ölçümleri ve ekranlama çalışmaları yapılmıştır. Cihaz, dolum gazı basıncına bağlı olarak 2 kV’a kadar yüksek voltajla çalışmaktadır ve düşük basınçlı haznede elektrik ve manyetik alanları hapsedilmiş plazma yapıları oluşturmak için bir çift terminal içermektedir. Basit bir torus geometrisi olan hazne, plazma kararlılığı araştırmaları için He gazı ile çalıştırılmaktadır. Cihazdan farklı mesafelerde elektromanyetik alan değerleri ölçümü yapılmış ve iyonlaştırıcı olmayan radyasyonu önlemek için farklı ekranlama malzemeleri (Swatter, Square, Honeycomb) kullanılmıştır. Farklı malzemelerle yapılan ölçüm sonuçlarına göre, optimum ekranlama değeri elde etmek için ekranlama malzemesinin şeklinin çok önemli olduğu görülmüştür.
Kaynakça
- [1] Kurt, E., Arslan, S., Güven, M.E., “Effects of Grid Structures and Dielectric Materials of the Holder in an Inertial Electrostatic Confinement (IEC) Fusion Device”. J. Fusion Energy, 30: 404–412, (2011).
- [2] Xu, Y., “A general comparison between tokamak and stellarator plasmas”, Matter and Radiation at Extremes,1:192-200, (2016).
- [3] Dursun, B., Kurt, E., “Electromagnetic Design and Simulation of a New Fusion Device”, Elektronika ir Elektrotechnika, 20(8):34-38, (2014).
- [4] Dursun, B., Kurt, E., Tekerek, M., “A power circuit design for the poloidal field coils in a torus shaped plasma system”, J. Energy Systems, 3:3, (2019).
- [5] Kurt, E.. “A stationary multi‐component cathode modeling and ion trajectories for an inertial electrostatic confinement fusion device”, Int. J. Energy Research, 35:89 – 95,(2011).
- [6] Robinson, M.P., Benson T.M, Christopoulos C., Dawson J.F.,Ganley M.D., Marvin A.C., Porter S.J.,Thomas D.W.P., “Analytical formulation for the shielding effectiveness of enclosures with apertures”, IEEE Transactions on Electromagnetic Compatibility, 40(3):240-248, (1998).
- [7] Celozzi, S., Araneo, R., Lovat, G., “Electromagnetic Shielding, in Wiley Encyclopedia of Electrical and Electronics Engineering”,Wiley,1:42 ,(2008).
- [8] Caramitu, A.R.,Ioana, I. & Bors, A. M.,Tsakiris, V., Pintea, J., Caramitu A.D. “Preparation and Spectroscopic Characterization of Some Hybrid Composites with Electromagnetic Shielding Properties Exposed to Different Degradation Factors”,Materiale Plastice, 59: 82-94, (2023).
- [9] Merizgui, T,Abdechafik, H, Mecheri, K., “Modelling and Measurement of Electromagnetic Shielding Effectiveness”, 2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Algeria:1-6, (2018).
- [10] Tunakova, V,Militky, J. “Multifunctional metal composite textile shields against electromagnetic radiation—effect of various parameters on electromagnetic shielding effectiveness”,Polymer Composites, 38 :309–323, (2017).
- [11] Wanasinghe, D., Aslani, F., Ma, G., “Electromagnetic shielding properties of carbon fibre reinforced cementitious composites”, Construction and Building Materials, 260:19-27, (2020).
- [12] Wang, Y., Wanga, W., Dinga, X., “Multilayer-structured Ni-Co-Fe-P/polyaniline/polyimide composite fabric for robust electromagnetic shielding with low reflection characteristic”, Chemical Engineering Journal , 380: 91-103, (2020).
- [13] Wypych, G.,”Handbook of Fillers”, 28, Pigment & Resin Technology, United Kingdom, (1999).
- [14] Afilipoaei, C., Teodorescu-Draghicescu, H., “A Review over Electromagnetic Shielding Effectiveness of Composite Materials”, Proceedings, 63: 23; (2020).
- [15] Safarova, V., Militky, J., “Multifunctional Metal Composite Textile Shields Against Electromagnetic Radiation—Effect of Various Parameters on Electromagnetic Shielding Effectiveness”, Society of Plastics Engineers., 38:309–323, (2017).
- [16] Mathur, P., RAMAN, S., “Electromagnetic Interference (EMI): Measuremen t and Reduction Techniques”, Journal of Electronic Materials, 49: 5-18, (2020).
- [17] Munalli, D., Dimitrakis, G., D. Chronopoulos, “Electromagnetic shielding effectiveness of carbon fibre reinforced composites”, Composites , (2019).
- [18] Kurt, E, Kurt, H., Bayhan, U., “Ionization Effects and Linear Stability in a Coaxial Plasma Device”. Cent. Eur. J. Phys. 7: 123–129, (2009).
- [19] Kurt, E., Arslan, S., “An Inertial Electrostatic Confinement (IEC) Device Modeling and the Effects of Different Cathode Structures to the Fields”, Energy Conversion and Management, 63: 55-62, (2012).