Review
BibTex RIS Cite

Recent Advances in 4D Bioprinting

Year 2020, Volume: 1 Issue: 1, 20 - 23, 17.08.2020

Abstract

Four-dimensional (4D) bioprinting, is generally accepted as the future of
biofabrication technologies. 4D bioprinting develops dynamic and 3D based
biological materials which can shift their shapes or alter their behaviors when several
stimulants like electricity, temperature, humidity, magnetic etc. are applied. In this
review, we highlighted the important aspects of several smart materials for 4D
bioprinting that have been used recently for biofabrication researches. It is believed
that in immediate future, smart materials and 4D Bioprinting techniques will have an
excessive importance for designing of soft robotic systems and architecture of
hierarchial, compex, thick and vascularized tissue structures

References

  • [1] Shida Miao, Wei Zhu, Nathan J. Castro, Margaret Nowicki, Xuan Zhou, Haitao Cui, John P. Fisher, and Lijie Grace Zhang. (2016). 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci. Rep. 6: 27226.
  • [2] Shida Miao, Wei Zhu, Nathan J. Castro, Jinsong Leng, and Lijie Grace Zhang. (2016). Four-dimensional printing hierarchy scaffolds with highly biocompatible smart polymers for tissue engineering applications. Tissue Eng Part C Methods 22(10): 952-963.
  • [3] Yong Qiu, Kinam Park, (2001). Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 53(3): 321-339.
  • [4] Ashammakhi, N., Ahadian, S., Zengjie, F., Suthiwanich, K., Lorestani, F., Orive, G., Khademhosseini, A. (2018). Advances and future perspectives in 4D bioprinting. Biotechnology journal, 13(12), 1800148.
  • [5] Li, Y. C., Zhang, Y. S., Akpek, A., Shin, S. R., & Khademhosseini, A. (2016). 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication, 9(1), 012001.
  • [6] Wilson, S. A., Cross, L. M., Peak, C. W., & Gaharwar, A. K. (2017). Shear-thinning and thermo-reversible nanoengineered inks for 3D bioprinting. ACS applied materials & interfaces, 9(50), 43449-43458.
  • [7] Chimene, D., Lennox, K. K., Kaunas, R. R., & Gaharwar, A. K. (2016). Advanced bioinks for 3D printing: a materials science perspective. Annals of biomedical engineering, 44(6), 2090-2102.
  • [8] Bishop, E. S., Mostafa, S., Pakvasa, M., Luu, H. H., Lee, M. J., Wolf, J. M., Reid, R. R. (2017). 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends. Genes & diseases, 4(4), 185-195.
  • [9] Ke, D., Murphy, S.V. (2019). Current challenges of bioprinted tissues toward clinical translation. Tissue Engineering Part B: Reviews, 25(1), 1-13.
  • [10] Cheng X, Jin Y, Sun T, Qi R, Fan B and Li H. (2015). Oxidation-and thermo-responsive poly (N-isopropylacrylamide-co-2-hydroxyethyl acrylate) hydrogels cross-linked via diselenides for controlled drug delivery. RSC Advances. 5 4162-70
  • [11] Klouda L. (2015). Thermoresponsive hydrogels in biomedical applications: A seven-year update. European Journal of Pharmaceutics and Biopharmaceutics. 97, 338-49.
  • [12] Soledad Lencina M M, Iatridi Z, Villar M A and Tsitsilianis C. (2014). Thermoresponsive hydrogels from alginate-based graft copolymers. European Polymer Journal. 61, 33-44
  • [13] Bakarich S E, Gorkin R, 3rd, in het Panhuis M and Spinks G M. (2015). 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels Macromol Rapid Commun, 36; 1211-1217
  • [14] Han, D., Lu, Z., Chester, S. A., & Lee, H. (2018). Micro 3D printing of a temperature-responsive hydrogel using projection micro-stereolithography. Scientific reports, 8(1), 1-10.
  • [15] Liu J, Erol O, Pantula A, Liu W, Jiang Z, Kobayashi K, Chatterjee D, Hibino N, Romer L.H. and Kang S.H. (2019). Dual-Gel 4D Printing of Bioinspired Tubes. ACS applied materials & interfaces, 11; 8492-8
  • [16] Hsieh F.Y, Lin H.H. and Hsu S.H., (2015). 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair Biomaterials, 71; 48-57.
  • [17] Mellati A, Fan C M, Tamayol A, Annabi N, Dai S, Bi J, Jin B, Xian C, Khademhosseini A and Zhang H, (2017). Microengineered 3D cell‐laden thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering Biotechnology and bioengineering 114, 217-31.
  • [18] Lv C, Sun X.C, Xia H, Yu Y.H, Wang G, Cao X.W, Li S.X, Wang Y.S, Chen Q.D, Yu Y.D and Sun H.B. (2018). Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing Sensors and Actuators B: Chemical, 259; 736-44.
  • [19] Zhang L, Liang H, Jacob J and Naumov P. (2015). Photogated humidity-driven motility. Nature communications, 6; 7429.
  • [20] Ashammakhi N, Ahadian S, Zengjie F, Suthiwanich K, Lorestani F, Orive G, Ostrovidov S and Khademhosseini A. (2018). Advances and Future Perspectives in 4D Bioprinting Biotechnol J. 13, 1800148
  • [21] Yang, H., Leow W.R., Wang T., Yu J., He K., Qi D., Wan C., Chen X. (2017). 3D printed photoresponsive devices based on shape memory composites. Advanced Materials, 29(33): p. 1701627.
  • [22] Cui, H.T., Miao S., Esworthy T., Lee S.J., Zhou X., Hann S.Y., Webster T.J., Harris B.T., Zhang L.G., (2019). A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation. Nano Research,. 12(6): p. 1381-1388.
  • [23] Gupta, M.K., Meng F., Johnson B.N., Kong Y.L., Tian L, Yeh Y.W., Masters N., Singamameni S., McAlpine M.C. (2015). 3D printed programmable release capsules. Nano letters, 15(8): p. 5321-5329.
  • [24] Tamay, D.G., Usal T.D., Alagöz A.S., Yücel D., Hasırcı N, Hasırcı V. (2019). 3D and 4D Printing of Polymers for Tissue Engineering Applications. Frontiers in Bioengineering and Biotechnology,. 7.
  • [25] Wei, H.Q., Zhang Q., Yao Y., Liu L., Liu Y., Leng J., (2017). Direct-Write Fabrication of 4D Active Shape-Changing Structures Based on a Shape Memory Polymer and Its Nanocomposite. Acs Applied Materials & Interfaces,. 9(1): p. 876-883.
  • [26] Zhu, P.F., Yang W., Wang R., Gao S., Li B., Li Q., (2018). 4D Printing of Complex Structures with a Fast Response Time to Magnetic Stimulus. Acs Applied Materials & Interfaces,. 10(42): p. 36435-36442.
  • [27] Cvetkovic, C., Raman R., Chan V., Williams B.J., Tolish M., Bajaj P., Sakar M.S., Asada H.H., Saif M.T.A., Bashir R. (2014). Three-dimensionally printed biological machines powered by skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 111(28): p. 10125-10130.
  • [28] Sayyar, S., Bjorninen M., Haimi S., Miettinen S., Gilmore K., Grijpma D., Wallace G. (2016). UV cross-linkable graphene/poly (trimethylene carbonate) composites for 3D printing of electrically conductive scaffolds. ACS applied materials & interfaces,. 8(46): p. 31916-31925.
  • [29] Liu, W., Heinrich, M. A., Zhou, Y., Akpek, A., Hu, N., Liu, X., Zhang, Y.S. (2017). Extrusion bioprinting of shear‐thinning gelatin methacryloyl bioinks. Advanced healthcare materials, 6(12), 1601451.
  • [30] Heinrich, M. A., Liu, W., Jimenez, A., Yang, J., Akpek, A., Liu, X., Prakash, (2019). J. 3D bioprinting: from benches to translational applications. Small, 15(23), 1805510.
  • [31] Avci, H., Doğan Güzel, F., Erol, S., Akpek, (2018). A. Recent advances in organ-on-a-chip technologies and future challenges: a review. Turkish Journal of Chemistry, 42(3).
  • [32] Kizilkurtlu, A. A., Polat, T., Aydin, G.B., Akpek, (2018). A. Lung on a chip for drug screening and design. Current Pharmaceutical Design, 24(45), 5386-5396.
  • [33] Akpek, A. (2018). Triküspit kalp kapakçıklarının üç boyutlu (3B) biyobaskı metotları ile fabrikasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 740-745.
  • [34] Wei, W., Li, Y., Yang, H., Nassab, R., Shahriyari, F., Akpek, A., Zhang, Y.S. (2017). 3D Printed Anchoring Sutures for Permanent Shaping of Tissues. Macromolecular bioscience, 17(12), 1700304.
  • [35] Akpek, A. (2018). Analysis of biocompatibility characteristics of stereolithography applied three dimensional (3D) bioprinted artifical heart valves. Journal of the Faculty of Engineering and Architecture of Gazi University, 33(3), 929-938.

4B Biyobaskı Çalışmalarında Güncel Yenilikler

Year 2020, Volume: 1 Issue: 1, 20 - 23, 17.08.2020

Abstract

Dört boyutlu (4B) biyobaskı tekniklerinin biyofabrikasyon teknolojilerinin geleceği
olduğu düşünülmektedir. Elektrik, sıcaklık, nem, manyetik vs. gibi uyarıcılar aracılığı
ile şekil değiştiren akıllı malzemeler kullanılarak ortaya çıkartılmış olan 4B biyobaskı
tekniği, 3B biyolojik materyallerden oluşmuş ve zamanla şekil değiştirebilen yapılar
üretilebilmektir. Bu mini derlemede bu alanda son yıllarda ortaya konmuş olan pek
çok akıllı malzeme ve bunların önemleri açıklanmıştır. Akıllı malzemelerin ve 4B
biyoyazıcı tekniklerinin çok yakın bir gelecek içerisinde yumuşak robotik sistemlerin
tasarımlarında ve hiyerarşik, kompleks, kalın ve damar dokusu eklemlenmiş doku
yapılarının tasarımlanmasında aşırı derecede önem kazanacağı düşünülmektedir.

References

  • [1] Shida Miao, Wei Zhu, Nathan J. Castro, Margaret Nowicki, Xuan Zhou, Haitao Cui, John P. Fisher, and Lijie Grace Zhang. (2016). 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci. Rep. 6: 27226.
  • [2] Shida Miao, Wei Zhu, Nathan J. Castro, Jinsong Leng, and Lijie Grace Zhang. (2016). Four-dimensional printing hierarchy scaffolds with highly biocompatible smart polymers for tissue engineering applications. Tissue Eng Part C Methods 22(10): 952-963.
  • [3] Yong Qiu, Kinam Park, (2001). Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 53(3): 321-339.
  • [4] Ashammakhi, N., Ahadian, S., Zengjie, F., Suthiwanich, K., Lorestani, F., Orive, G., Khademhosseini, A. (2018). Advances and future perspectives in 4D bioprinting. Biotechnology journal, 13(12), 1800148.
  • [5] Li, Y. C., Zhang, Y. S., Akpek, A., Shin, S. R., & Khademhosseini, A. (2016). 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication, 9(1), 012001.
  • [6] Wilson, S. A., Cross, L. M., Peak, C. W., & Gaharwar, A. K. (2017). Shear-thinning and thermo-reversible nanoengineered inks for 3D bioprinting. ACS applied materials & interfaces, 9(50), 43449-43458.
  • [7] Chimene, D., Lennox, K. K., Kaunas, R. R., & Gaharwar, A. K. (2016). Advanced bioinks for 3D printing: a materials science perspective. Annals of biomedical engineering, 44(6), 2090-2102.
  • [8] Bishop, E. S., Mostafa, S., Pakvasa, M., Luu, H. H., Lee, M. J., Wolf, J. M., Reid, R. R. (2017). 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends. Genes & diseases, 4(4), 185-195.
  • [9] Ke, D., Murphy, S.V. (2019). Current challenges of bioprinted tissues toward clinical translation. Tissue Engineering Part B: Reviews, 25(1), 1-13.
  • [10] Cheng X, Jin Y, Sun T, Qi R, Fan B and Li H. (2015). Oxidation-and thermo-responsive poly (N-isopropylacrylamide-co-2-hydroxyethyl acrylate) hydrogels cross-linked via diselenides for controlled drug delivery. RSC Advances. 5 4162-70
  • [11] Klouda L. (2015). Thermoresponsive hydrogels in biomedical applications: A seven-year update. European Journal of Pharmaceutics and Biopharmaceutics. 97, 338-49.
  • [12] Soledad Lencina M M, Iatridi Z, Villar M A and Tsitsilianis C. (2014). Thermoresponsive hydrogels from alginate-based graft copolymers. European Polymer Journal. 61, 33-44
  • [13] Bakarich S E, Gorkin R, 3rd, in het Panhuis M and Spinks G M. (2015). 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels Macromol Rapid Commun, 36; 1211-1217
  • [14] Han, D., Lu, Z., Chester, S. A., & Lee, H. (2018). Micro 3D printing of a temperature-responsive hydrogel using projection micro-stereolithography. Scientific reports, 8(1), 1-10.
  • [15] Liu J, Erol O, Pantula A, Liu W, Jiang Z, Kobayashi K, Chatterjee D, Hibino N, Romer L.H. and Kang S.H. (2019). Dual-Gel 4D Printing of Bioinspired Tubes. ACS applied materials & interfaces, 11; 8492-8
  • [16] Hsieh F.Y, Lin H.H. and Hsu S.H., (2015). 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair Biomaterials, 71; 48-57.
  • [17] Mellati A, Fan C M, Tamayol A, Annabi N, Dai S, Bi J, Jin B, Xian C, Khademhosseini A and Zhang H, (2017). Microengineered 3D cell‐laden thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering Biotechnology and bioengineering 114, 217-31.
  • [18] Lv C, Sun X.C, Xia H, Yu Y.H, Wang G, Cao X.W, Li S.X, Wang Y.S, Chen Q.D, Yu Y.D and Sun H.B. (2018). Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing Sensors and Actuators B: Chemical, 259; 736-44.
  • [19] Zhang L, Liang H, Jacob J and Naumov P. (2015). Photogated humidity-driven motility. Nature communications, 6; 7429.
  • [20] Ashammakhi N, Ahadian S, Zengjie F, Suthiwanich K, Lorestani F, Orive G, Ostrovidov S and Khademhosseini A. (2018). Advances and Future Perspectives in 4D Bioprinting Biotechnol J. 13, 1800148
  • [21] Yang, H., Leow W.R., Wang T., Yu J., He K., Qi D., Wan C., Chen X. (2017). 3D printed photoresponsive devices based on shape memory composites. Advanced Materials, 29(33): p. 1701627.
  • [22] Cui, H.T., Miao S., Esworthy T., Lee S.J., Zhou X., Hann S.Y., Webster T.J., Harris B.T., Zhang L.G., (2019). A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation. Nano Research,. 12(6): p. 1381-1388.
  • [23] Gupta, M.K., Meng F., Johnson B.N., Kong Y.L., Tian L, Yeh Y.W., Masters N., Singamameni S., McAlpine M.C. (2015). 3D printed programmable release capsules. Nano letters, 15(8): p. 5321-5329.
  • [24] Tamay, D.G., Usal T.D., Alagöz A.S., Yücel D., Hasırcı N, Hasırcı V. (2019). 3D and 4D Printing of Polymers for Tissue Engineering Applications. Frontiers in Bioengineering and Biotechnology,. 7.
  • [25] Wei, H.Q., Zhang Q., Yao Y., Liu L., Liu Y., Leng J., (2017). Direct-Write Fabrication of 4D Active Shape-Changing Structures Based on a Shape Memory Polymer and Its Nanocomposite. Acs Applied Materials & Interfaces,. 9(1): p. 876-883.
  • [26] Zhu, P.F., Yang W., Wang R., Gao S., Li B., Li Q., (2018). 4D Printing of Complex Structures with a Fast Response Time to Magnetic Stimulus. Acs Applied Materials & Interfaces,. 10(42): p. 36435-36442.
  • [27] Cvetkovic, C., Raman R., Chan V., Williams B.J., Tolish M., Bajaj P., Sakar M.S., Asada H.H., Saif M.T.A., Bashir R. (2014). Three-dimensionally printed biological machines powered by skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 111(28): p. 10125-10130.
  • [28] Sayyar, S., Bjorninen M., Haimi S., Miettinen S., Gilmore K., Grijpma D., Wallace G. (2016). UV cross-linkable graphene/poly (trimethylene carbonate) composites for 3D printing of electrically conductive scaffolds. ACS applied materials & interfaces,. 8(46): p. 31916-31925.
  • [29] Liu, W., Heinrich, M. A., Zhou, Y., Akpek, A., Hu, N., Liu, X., Zhang, Y.S. (2017). Extrusion bioprinting of shear‐thinning gelatin methacryloyl bioinks. Advanced healthcare materials, 6(12), 1601451.
  • [30] Heinrich, M. A., Liu, W., Jimenez, A., Yang, J., Akpek, A., Liu, X., Prakash, (2019). J. 3D bioprinting: from benches to translational applications. Small, 15(23), 1805510.
  • [31] Avci, H., Doğan Güzel, F., Erol, S., Akpek, (2018). A. Recent advances in organ-on-a-chip technologies and future challenges: a review. Turkish Journal of Chemistry, 42(3).
  • [32] Kizilkurtlu, A. A., Polat, T., Aydin, G.B., Akpek, (2018). A. Lung on a chip for drug screening and design. Current Pharmaceutical Design, 24(45), 5386-5396.
  • [33] Akpek, A. (2018). Triküspit kalp kapakçıklarının üç boyutlu (3B) biyobaskı metotları ile fabrikasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 740-745.
  • [34] Wei, W., Li, Y., Yang, H., Nassab, R., Shahriyari, F., Akpek, A., Zhang, Y.S. (2017). 3D Printed Anchoring Sutures for Permanent Shaping of Tissues. Macromolecular bioscience, 17(12), 1700304.
  • [35] Akpek, A. (2018). Analysis of biocompatibility characteristics of stereolithography applied three dimensional (3D) bioprinted artifical heart valves. Journal of the Faculty of Engineering and Architecture of Gazi University, 33(3), 929-938.
There are 35 citations in total.

Details

Primary Language English
Subjects Tissue Engineering, Biomaterial
Journal Section Review
Authors

Ali Akpek

Ayça Bal Öztürk

Emine Alarçin

Huseyin Avci

Meltem Avcı This is me 0000-0003-4008-4272

Publication Date August 17, 2020
Published in Issue Year 2020 Volume: 1 Issue: 1

Cite

APA Akpek, A., Bal Öztürk, A., Alarçin, E., Avci, H., et al. (2020). Recent Advances in 4D Bioprinting. Research Journal of Biomedical and Biotechnology, 1(1), 20-23.
AMA Akpek A, Bal Öztürk A, Alarçin E, Avci H, Avcı M. Recent Advances in 4D Bioprinting. RJBB. August 2020;1(1):20-23.
Chicago Akpek, Ali, Ayça Bal Öztürk, Emine Alarçin, Huseyin Avci, and Meltem Avcı. “Recent Advances in 4D Bioprinting”. Research Journal of Biomedical and Biotechnology 1, no. 1 (August 2020): 20-23.
EndNote Akpek A, Bal Öztürk A, Alarçin E, Avci H, Avcı M (August 1, 2020) Recent Advances in 4D Bioprinting. Research Journal of Biomedical and Biotechnology 1 1 20–23.
IEEE A. Akpek, A. Bal Öztürk, E. Alarçin, H. Avci, and M. Avcı, “Recent Advances in 4D Bioprinting”, RJBB, vol. 1, no. 1, pp. 20–23, 2020.
ISNAD Akpek, Ali et al. “Recent Advances in 4D Bioprinting”. Research Journal of Biomedical and Biotechnology 1/1 (August 2020), 20-23.
JAMA Akpek A, Bal Öztürk A, Alarçin E, Avci H, Avcı M. Recent Advances in 4D Bioprinting. RJBB. 2020;1:20–23.
MLA Akpek, Ali et al. “Recent Advances in 4D Bioprinting”. Research Journal of Biomedical and Biotechnology, vol. 1, no. 1, 2020, pp. 20-23.
Vancouver Akpek A, Bal Öztürk A, Alarçin E, Avci H, Avcı M. Recent Advances in 4D Bioprinting. RJBB. 2020;1(1):20-3.